切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10896阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 bOY<C%;C  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! >k\lE(  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 C `>1x`n  
    function z = zernfun(n,m,r,theta,nflag) !^,<nP  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. G!^}z (Mgi  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N F/QRgXV  
    %   and angular frequency M, evaluated at positions (R,THETA) on the #cZ<[K q6  
    %   unit circle.  N is a vector of positive integers (including 0), and +ROwk  
    %   M is a vector with the same number of elements as N.  Each element LzS)WjEN  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 5d4/}o}%"  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, >@mvb@4*  
    %   and THETA is a vector of angles.  R and THETA must have the same y1FE +EX[  
    %   length.  The output Z is a matrix with one column for every (N,M) c(R=f +  
    %   pair, and one row for every (R,THETA) pair. q#mw#Uw-  
    % &F!Ct(c99  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike -/7[\S  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), L PDx3MS  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ISbhC!59  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 15 /lX  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized c^?+"7oO0  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. A:?|\r  
    % Q.$|TbVfds  
    %   The Zernike functions are an orthogonal basis on the unit circle. nKO4o8js{{  
    %   They are used in disciplines such as astronomy, optics, and -D4"uoN.  
    %   optometry to describe functions on a circular domain. :d!qZFln  
    % soTmKqj E  
    %   The following table lists the first 15 Zernike functions. lo!.%PP|  
    % RAh4#8]  
    %       n    m    Zernike function           Normalization N1vPY]8  
    %       -------------------------------------------------- T08SGB]  
    %       0    0    1                                 1 v{T%`WuPRf  
    %       1    1    r * cos(theta)                    2 FthrI  
    %       1   -1    r * sin(theta)                    2 &.ilku/  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ZliJc7lss  
    %       2    0    (2*r^2 - 1)                    sqrt(3) J'=iEI  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) z"vI-~,YU  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 65>1f  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) 8vK$]e36  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) $$tFP"pZ  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) X>$s>})Y  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) G%RL8HU  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) w`Ss MI  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) /4!.G#DLQ  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ^tFbg+.  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ]m(C}}  
    %       -------------------------------------------------- [`]h23vRW  
    % 4^jIV!V  
    %   Example 1: [ljC S  
    % ]c=nkS  
    %       % Display the Zernike function Z(n=5,m=1) t 5{Y'  
    %       x = -1:0.01:1;  u51%~  
    %       [X,Y] = meshgrid(x,x); RM(MCle}  
    %       [theta,r] = cart2pol(X,Y); 3R=R k  
    %       idx = r<=1; TJhzyJ"t  
    %       z = nan(size(X)); n$03##pf  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); BS@x&DB  
    %       figure {j!jm5  
    %       pcolor(x,x,z), shading interp YWXY4*G  
    %       axis square, colorbar ,1!~@dhs  
    %       title('Zernike function Z_5^1(r,\theta)') 8F;f&&L"y  
    % Q~y) V  
    %   Example 2: l[P VWM  
    % B'kV.3t  
    %       % Display the first 10 Zernike functions ylo/]pVs  
    %       x = -1:0.01:1; XP |qY1  
    %       [X,Y] = meshgrid(x,x); [l7 G9T}/[  
    %       [theta,r] = cart2pol(X,Y); &{5v[:$  
    %       idx = r<=1; l )m]<E X  
    %       z = nan(size(X)); Ol@ssm  
    %       n = [0  1  1  2  2  2  3  3  3  3]; }nO[;2Na  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; ydx-` yg#  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; O9_S"\8]@  
    %       y = zernfun(n,m,r(idx),theta(idx)); dZ"B6L!^(  
    %       figure('Units','normalized') 'cpO"d?{  
    %       for k = 1:10 p[&6hXTd  
    %           z(idx) = y(:,k); Shm$>\~=  
    %           subplot(4,7,Nplot(k)) @}r2xY1  
    %           pcolor(x,x,z), shading interp K@0/iWm*  
    %           set(gca,'XTick',[],'YTick',[]) D rMG{Yiu  
    %           axis square e]qbh_A  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) KBO{ g:"  
    %       end ]-D&/88``  
    % O*:8gu'Y2  
    %   See also ZERNPOL, ZERNFUN2. )dMXn2O  
    +kXj+2  
    %   Paul Fricker 11/13/2006 Q 6)5*o8n  
    `PH*tdYrh  
    M*xt9'Yd  
    % Check and prepare the inputs: t]QGyW A]  
    % ----------------------------- { yvKUTq`  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) N)&(&2  
        error('zernfun:NMvectors','N and M must be vectors.') <.N33 7!  
    end @[vwqPOL  
    G=Qslrtg  
    if length(n)~=length(m)  -l ?J  
        error('zernfun:NMlength','N and M must be the same length.') j_I  
    end |fd}B5!c  
    }z/Y Hv%  
    n = n(:); R DAihq  
    m = m(:); JOA_2qa>\  
    if any(mod(n-m,2)) rK@UCRf  
        error('zernfun:NMmultiplesof2', ... NETji:d  
              'All N and M must differ by multiples of 2 (including 0).') ndY1j5  
    end w2mLL?P  
    \i +=tGY  
    if any(m>n) FV1!IE-}-  
        error('zernfun:MlessthanN', ... R[/]iK+!&  
              'Each M must be less than or equal to its corresponding N.') :q+D`s  
    end EXrOP]Kl  
    y9>?  
    if any( r>1 | r<0 ) [8b,}i 1  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 5ZPe=SQ{  
    end ju@5D h  
    S[_Hc$7U  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 2Y+8!4^L a  
        error('zernfun:RTHvector','R and THETA must be vectors.') HVz,liq  
    end 8r 4 L4  
    s)e'}y  
    r = r(:); @rh1W$  
    theta = theta(:); unUCn5hJ=  
    length_r = length(r); #f 4"  
    if length_r~=length(theta) A)X 'We  
        error('zernfun:RTHlength', ... o3mxtE]  
              'The number of R- and THETA-values must be equal.') ,iUYsY  
    end KT5"/fv  
     9kkYD  
    % Check normalization: 09RJc3XE9  
    % -------------------- ~ 3HI;  
    if nargin==5 && ischar(nflag) 'aWzam>  
        isnorm = strcmpi(nflag,'norm'); j(8I+||  
        if ~isnorm b,7@)sZ*  
            error('zernfun:normalization','Unrecognized normalization flag.') ZUW~ZZ7Z:  
        end jq4{UW'  
    else l*l(QvN_  
        isnorm = false; ~TGk`cAM>  
    end N8Mq0Ck{$  
    @Lj28&4:<  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9bpY>ze  
    % Compute the Zernike Polynomials  ?2g\y@  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% n-cz xq%n  
    zqq$PaH*  
    % Determine the required powers of r: $g|/.XH%  
    % ----------------------------------- o~Im5j],*  
    m_abs = abs(m); nsq7,%5  
    rpowers = []; D:uBr|('  
    for j = 1:length(n) $X%w9l e  
        rpowers = [rpowers m_abs(j):2:n(j)]; fRTQ5V  
    end D;V FM P  
    rpowers = unique(rpowers); [y>;  
    ;tR,w   
    % Pre-compute the values of r raised to the required powers, e3L<;MAt  
    % and compile them in a matrix: XG5mfKMt+  
    % ----------------------------- 8: KlU(J  
    if rpowers(1)==0 #nL&x3  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); UeVRd  
        rpowern = cat(2,rpowern{:}); FafOd9>AO  
        rpowern = [ones(length_r,1) rpowern]; V m1U00lM{  
    else &k5 Z|d|  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); j}=$2|}8{  
        rpowern = cat(2,rpowern{:}); Q6cF <L`bW  
    end &oWdBna"_  
    F:8cd^d~u  
    % Compute the values of the polynomials: ~PT( /L  
    % -------------------------------------- m|O7@N  
    y = zeros(length_r,length(n)); BO b#9r  
    for j = 1:length(n) W*hRYgaX3  
        s = 0:(n(j)-m_abs(j))/2; i%+p\eeq*  
        pows = n(j):-2:m_abs(j); _fH.#C  
        for k = length(s):-1:1 J`ia6fy.I  
            p = (1-2*mod(s(k),2))* ... A22h+8yG  
                       prod(2:(n(j)-s(k)))/              ... ( _ZOUMe  
                       prod(2:s(k))/                     ... rZDmZm?=  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... Ld[zOx  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 1 )aB']K%  
            idx = (pows(k)==rpowers); ,H3~mq]  
            y(:,j) = y(:,j) + p*rpowern(:,idx); =<.8  
        end npH2&6Yhi^  
         oEE*H2l\  
        if isnorm "8Ud&o  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); R4<}kA,.  
        end a X>bC-  
    end '3f"#fF6  
    % END: Compute the Zernike Polynomials i/nA(%_  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @<ba+z>"~4  
    4VjP:>*p  
    % Compute the Zernike functions: F/\w4T  
    % ------------------------------ z?HP%g'M~  
    idx_pos = m>0; -.|V S|y  
    idx_neg = m<0; ZJ9J*5!C  
    n"dC]&G'  
    z = y; -hf)%o$  
    if any(idx_pos) ) 5r*2I  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 5MH\Gq e7  
    end Y!LcS48X  
    if any(idx_neg) -X~VXeg  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); p/B&R@%  
    end \gRX:i#n  
    y K~;LV  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) I"4j152P|  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. A.<HOx&#  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated klduJ T >  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive W is_N3M  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1,  $j*j {}K  
    %   and THETA is a vector of angles.  R and THETA must have the same zhbp"yju7  
    %   length.  The output Z is a matrix with one column for every P-value, UH1AT#?!W  
    %   and one row for every (R,THETA) pair. TTaSg\K  
    % 'f9 fw^  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike cg$@x\fJ  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) |ahleu  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) 6R V]9  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 0x!XE|7I  
    %   for all p. ]%jlaXb  
    % 7u]0dHj  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 8;YeEW 5  
    %   Zernike functions (order N<=7).  In some disciplines it is 3!M;Z7qF]  
    %   traditional to label the first 36 functions using a single mode zXQ o pQ1  
    %   number P instead of separate numbers for the order N and azimuthal FN5*pVD;<  
    %   frequency M. YB/A0J  
    % GUJ[2/V~A  
    %   Example: S?Q4u!FC  
    % 1\:puC\)  
    %       % Display the first 16 Zernike functions ;hi+.ng_  
    %       x = -1:0.01:1; :SilQm*Pl  
    %       [X,Y] = meshgrid(x,x); L DD^X@q  
    %       [theta,r] = cart2pol(X,Y); d:C-   
    %       idx = r<=1; YHN@?}T()  
    %       p = 0:15; Q.H y"~  
    %       z = nan(size(X)); 7Wb:^.d g  
    %       y = zernfun2(p,r(idx),theta(idx)); x g~q'>  
    %       figure('Units','normalized') 1J<Wth{  
    %       for k = 1:length(p) r+fR^hv  
    %           z(idx) = y(:,k); rMIr&T  
    %           subplot(4,4,k) bj4cW\b(  
    %           pcolor(x,x,z), shading interp ^& ZlV  
    %           set(gca,'XTick',[],'YTick',[]) uj|{TV>v9  
    %           axis square 1UX"iO x(  
    %           title(['Z_{' num2str(p(k)) '}']) y#8| @?  
    %       end 09<O b[%h  
    % (KR$PLxDK  
    %   See also ZERNPOL, ZERNFUN. es@_6ol.@  
    u"r~5  
    %   Paul Fricker 11/13/2006 tL(B gku9  
    Y<M,/Y_ !  
    hW[/{2<@  
    % Check and prepare the inputs: l`8S1~j  
    % ----------------------------- rH7|r\]r  
    if min(size(p))~=1 4jefU}e9#  
        error('zernfun2:Pvector','Input P must be vector.') bFk >IifN  
    end g#qt<d}j  
    O, 6U pk  
    if any(p)>35 S(Md  
        error('zernfun2:P36', ... !qPVC\l  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 7UvfXzDNC  
               '(P = 0 to 35).']) [_6_A O(Z  
    end CrC1&F\dq  
    F2!C^r,~L  
    % Get the order and frequency corresonding to the function number: P3 se"pP  
    % ---------------------------------------------------------------- )p'ZSXb  
    p = p(:); _2+}_ >d  
    n = ceil((-3+sqrt(9+8*p))/2); 8<ZxE(v  
    m = 2*p - n.*(n+2); }I<r=?  
    ^c3~CD5H 3  
    % Pass the inputs to the function ZERNFUN: :iJ+ImBpK  
    % ---------------------------------------- @sRRcP~  
    switch nargin e eb`Ao  
        case 3 ?WE#%W7U  
            z = zernfun(n,m,r,theta); W|J8QNL?jm  
        case 4 3Z#k9c_b  
            z = zernfun(n,m,r,theta,nflag); d;O16xcM/  
        otherwise ?.E6Ube  
            error('zernfun2:nargin','Incorrect number of inputs.') @~% R%Vu  
    end aOHf#!/"sb  
    'PRsZ`x.  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) s<VNW  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. - y[nMEE  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of rZ`ob x\S  
    %   order N and frequency M, evaluated at R.  N is a vector of 8&?Kg>M  
    %   positive integers (including 0), and M is a vector with the N>##} i  
    %   same number of elements as N.  Each element k of M must be a ZGgKCCt  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 9x@( K|  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 0nUcUdIf+  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix l&l&e OE  
    %   with one column for every (N,M) pair, and one row for every NrH2U Jm  
    %   element in R. P34UD:  
    % 4ti\;55{W  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- (os}s8cIh  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is Bfe#,  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 3lzjY.]Pgv  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 Hx[YHu KL^  
    %   for all [n,m]. t}L kl(  
    %  >d-By  
    %   The radial Zernike polynomials are the radial portion of the wSoIU,I  
    %   Zernike functions, which are an orthogonal basis on the unit Vg'vL[Y  
    %   circle.  The series representation of the radial Zernike AjBwj5K  
    %   polynomials is =@(&xfTC  
    % -|;{/ s5  
    %          (n-m)/2 V45A>#?U  
    %            __ ~L\KMB/9e=  
    %    m      \       s                                          n-2s eV:I :::  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r CT5\8C  
    %    n      s=0 Er/h:=  
    % GaV6h|6_  
    %   The following table shows the first 12 polynomials. 3z7SK Gy  
    % Wno{&I63  
    %       n    m    Zernike polynomial    Normalization xgoG>~F  
    %       --------------------------------------------- M)4-eo  
    %       0    0    1                        sqrt(2)  `{w.OK  
    %       1    1    r                           2 2;h4$^`dt  
    %       2    0    2*r^2 - 1                sqrt(6) q?} /q  
    %       2    2    r^2                      sqrt(6) /)RyRS8c  
    %       3    1    3*r^3 - 2*r              sqrt(8) >np!f8+d"q  
    %       3    3    r^3                      sqrt(8) :[![9JS/  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) Ze+p;v  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ~[n]la  
    %       4    4    r^4                      sqrt(10) 1 ; _tu  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) SSG57N-T  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) B(tLV9B3Q  
    %       5    5    r^5                      sqrt(12) x\( @ v  
    %       --------------------------------------------- 7A:k  
    % 7#/->Y  
    %   Example: c;siMWw;  
    % @bs YJ4-V  
    %       % Display three example Zernike radial polynomials t~vOm   
    %       r = 0:0.01:1; h r@c7/L  
    %       n = [3 2 5]; ~,#zdm1r@  
    %       m = [1 2 1]; 0 D^d-R,  
    %       z = zernpol(n,m,r); 9*s''=  
    %       figure oDz%K?29%  
    %       plot(r,z) O^|:q  
    %       grid on {qxFRi#\k  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') j v9DQr  
    % p;8I@~dh  
    %   See also ZERNFUN, ZERNFUN2. 9*fA:*T  
    wJ.?u]f@  
    % A note on the algorithm. =QdHji/sB  
    % ------------------------ r 0m A  
    % The radial Zernike polynomials are computed using the series %[3?vX  
    % representation shown in the Help section above. For many special /G[2   
    % functions, direct evaluation using the series representation can `D *U@iJ  
    % produce poor numerical results (floating point errors), because R<\5 q%@G  
    % the summation often involves computing small differences between }ACWSkWK  
    % large successive terms in the series. (In such cases, the functions GJTKqr|1O  
    % are often evaluated using alternative methods such as recurrence +]?/c>M  
    % relations: see the Legendre functions, for example). For the Zernike sA^_I6>M"  
    % polynomials, however, this problem does not arise, because the 87&BF)]  
    % polynomials are evaluated over the finite domain r = (0,1), and Mw{0A\6  
    % because the coefficients for a given polynomial are generally all pI>yO~Ve  
    % of similar magnitude. {T;A50  
    % Cn\5Vyrl  
    % ZERNPOL has been written using a vectorized implementation: multiple Cu2eMUGt  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] ~HW8mly'  
    % values can be passed as inputs) for a vector of points R.  To achieve F7o#KN*.]  
    % this vectorization most efficiently, the algorithm in ZERNPOL (i3V  
    % involves pre-determining all the powers p of R that are required to %IAZU c  
    % compute the outputs, and then compiling the {R^p} into a single [K5#4k  
    % matrix.  This avoids any redundant computation of the R^p, and <V`1?9c7D1  
    % minimizes the sizes of certain intermediate variables. 7E0L-E=.  
    % n,,hE_  
    %   Paul Fricker 11/13/2006 ;i;2cq  
    ?WVp,vP  
    wl^7.IR  
    % Check and prepare the inputs: (w1M\yodV  
    % ----------------------------- fRcs@yZnS  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) $*k(h|XfwW  
        error('zernpol:NMvectors','N and M must be vectors.') dSdP]50M  
    end  5yA1<&z  
    !UzMuGj  
    if length(n)~=length(m) QaVxP1V#U  
        error('zernpol:NMlength','N and M must be the same length.') ]t2zwHo#  
    end ]TE(:]o7V  
    c@|!0 U%j  
    n = n(:); k U75  
    m = m(:); Q4;%[7LU  
    length_n = length(n); 9` a1xnL  
    E \p Qh  
    if any(mod(n-m,2)) # 1,"^k^  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') NA :_yA"  
    end E*B6k!:  
    / 5\gP//9K  
    if any(m<0) bUcEQGHcZ=  
        error('zernpol:Mpositive','All M must be positive.') hXAgT!ZD  
    end MbT;]Bo  
    rd )_*{  
    if any(m>n) tfAO#htq  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') W5)R{w0`GD  
    end Bd++G'FZ  
    "e-RV  
    if any( r>1 | r<0 ) `d,v  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') $ [t7&e  
    end Wx8oTN  
    q HU}EEv  
    if ~any(size(r)==1) )qID<j#  
        error('zernpol:Rvector','R must be a vector.') hx.ln6=4  
    end Yl$R$u)  
    `SfBT1#5G  
    r = r(:); If*+yr|  
    length_r = length(r); 7]8nW!h;  
    w;OvZo|  
    if nargin==4 5 LX'fL7zU  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); #$dEg  
        if ~isnorm Yk^clCB{A(  
            error('zernpol:normalization','Unrecognized normalization flag.') QjIn0MJ)Xm  
        end o5(~nQ  
    else W5SCm(QS5  
        isnorm = false; *+UgrsRk  
    end ~+)sL1lx  
    `w(~[`F t  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% wCitQ0?  
    % Compute the Zernike Polynomials .7K<9K+P  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6OPYq*|  
    VpO+52&  
    % Determine the required powers of r: o0)k5P~<~  
    % ----------------------------------- 0XzrzT"&  
    rpowers = []; h>:eu#  
    for j = 1:length(n) svWQk9d  
        rpowers = [rpowers m(j):2:n(j)]; 9 *+X ^q'  
    end j*fs [4  
    rpowers = unique(rpowers); ~Qm<w3oy  
    +EOd9.X\~  
    % Pre-compute the values of r raised to the required powers, IQ] tcSQl  
    % and compile them in a matrix: 3;'RF#VL  
    % ----------------------------- l h]Q\  
    if rpowers(1)==0 s#* DY  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); {aoG60N  
        rpowern = cat(2,rpowern{:}); +FBUB  
        rpowern = [ones(length_r,1) rpowern]; \:5M0  
    else v?L`aj1ox  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); \s@7pM=(  
        rpowern = cat(2,rpowern{:}); ?.~hex#M@  
    end y?-zQs0  
    3*C|"|lJ  
    % Compute the values of the polynomials: [B1h0IR  
    % -------------------------------------- xV\mS+#  
    z = zeros(length_r,length_n); r^ Mu`*x*  
    for j = 1:length_n JW2~ G!@  
        s = 0:(n(j)-m(j))/2; mM;5UPbZ  
        pows = n(j):-2:m(j); HxnWM\p  
        for k = length(s):-1:1 .Gcs/PN   
            p = (1-2*mod(s(k),2))* ... 9NEL[J|  
                       prod(2:(n(j)-s(k)))/          ... -VafN   
                       prod(2:s(k))/                 ... @\?QZX(H  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... mhi^zHpa  
                       prod(2:((n(j)+m(j))/2-s(k))); lBZhg~{  
            idx = (pows(k)==rpowers); E5.@=U,c  
            z(:,j) = z(:,j) + p*rpowern(:,idx); !)//b]  
        end @UwDsx&2(t  
         _!C M  
        if isnorm P+gY LX8  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); P>wTp)  
        end 6483v'  
    end =2&Sw(6j  
    5`A^"}0  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  $i;_yTht  
    X\HP&;Wd  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 Y7WU4He L  
    B0$.oavC  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)