非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 `WIZY33V
function z = zernfun(n,m,r,theta,nflag) 9#TD1B/
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. BmKf%:l}
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N ~m_{&,CA.
% and angular frequency M, evaluated at positions (R,THETA) on the O}>@G
% unit circle. N is a vector of positive integers (including 0), and >"8;8Ev
% M is a vector with the same number of elements as N. Each element LN~mKoW
% k of M must be a positive integer, with possible values M(k) = -N(k) $C.a@gm
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ^D<CoxG
% and THETA is a vector of angles. R and THETA must have the same dP?prT
% length. The output Z is a matrix with one column for every (N,M) fcxg6W'
% pair, and one row for every (R,THETA) pair. D(l,Z
% 3CgID6[Sy
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike l]4=W<N
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), XwUa|"X6
% with delta(m,0) the Kronecker delta, is chosen so that the integral ~P#mvQE)
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, &#L C'
% and theta=0 to theta=2*pi) is unity. For the non-normalized R\|,GZ!`+
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 1aQm r=,
% udu<Nis4
% The Zernike functions are an orthogonal basis on the unit circle. [3"F$?e5
% They are used in disciplines such as astronomy, optics, and UAPd["`)y
% optometry to describe functions on a circular domain. ~n-Px)
% eT+i&
% The following table lists the first 15 Zernike functions. b3EGtC}^
% mFg$;F
% n m Zernike function Normalization <4+P37^~
% -------------------------------------------------- 5CZyA`3V^5
% 0 0 1 1 PJiU2Y33
% 1 1 r * cos(theta) 2 E/g"}yR
% 1 -1 r * sin(theta) 2 K fD.J)
% 2 -2 r^2 * cos(2*theta) sqrt(6) KJRAW]?{
% 2 0 (2*r^2 - 1) sqrt(3) ;+<IWDo
% 2 2 r^2 * sin(2*theta) sqrt(6) )O" E#%
% 3 -3 r^3 * cos(3*theta) sqrt(8) kL%ot<rt)w
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 9Q=VRH:
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) kh9'W<tE
% 3 3 r^3 * sin(3*theta) sqrt(8) 3("C'(W
% 4 -4 r^4 * cos(4*theta) sqrt(10) g35!a<JW
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) nm@h5ON_
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) gYhY1Mym
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) GuO}CQs^W
% 4 4 r^4 * sin(4*theta) sqrt(10) r5DRF4,7
% -------------------------------------------------- `*Yw-HL
% H0;Iv#S!
% Example 1: EW|$qLg
% qS#G7~ur>y
% % Display the Zernike function Z(n=5,m=1) 3Rc*vVnI
% x = -1:0.01:1; N$6e KJ]
% [X,Y] = meshgrid(x,x); hE|P|0U,n
% [theta,r] = cart2pol(X,Y); *{3d+j/?/
% idx = r<=1; IplOXD
% z = nan(size(X)); g3z/yj
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 0n{.96r0R
% figure f^FFn32u
% pcolor(x,x,z), shading interp -NXxxK
% axis square, colorbar q7X#LY k
% title('Zernike function Z_5^1(r,\theta)') ?qNU*d
% 6N#hN)/
% Example 2: rZKfb}ANQ
% Q,[G?vbj
% % Display the first 10 Zernike functions ^O18\a
% x = -1:0.01:1; g}s$s}
% [X,Y] = meshgrid(x,x); j{%;n40$
% [theta,r] = cart2pol(X,Y); i)?7+<X
% idx = r<=1; Qs elW]
% z = nan(size(X)); .\ ;'>qy
% n = [0 1 1 2 2 2 3 3 3 3]; 6nZ]y&$G-k
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; e0TYHr)X>3
% Nplot = [4 10 12 16 18 20 22 24 26 28]; C(ij_>
% y = zernfun(n,m,r(idx),theta(idx)); UGSZg|&6#*
% figure('Units','normalized') &"^F;z/
% for k = 1:10 a_RY Yj
% z(idx) = y(:,k); p?i.<Z
% subplot(4,7,Nplot(k)) *4}_2"[
% pcolor(x,x,z), shading interp B?! L~J@p
% set(gca,'XTick',[],'YTick',[]) }|.<EkA
% axis square Wef%f]u
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) L[x`i'0B
% end M7TLQqaF
% 'XK 'T\m
% See also ZERNPOL, ZERNFUN2. .xN<<+|_v'
,U~A=bsa
% Paul Fricker 11/13/2006 JT?u[pQ^
w:t~M[kTW
XwY,xg&o
% Check and prepare the inputs: tm+*ik=x|
% ----------------------------- !Y ,7%
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) wXIRn?z
error('zernfun:NMvectors','N and M must be vectors.') $G".PWc
end eFG/!b<17
{DRk{>K,
if length(n)~=length(m) YzESVTh
error('zernfun:NMlength','N and M must be the same length.') /65YHXg,
end <tD,Uu{P
gXxi; g
n = n(:); #L*\ ^ c
m = m(:); "`>6M&`U
if any(mod(n-m,2)) /eV)5`V
error('zernfun:NMmultiplesof2', ... !*-|!Vz
'All N and M must differ by multiples of 2 (including 0).') MgeC-XQM
end KN}#8.'>3
x3q^}sj%
if any(m>n) ?2]fE[SqY
error('zernfun:MlessthanN', ... '(.5!7?Qc
'Each M must be less than or equal to its corresponding N.') yaR>?[h
end y98FEG#S}
.C'\U[A{
if any( r>1 | r<0 ) "^#O7.oVi+
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ciblj?"Wi
end Va8
}JD
S2$66xr#
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) bo\ bs1
error('zernfun:RTHvector','R and THETA must be vectors.') jZA1fV
end uj8saNu
Z[#8F&QV!m
r = r(:); G"/;Cq=t
theta = theta(:); eC-&.Fl
length_r = length(r); p:~#(/GWf
if length_r~=length(theta) 74([~Qs _M
error('zernfun:RTHlength', ... L]=]/>jQ6
'The number of R- and THETA-values must be equal.') cfTT7O#Dc
end &W\e 5X<A
v3DK0 MW
% Check normalization: U1YqyG8
% -------------------- y!b"Cj
if nargin==5 && ischar(nflag) Cog }a
isnorm = strcmpi(nflag,'norm'); RN`TUCQL
if ~isnorm bJ:5pBJ3
error('zernfun:normalization','Unrecognized normalization flag.') 1S?~c25=h
end #:?:gY<
else Qsbyy>o)
isnorm = false; [j6]!p]S$
end y4kn2Mw;
#(tdJ<HvC|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% R>bg3j
% Compute the Zernike Polynomials A|"T8KSMB
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% EID-ROMO
sVh)Ofn
% Determine the required powers of r: O ~5t[
% ----------------------------------- x// uF
m_abs = abs(m); WOO3z5 La
rpowers = []; |>ztx}\
for j = 1:length(n) rZgu`5<a
rpowers = [rpowers m_abs(j):2:n(j)]; q]4h#?.-1v
end &b (*
rpowers = unique(rpowers); }1 O"?6
:q/s%`ob
% Pre-compute the values of r raised to the required powers, ,a>Dv@$Y
% and compile them in a matrix: 6w%n$tiX
% ----------------------------- vAM1|,U
if rpowers(1)==0 N:B<5l '
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); g[~{iu_$d
rpowern = cat(2,rpowern{:}); #w''WOk@ZG
rpowern = [ones(length_r,1) rpowern]; "M:ui0YP
else Z`kVyuQ
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); @x1cV_s[
rpowern = cat(2,rpowern{:}); 9,8/DW.K
end kI"9T`owR
y{M7kYWtHV
% Compute the values of the polynomials: ~C{:G;Iy0
% -------------------------------------- {+lU 4u
y = zeros(length_r,length(n)); ,|*Gr"Q=
for j = 1:length(n) Tv#d>ZSD
s = 0:(n(j)-m_abs(j))/2; l$5nv5r
pows = n(j):-2:m_abs(j); 4V9BmVS|Th
for k = length(s):-1:1 m^FKE:
p = (1-2*mod(s(k),2))* ... 6D| F1UFU
prod(2:(n(j)-s(k)))/ ... &Sg]P
prod(2:s(k))/ ... 29=ob("
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... <zpxodM@T
prod(2:((n(j)+m_abs(j))/2-s(k))); fln[Q2zl
idx = (pows(k)==rpowers); 6D]fDeH\
y(:,j) = y(:,j) + p*rpowern(:,idx); B9,39rG/7+
end TFOx=_.%i
[.&JQ
if isnorm vVMoCG"f
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); qMEd
R;o
end ^W sgAyCB
end j=pg5T
% END: Compute the Zernike Polynomials ]-t>F
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% J#Q>dC7
Jt}`oFQ5l
% Compute the Zernike functions: ktPM66`b
% ------------------------------ ~0+<-T
idx_pos = m>0; )*_G/<N)|
idx_neg = m<0; g}R#0gkdk}
'Ev[G6vo
z = y; 7(D)U)9h
if any(idx_pos) /*;a6S8q
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); [PN2^
end T}{zh
if any(idx_neg) >!qtue7B
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); BEax[=&W
end xyo~p,(~t
(Zx--2lc
% EOF zernfun