切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11381阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 Ax D&_GT  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! "3kIQsD|j  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 11%<bmJ]Q3  
    function z = zernfun(n,m,r,theta,nflag) vM_UF{a$=  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. QU4/hS;Ux  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N .M3]\I u  
    %   and angular frequency M, evaluated at positions (R,THETA) on the PQ6.1}  
    %   unit circle.  N is a vector of positive integers (including 0), and [)K?e!c8  
    %   M is a vector with the same number of elements as N.  Each element q)Qd+:a7{  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) V`F]L^m=L  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, T#ktC0W]h  
    %   and THETA is a vector of angles.  R and THETA must have the same Ce: 2Tw  
    %   length.  The output Z is a matrix with one column for every (N,M) 6Fp}U  
    %   pair, and one row for every (R,THETA) pair. QWqEe|}6  
    % 99GzhX_  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike T(Q(7  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), mmE!!J`B  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Q-scL>IkCb  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, Lye^G% {  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized [sxJ<  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 1}O&q6\"J  
    % in>Os@e#  
    %   The Zernike functions are an orthogonal basis on the unit circle. r]GG9si  
    %   They are used in disciplines such as astronomy, optics, and 1y\ -Iz^  
    %   optometry to describe functions on a circular domain. {51<EvyE*  
    % ^T(v4'7  
    %   The following table lists the first 15 Zernike functions. xqP DL9\  
    % An cka  
    %       n    m    Zernike function           Normalization ii< /!B(  
    %       -------------------------------------------------- -&L(0?*qo  
    %       0    0    1                                 1 {#-I;I:  
    %       1    1    r * cos(theta)                    2 *@2+$fgz  
    %       1   -1    r * sin(theta)                    2 :Nry |  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) a]JQZo1$  
    %       2    0    (2*r^2 - 1)                    sqrt(3) J|$(O$hYy  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) jv8diQ.  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) dA[MjOd3  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) l1<]pdLTR  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) \FE  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) W3AtO  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) Sbf+;:D  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) w;e42.\  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) S,Y\ox-  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Qyh_o  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) l"T{!Oq  
    %       -------------------------------------------------- m%?+;V  
    % 3Ryae/Nk  
    %   Example 1: ymNL`GYN[  
    % vdhwFp~Y  
    %       % Display the Zernike function Z(n=5,m=1) 8`I/\8;H'p  
    %       x = -1:0.01:1; E~[v.3`  
    %       [X,Y] = meshgrid(x,x); 0uw3[,I   
    %       [theta,r] = cart2pol(X,Y); "Uk "  
    %       idx = r<=1; erhxZ|."P  
    %       z = nan(size(X)); \Z?.Po`!j  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); F<W`zQ46  
    %       figure Mk:k0,z  
    %       pcolor(x,x,z), shading interp >q+q];=(  
    %       axis square, colorbar ")gd)_FOS  
    %       title('Zernike function Z_5^1(r,\theta)') ,McwPHEMB  
    % ZxvqLu  
    %   Example 2: E%+aqA)f  
    % $e99[y@  
    %       % Display the first 10 Zernike functions [ X7LV  
    %       x = -1:0.01:1; do-mkvk  
    %       [X,Y] = meshgrid(x,x); l(o;O.dLt  
    %       [theta,r] = cart2pol(X,Y); GnCO{"n  
    %       idx = r<=1; 8!{;yz  
    %       z = nan(size(X)); kdr?I9kwW  
    %       n = [0  1  1  2  2  2  3  3  3  3]; != @U~X|cu  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; =|Q7k+b  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; l.Psh7B2  
    %       y = zernfun(n,m,r(idx),theta(idx)); k+D32]b@  
    %       figure('Units','normalized') |FR'?y1  
    %       for k = 1:10 dn? #}^,"  
    %           z(idx) = y(:,k); G $P|F6  
    %           subplot(4,7,Nplot(k)) sKIpL(_I$  
    %           pcolor(x,x,z), shading interp -pF3q2zb  
    %           set(gca,'XTick',[],'YTick',[]) |=\w b^l+  
    %           axis square U\<8}+x  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) )P)Zds@F  
    %       end W-72&\7  
    %  q#=}T~4j  
    %   See also ZERNPOL, ZERNFUN2. #iZ%CY\  
    Q?1' JF!G  
    %   Paul Fricker 11/13/2006 }@ +{;"  
    JQ[~N-  
    xs'vd:l.Pp  
    % Check and prepare the inputs: \W;+@w|c  
    % ----------------------------- MO1t 0Myc  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ljS~>&  
        error('zernfun:NMvectors','N and M must be vectors.') dxz.%a@PW  
    end {I]X-+D|_  
    tB,1+I=   
    if length(n)~=length(m) )|d]0/<  
        error('zernfun:NMlength','N and M must be the same length.') Sz"rp9x+  
    end Ah|,`0dw  
    f{[] m(X;  
    n = n(:); fw[Z7`\Q5  
    m = m(:); 8M"0o}wx  
    if any(mod(n-m,2)) xM#+jI  
        error('zernfun:NMmultiplesof2', ... Lwy9QZL  
              'All N and M must differ by multiples of 2 (including 0).') *8a8Ng  
    end V~9s+>  
    C2Pw;iK_t  
    if any(m>n) _Di";fe?  
        error('zernfun:MlessthanN', ... @$e!|.{1q  
              'Each M must be less than or equal to its corresponding N.') )`*=P}D  
    end ++Z,U  
    RV&=B%w+  
    if any( r>1 | r<0 ) KA"D2j9wn  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 03{pxI  
    end +O2z&a;q  
    e*zt;SR  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) q@"0(Oj  
        error('zernfun:RTHvector','R and THETA must be vectors.') IpRdGT02  
    end IPIas$  
    T&/ ]|4  
    r = r(:); YpGG^;M$  
    theta = theta(:); &' 0|U{|  
    length_r = length(r); ^xpiNP!?a  
    if length_r~=length(theta) zx(=ArCRr  
        error('zernfun:RTHlength', ... =Eh~ wm  
              'The number of R- and THETA-values must be equal.') 3Dm`8Xt  
    end G!^}z (Mgi  
    F/QRgXV  
    % Check normalization: #cZ<[K q6  
    % -------------------- +ROwk  
    if nargin==5 && ischar(nflag) pc=f,  
        isnorm = strcmpi(nflag,'norm'); |#)S`Ua1  
        if ~isnorm >@mvb@4*  
            error('zernfun:normalization','Unrecognized normalization flag.') Lwzk<+>w^  
        end -q8R'?z[  
    else JF+E.-fy$  
        isnorm = false; gXQ s)Eyv  
    end { ]F };_  
    Avc9W[4  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% JxV 0y  
    % Compute the Zernike Polynomials BbV@ziL  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% _tJm0z!  
    I|SQhbi  
    % Determine the required powers of r: "P@jr{zvMd  
    % ----------------------------------- 74c[m}'S  
    m_abs = abs(m); q\`0'Z,  
    rpowers = []; IGtpL[.;/  
    for j = 1:length(n) &`9p.  
        rpowers = [rpowers m_abs(j):2:n(j)]; DC5^k[m  
    end %+{[%?xh  
    rpowers = unique(rpowers); DUAI  
    OX  r%b  
    % Pre-compute the values of r raised to the required powers, ):c)$$dn  
    % and compile them in a matrix: Hkv4^|  
    % ----------------------------- /3!c ;(  
    if rpowers(1)==0 V*C%r:5 ,v  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); @rV|7%u  
        rpowern = cat(2,rpowern{:}); k|Syw ATr  
        rpowern = [ones(length_r,1) rpowern]; mF@)l]UZ'  
    else C=sEgtEI  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); VsrYU@V  
        rpowern = cat(2,rpowern{:}); G 5T{*  
    end -fA1_ ?7S  
    (9phRo)>  
    % Compute the values of the polynomials: 2jUEL=+Y  
    % -------------------------------------- C;EC4n+s  
    y = zeros(length_r,length(n)); )qL UHE=  
    for j = 1:length(n) C~ r(*nr  
        s = 0:(n(j)-m_abs(j))/2; .EXe3!J)!  
        pows = n(j):-2:m_abs(j); V?0Yzg$sy  
        for k = length(s):-1:1 h5do?b v!  
            p = (1-2*mod(s(k),2))* ... qTA,rr#p0  
                       prod(2:(n(j)-s(k)))/              ... \a}_=O  
                       prod(2:s(k))/                     ... I=DvP;!  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... X;vfbF   
                       prod(2:((n(j)+m_abs(j))/2-s(k))); v RR(b!Lq  
            idx = (pows(k)==rpowers); Bc!ZHW *&  
            y(:,j) = y(:,j) + p*rpowern(:,idx); naHQeX;  
        end !go$J]T  
         tS@J)p+_(  
        if isnorm |RA|nu   
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); keMfK ]9  
        end B'kV.3t  
    end ylo/]pVs  
    % END: Compute the Zernike Polynomials c2,;t)%@E  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% K*]^0  
    \H -,^[G3  
    % Compute the Zernike functions: Ny6 daf3f  
    % ------------------------------ :1 Y*&s  
    idx_pos = m>0; g:yUZ;U  
    idx_neg = m<0; ?cH,!2  
    M`=bJO:  
    z = y; O9_S"\8]@  
    if any(idx_pos) 3SMb#ce*o  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 0)^$9 Z  
    end "8%z,lHw  
    if any(idx_neg) Shm$>\~=  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); yW!+:y_N_  
    end d${RZ}/  
    ,Q2?Z :l  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) B\ITXmd   
    %ZERNFUN2 Single-index Zernike functions on the unit circle. v)VhR2d3  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated \`MX\OR  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive H)Kt!v8  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, @|1/yQgi  
    %   and THETA is a vector of angles.  R and THETA must have the same >@T(^=Q  
    %   length.  The output Z is a matrix with one column for every P-value, ^UJ#YRzi  
    %   and one row for every (R,THETA) pair. JBCJVWUt  
    % fK'qc L  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike NETji:d  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) +~H mP Q  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) w2mLL?P  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 \i +=tGY  
    %   for all p. bns([F  
    % u>cU*E4/  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 LM~,`#3 Ru  
    %   Zernike functions (order N<=7).  In some disciplines it is EA/+~ux  
    %   traditional to label the first 36 functions using a single mode potb6jc?  
    %   number P instead of separate numbers for the order N and azimuthal C K{.Ic^  
    %   frequency M. @NY$.K#]  
    % #3L=\j[ y  
    %   Example: l Zq`,E_L  
    % N)0I+>, ^  
    %       % Display the first 16 Zernike functions bN',-[E  
    %       x = -1:0.01:1; qZ8 V/  
    %       [X,Y] = meshgrid(x,x); o (OC3  
    %       [theta,r] = cart2pol(X,Y); ?pLKUAh  
    %       idx = r<=1; X`QfOs#\  
    %       p = 0:15; q%/ciPgE  
    %       z = nan(size(X));  1aAYBV<3  
    %       y = zernfun2(p,r(idx),theta(idx)); BwN>;g_  
    %       figure('Units','normalized') 0tzMu#  
    %       for k = 1:length(p) OcBn1k.  
    %           z(idx) = y(:,k); R^i8AbFW  
    %           subplot(4,4,k) -bq\2Yc$]  
    %           pcolor(x,x,z), shading interp o#IQz_  
    %           set(gca,'XTick',[],'YTick',[]) wJ| wAS  
    %           axis square &;)6G1X1  
    %           title(['Z_{' num2str(p(k)) '}']) wF`9}9q  
    %       end _DAAD,'<a  
    % :h|nV ~  
    %   See also ZERNPOL, ZERNFUN. r|bvpZV  
    %mda=%Yn  
    %   Paul Fricker 11/13/2006 (:p&[HNuN  
    b;[u=9ez  
    "I|[m%\  
    % Check and prepare the inputs: ^<@9ph  
    % ----------------------------- wN])"bmB  
    if min(size(p))~=1 X5@rPGc  
        error('zernfun2:Pvector','Input P must be vector.') <.d0GD`^  
    end &UWSf  
    Tk'YpL#U  
    if any(p)>35 *+E9@r=HF  
        error('zernfun2:P36', ... k($N_XlE  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... Cu%|}xq  
               '(P = 0 to 35).']) CVi3nS5Yl  
    end 8#Q=CTjF  
    4YVxRZ1[3  
    % Get the order and frequency corresonding to the function number: (> v1)*r  
    % ---------------------------------------------------------------- >,8DwNuq  
    p = p(:); wec |~Rc-  
    n = ceil((-3+sqrt(9+8*p))/2); [-@Lbu-|  
    m = 2*p - n.*(n+2); ZW}0{8Dk  
    ~D4%7U"dv  
    % Pass the inputs to the function ZERNFUN: >F zu]G4]  
    % ----------------------------------------  LWb5C{  
    switch nargin <tEN1i  
        case 3 (i,TxjS'od  
            z = zernfun(n,m,r,theta); ]hBp elKJ  
        case 4 T[iwP~l  
            z = zernfun(n,m,r,theta,nflag); \pzqUTk  
        otherwise ]JeA29   
            error('zernfun2:nargin','Incorrect number of inputs.') x. 7Ln9  
    end Q<y&*o3YF|  
    =$B:i>z<  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) Uk u~"OGC  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. w. gI0`  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of Qwn/ ,  
    %   order N and frequency M, evaluated at R.  N is a vector of ZB'/DO=i  
    %   positive integers (including 0), and M is a vector with the Y~T;{&wi  
    %   same number of elements as N.  Each element k of M must be a H|4O`I;~(  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) nf5Ld"|%9  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is .17WF\1HC.  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix .kSx>3  
    %   with one column for every (N,M) pair, and one row for every igp[cFN  
    %   element in R. SU.T0>w  
    % s[ |sfqB1`  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- T`f6`1x  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is !M&L<0b:7e  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to O|J`M2r  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 W'2|hP  
    %   for all [n,m]. (^'TT>2B  
    % +B$ o8V  
    %   The radial Zernike polynomials are the radial portion of the [kx_Izi/T  
    %   Zernike functions, which are an orthogonal basis on the unit ST3aiyG  
    %   circle.  The series representation of the radial Zernike oagxTFh8~  
    %   polynomials is /sf:.TpVh  
    % ?Gc9^b B I  
    %          (n-m)/2 >&mlwxqv  
    %            __ CwQgA%) !i  
    %    m      \       s                                          n-2s XSkN9LqZ  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r %EYh5 W  
    %    n      s=0 `s (A&=g\  
    % yjODa90!G  
    %   The following table shows the first 12 polynomials. &k+G^ !=s#  
    % SF2A?L?}+  
    %       n    m    Zernike polynomial    Normalization 'v.i' 6  
    %       --------------------------------------------- L+7j4:$B8  
    %       0    0    1                        sqrt(2) A0sydUc  
    %       1    1    r                           2 -o<L%Y<n2  
    %       2    0    2*r^2 - 1                sqrt(6) 'f9 fw^  
    %       2    2    r^2                      sqrt(6) cg$@x\fJ  
    %       3    1    3*r^3 - 2*r              sqrt(8) |ahleu  
    %       3    3    r^3                      sqrt(8) 6R V]9  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) o0b}:`  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) >cEc##:5  
    %       4    4    r^4                      sqrt(10) RwMK%^b  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) AAjsb<P  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) f?T6Ne'  
    %       5    5    r^5                      sqrt(12) LC/9)Sh_n  
    %       --------------------------------------------- ,.tv#j|A  
    % z5PFppSQ  
    %   Example: n*G[ZW*Uc  
    % [H-,zY  
    %       % Display three example Zernike radial polynomials jy`jxOoG~Z  
    %       r = 0:0.01:1; TSXa#SKp  
    %       n = [3 2 5]; e0%?;w-TL  
    %       m = [1 2 1]; vh3Xd\N  
    %       z = zernpol(n,m,r); keNPlK%>  
    %       figure Qhb].V{utV  
    %       plot(r,z) /Fej)WQp  
    %       grid on O7|0t\)  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') '+ 1<7jl&I  
    % Z,/BPK<e  
    %   See also ZERNFUN, ZERNFUN2. deSrs:.  
    3+_? /}<  
    % A note on the algorithm. 2'_xg~  
    % ------------------------ )NJD+yQ%  
    % The radial Zernike polynomials are computed using the series VyH'7_aU  
    % representation shown in the Help section above. For many special :IDD(<^9  
    % functions, direct evaluation using the series representation can EzOO6  
    % produce poor numerical results (floating point errors), because 8MgoAX,p  
    % the summation often involves computing small differences between hM^#X,7  
    % large successive terms in the series. (In such cases, the functions 0Qvbc}KP8  
    % are often evaluated using alternative methods such as recurrence tL(B gku9  
    % relations: see the Legendre functions, for example). For the Zernike Y<M,/Y_ !  
    % polynomials, however, this problem does not arise, because the v# ab2  
    % polynomials are evaluated over the finite domain r = (0,1), and WbC|2!  
    % because the coefficients for a given polynomial are generally all ?ihkV? ;)  
    % of similar magnitude. 3eQ-P8LS  
    % zK893)  
    % ZERNPOL has been written using a vectorized implementation: multiple Qi`Lj5;\F  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] yS0YWqv]6@  
    % values can be passed as inputs) for a vector of points R.  To achieve (yWU9q)5  
    % this vectorization most efficiently, the algorithm in ZERNPOL w!o[pvyR$  
    % involves pre-determining all the powers p of R that are required to %7 h _D  
    % compute the outputs, and then compiling the {R^p} into a single mDz{8N9<FG  
    % matrix.  This avoids any redundant computation of the R^p, and 'F3Xb  
    % minimizes the sizes of certain intermediate variables. }N^.4HOS8  
    % >oi`%V  
    %   Paul Fricker 11/13/2006 ,-^Grmr4M  
    o5KpiibFM  
    }I<r=?  
    % Check and prepare the inputs: (3YCe{  
    % ----------------------------- 6KPM4#61o  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) =jIB5".  
        error('zernpol:NMvectors','N and M must be vectors.') 7?<.L  
    end rtf\{u9 }g  
    n[ip'*2L  
    if length(n)~=length(m) 0FmYM@Wc  
        error('zernpol:NMlength','N and M must be the same length.') O\;Z4qn2=  
    end tZmo= 3+:  
    "mc/fp  
    n = n(:); PPO*&=!]  
    m = m(:); @Z> {/  
    length_n = length(n); 5BnO-[3  
    i:W.,w%8  
    if any(mod(n-m,2)) $j*%}x~[  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') xayo{l=uGv  
    end XB*)d 9'8  
    _MQ)  
    if any(m<0) ~pA_E!3W  
        error('zernpol:Mpositive','All M must be positive.') r'xZF~}k"~  
    end Rhh5r0 \5  
    f tW-  
    if any(m>n) SskvxH+7  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') i356m9j  
    end {/`iZzPg  
    mUY+v>F  
    if any( r>1 | r<0 ) GJN"43  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.')  (c;F%m|  
    end cM%I5F+n  
    v3!oY t:l  
    if ~any(size(r)==1) |}N -5U  
        error('zernpol:Rvector','R must be a vector.') DXu915  
    end QcJ?1GwA"  
    xtW Q.  
    r = r(:); Oz(0$c  
    length_r = length(r);  SyFw  
     734)s  
    if nargin==4 3D L7  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 5/Viz`hsz  
        if ~isnorm d-Vttxa6  
            error('zernpol:normalization','Unrecognized normalization flag.') ,:POo^!/fT  
        end R:c$f(aKv%  
    else 3V ~871:-~  
        isnorm = false; ggQ/_F8u  
    end ^R- -&{I  
    Cw7 07  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |#9Nu9ak  
    % Compute the Zernike Polynomials D^qto{!  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {a aI<u  
    Vb^P{F  
    % Determine the required powers of r: ^o&3+s} M  
    % ----------------------------------- &?N1-?BjM  
    rpowers = []; KMC]<  
    for j = 1:length(n) nmI os]B  
        rpowers = [rpowers m(j):2:n(j)]; 50r3Kl0  
    end Xc"l')1H  
    rpowers = unique(rpowers); Qj;wk lq  
    Fy:CG6@X  
    % Pre-compute the values of r raised to the required powers, ROcI.tL  
    % and compile them in a matrix: N$>.V7H&  
    % ----------------------------- NG3!09eY  
    if rpowers(1)==0 r}351S5(  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); >h:rYEsh8V  
        rpowern = cat(2,rpowern{:}); @qj4rt"  
        rpowern = [ones(length_r,1) rpowern]; '}#=I 9=ss  
    else kaM=Fk=t  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 7<FI[  
        rpowern = cat(2,rpowern{:}); fz/Ee1T\  
    end $ 9bIUJ  
    "#zSk=52z  
    % Compute the values of the polynomials: ToMvP B);  
    % -------------------------------------- .*FBr7rE\  
    z = zeros(length_r,length_n); I`hltJM'  
    for j = 1:length_n 9N1Uv,OtB  
        s = 0:(n(j)-m(j))/2; P?|F+RoX$  
        pows = n(j):-2:m(j); Jr|"QRC  
        for k = length(s):-1:1 P5$d#Y(=  
            p = (1-2*mod(s(k),2))* ... 2J?ON|2M  
                       prod(2:(n(j)-s(k)))/          ... dCq-&3?t  
                       prod(2:s(k))/                 ... bO8>w9MF  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... wf*G+&b d2  
                       prod(2:((n(j)+m(j))/2-s(k))); WcRTv"4&  
            idx = (pows(k)==rpowers); Nr~9] S  
            z(:,j) = z(:,j) + p*rpowern(:,idx); VF#2I %R*  
        end r?cDyQE  
         O7<--  
        if isnorm z!`aJE/  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); q8DSKi  
        end yFt$L'#  
    end a'zXLlXgGd  
    DX3xWdnr  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  [h0.k"&[  
    "Nh}_jO  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 xsERnF>`  
    (Wu J9  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)