非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 g=%&p?1@E
function z = zernfun(n,m,r,theta,nflag) I@B7uFj
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. D'&LwU,o
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Em7q@
% and angular frequency M, evaluated at positions (R,THETA) on the 'ZDclz9}
% unit circle. N is a vector of positive integers (including 0), and G1l(
% M is a vector with the same number of elements as N. Each element Zry>s0
% k of M must be a positive integer, with possible values M(k) = -N(k) kmS8>O
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, QJ/SP
% and THETA is a vector of angles. R and THETA must have the same c' 6H@m#=
% length. The output Z is a matrix with one column for every (N,M) pA2U+Q@
% pair, and one row for every (R,THETA) pair. y{N9.H2
% 2Ar<(v$
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike anvj{1
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), YJy*OS_&
% with delta(m,0) the Kronecker delta, is chosen so that the integral u%pief
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, xEBjfn
% and theta=0 to theta=2*pi) is unity. For the non-normalized gr;M
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. (pmo[2kg
% cNVdGY%&
% The Zernike functions are an orthogonal basis on the unit circle. 1 W0; YcT]
% They are used in disciplines such as astronomy, optics, and H07j&
% optometry to describe functions on a circular domain. ST3qg6Cq2J
% Vo%d;>!G\;
% The following table lists the first 15 Zernike functions. VC.?]'OqD
% r>Ln*R,9D
% n m Zernike function Normalization Zx_m?C_2_
% -------------------------------------------------- pR"qPSv'
% 0 0 1 1 q
:bKT#\
% 1 1 r * cos(theta) 2 ueR42J%s
% 1 -1 r * sin(theta) 2 @I&"P:E0F;
% 2 -2 r^2 * cos(2*theta) sqrt(6) .*j+?
% 2 0 (2*r^2 - 1) sqrt(3) P5>CSWy%
% 2 2 r^2 * sin(2*theta) sqrt(6) #-;BU{3*
% 3 -3 r^3 * cos(3*theta) sqrt(8) 9)">()8
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) {UcItLjY
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) `9ox?|iJ
% 3 3 r^3 * sin(3*theta) sqrt(8) =r~.I
% 4 -4 r^4 * cos(4*theta) sqrt(10) HhL%iy1
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 0REWbcxd"
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) RVfe}4Stm#
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Bu1z$#AC
% 4 4 r^4 * sin(4*theta) sqrt(10) `y}d)"!
% --------------------------------------------------
gnXjd}
% mV,R0olF
% Example 1: o(P:f)B
% 9^u?v`!
% % Display the Zernike function Z(n=5,m=1) aJ8pJ{,P
% x = -1:0.01:1; D@^ZpN8r
% [X,Y] = meshgrid(x,x); 'l|_$3
% [theta,r] = cart2pol(X,Y); A-5+#
% idx = r<=1; Aq!['G
% z = nan(size(X)); WM"^#=+$
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ??Zmj:8E'
% figure lQBM0|n
% pcolor(x,x,z), shading interp Rs`a@Fn
% axis square, colorbar &r%*_pX
% title('Zernike function Z_5^1(r,\theta)') PoJ$%_a}
% F-^HN%
% Example 2: +,Az\aT/%
% (GG"'bYk
% % Display the first 10 Zernike functions Ug21d42Z4
% x = -1:0.01:1; h
'[vB^
% [X,Y] = meshgrid(x,x); n5.>;N.*
% [theta,r] = cart2pol(X,Y); !dY:S';~
% idx = r<=1; kA__*b}8UK
% z = nan(size(X)); {ah=i8$
% n = [0 1 1 2 2 2 3 3 3 3]; |L;psK
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; (:QQ7xc{}
% Nplot = [4 10 12 16 18 20 22 24 26 28]; Net)l@IB]
% y = zernfun(n,m,r(idx),theta(idx)); [+g@@\X4
% figure('Units','normalized') ;YDF*~9u
% for k = 1:10 t1jlxK
% z(idx) = y(:,k); 6#M0AG
% subplot(4,7,Nplot(k)) %i8>w:@NW
% pcolor(x,x,z), shading interp "<x~{BN?
% set(gca,'XTick',[],'YTick',[]) N?;o_^C
% axis square T-C#xmY(
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) X5Y
`(/V
% end <zuE=0P~%
% Rt^<xXX$
% See also ZERNPOL, ZERNFUN2. ( 'n8=J
#}dVaXY)
% Paul Fricker 11/13/2006 q9Sz7_K
A&c@8
cTd;p>:>m
% Check and prepare the inputs:
vt@Us\fI
% ----------------------------- EWIc|b:
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) {|Ki^8 h/p
error('zernfun:NMvectors','N and M must be vectors.') 45sxF?GSwL
end DBJA}Cw
>}b6J7_
if length(n)~=length(m) +RV- VrV
error('zernfun:NMlength','N and M must be the same length.') =kh>s$We
end t*d >eK`:N
]<T8ZA_Y;
n = n(:); fu<2t$Cn>
m = m(:); x
XM!E
8
if any(mod(n-m,2)) EB5_;
error('zernfun:NMmultiplesof2', ... ny(GTKoUz
'All N and M must differ by multiples of 2 (including 0).') X@qk> /
end /;&+<
}
;Q=GJ5`B
if any(m>n) b/B`&CIA0"
error('zernfun:MlessthanN', ... [OZ=iz.
'Each M must be less than or equal to its corresponding N.') u'i%~(:$\)
end i*CQor6|z
6lmiMU&