切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11276阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 (,[Oy6o  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! WJ8i,7  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 FWNWOU  
    function z = zernfun(n,m,r,theta,nflag) 8>%:MS"  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. ],V_"\ATD  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N rOHU)2  
    %   and angular frequency M, evaluated at positions (R,THETA) on the BIqZg$  
    %   unit circle.  N is a vector of positive integers (including 0), and  Y[#EFM  
    %   M is a vector with the same number of elements as N.  Each element ;EDc1:  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) K-vG5t0$\/  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, &NM.}f  
    %   and THETA is a vector of angles.  R and THETA must have the same 5)bf$?d   
    %   length.  The output Z is a matrix with one column for every (N,M) >MwjUq  
    %   pair, and one row for every (R,THETA) pair. aNs~Uad1U  
    % a\;Vly;  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike "^Y)&<J&  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), >$Sc}a3  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral QQ;<L"VW  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, bis}zv^%v  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized Er509zZ,[  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Ws$<B b  
    % 3D|Y4OM  
    %   The Zernike functions are an orthogonal basis on the unit circle. cAnL,?_v  
    %   They are used in disciplines such as astronomy, optics, and oe$&X&  
    %   optometry to describe functions on a circular domain. 1$mxMXNsJ  
    % 5P'o+Vwz  
    %   The following table lists the first 15 Zernike functions. 7/C,<$Ep  
    % E0?R,+>&4  
    %       n    m    Zernike function           Normalization PxE0b0eo  
    %       -------------------------------------------------- {S[+hUl  
    %       0    0    1                                 1 VAPRI\uM;  
    %       1    1    r * cos(theta)                    2 !'scOWWn  
    %       1   -1    r * sin(theta)                    2 PW7{,1te,  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) b/;!yOF  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ,6T F]6:  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) $$'a  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) K=lm9K  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) tf<}%4G  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) dAg<BK/  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) }Rl^7h<!  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) GY% ^!r  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) S=NP}4w,_)  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) FVY$A =G  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Z8mSm[w  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) pAK7V;sJ  
    %       -------------------------------------------------- n@1;5)&k~  
    % d6RO2^  
    %   Example 1: j:k}6]p}  
    % e8E*Urtz  
    %       % Display the Zernike function Z(n=5,m=1) Qk`ykTS!  
    %       x = -1:0.01:1; `eZ +Pf".  
    %       [X,Y] = meshgrid(x,x); /w[B,_ZKTk  
    %       [theta,r] = cart2pol(X,Y); cl\Gh  
    %       idx = r<=1; F"I{_yleq'  
    %       z = nan(size(X)); Ei$?]~ &  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); U -h'a: K  
    %       figure  F6'[8f  
    %       pcolor(x,x,z), shading interp `3wzOMgJ  
    %       axis square, colorbar WC0gJy  
    %       title('Zernike function Z_5^1(r,\theta)') &>%R)?SZh  
    % 7tZvz `\  
    %   Example 2: PeU>h2t  
    % I| V yv  
    %       % Display the first 10 Zernike functions mE>v (JY  
    %       x = -1:0.01:1; $RAS pM  
    %       [X,Y] = meshgrid(x,x); rHSA5.[1P  
    %       [theta,r] = cart2pol(X,Y); _U Q|I|V#  
    %       idx = r<=1; WRdBL5  
    %       z = nan(size(X)); yiT)m]E d  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 40?xu#"  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; -=;V*;  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 85{2TXQ^%=  
    %       y = zernfun(n,m,r(idx),theta(idx)); T{A 5,85  
    %       figure('Units','normalized') U<|hIv-&  
    %       for k = 1:10 o x|K2A  
    %           z(idx) = y(:,k); 9sQ #v-+Yx  
    %           subplot(4,7,Nplot(k)) J`I^F:y*  
    %           pcolor(x,x,z), shading interp EdC^L`::  
    %           set(gca,'XTick',[],'YTick',[]) 7NQ@q--3s  
    %           axis square JkfVsmc<{h  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) n7A %y2  
    %       end 9e aqq  
    % K-<kp!v  
    %   See also ZERNPOL, ZERNFUN2. %@q/OVnM  
    (9!/bX<  
    %   Paul Fricker 11/13/2006 ezz;NH  
    NT1"?Thx|  
    U07 G&? /  
    % Check and prepare the inputs: $E >)  
    % ----------------------------- _x'?igy  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 03)R_A  
        error('zernfun:NMvectors','N and M must be vectors.') Hyn*O)q!  
    end Le?yzf  
    p?Rq  
    if length(n)~=length(m) 7^hwRZJ{  
        error('zernfun:NMlength','N and M must be the same length.') C@P4}X0,=  
    end B* hW  
    I\y=uC  
    n = n(:);  ?|$IZ9  
    m = m(:); gK%^}xU+  
    if any(mod(n-m,2)) pD@2Mt0|]=  
        error('zernfun:NMmultiplesof2', ... `@tn Eg  
              'All N and M must differ by multiples of 2 (including 0).') ,suC`)R  
    end _=g;K+%fb  
    Q>QES-.l  
    if any(m>n) :~PzTUz  
        error('zernfun:MlessthanN', ... Vi:<W0:  
              'Each M must be less than or equal to its corresponding N.') v:xfGA nP  
    end j34L*?  
    CS\ E]f  
    if any( r>1 | r<0 ) 0*4h}t9j  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') *z3wm-z1&  
    end 9$iDK$%  
    FV];od&c  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) J;R1OJs S  
        error('zernfun:RTHvector','R and THETA must be vectors.') Fx]}<IudA^  
    end m|8ljXX  
    97L|IZ s)  
    r = r(:); %=G*{mK  
    theta = theta(:); s0/[mAY  
    length_r = length(r); nyRQ/.3  
    if length_r~=length(theta) ==^9_a^  
        error('zernfun:RTHlength', ... =)O%5<Lwx  
              'The number of R- and THETA-values must be equal.') ^DaP^<V  
    end W&'[Xj  
    \|wUxijJ*,  
    % Check normalization: h+"UK=  
    % -------------------- YB?5s`vr9d  
    if nargin==5 && ischar(nflag) q"OJF'>w5  
        isnorm = strcmpi(nflag,'norm'); muZ6}&4  
        if ~isnorm o 00(\ -eb  
            error('zernfun:normalization','Unrecognized normalization flag.') xkPH_+4i8  
        end Ug~ ]!L  
    else h!4jl0 oX]  
        isnorm = false; g=q1@)  
    end Z<ABK`rEO  
    {g@?\  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% BJ$\Mb##3@  
    % Compute the Zernike Polynomials *? <ygzX  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% iQ7S*s+l5O  
    mDB?;a>  
    % Determine the required powers of r: NW AT"  
    % ----------------------------------- ?ZS/`P0}[  
    m_abs = abs(m); DX\|*:,  
    rpowers = []; %fH&UFby  
    for j = 1:length(n) %+F%C=GqI  
        rpowers = [rpowers m_abs(j):2:n(j)]; %c`P`~sp  
    end m&&Y=2  
    rpowers = unique(rpowers); =IC cN|  
    W5c?f,  
    % Pre-compute the values of r raised to the required powers, $sa5aUg }  
    % and compile them in a matrix: a|5^4 J \%  
    % ----------------------------- %jc"s\  
    if rpowers(1)==0 hP$v,"$  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ,fR/C  
        rpowern = cat(2,rpowern{:}); ]A%S&q  
        rpowern = [ones(length_r,1) rpowern]; &'{?Y;A  
    else QY}1i .f  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); A-GU:B  
        rpowern = cat(2,rpowern{:}); 90rY:!e  
    end $(A LxC  
    rV[/G#V>{  
    % Compute the values of the polynomials: >r8$vQGj  
    % -------------------------------------- >v9@p7Dn  
    y = zeros(length_r,length(n)); 6%Ws>H4@|  
    for j = 1:length(n) e4rhB"qQdn  
        s = 0:(n(j)-m_abs(j))/2; \fjr`t]  
        pows = n(j):-2:m_abs(j); LF?MO1!M  
        for k = length(s):-1:1 <{"Jy)Uf  
            p = (1-2*mod(s(k),2))* ... 3l?-H|T  
                       prod(2:(n(j)-s(k)))/              ... 7!kbe2/]'  
                       prod(2:s(k))/                     ... :.J]s<J(F  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ?K9zTas@  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); sQ05wAv  
            idx = (pows(k)==rpowers); %<?U`o@*  
            y(:,j) = y(:,j) + p*rpowern(:,idx); c'Mi9,q  
        end 'v?"TZ  
         z!> H^v  
        if isnorm JrA\ V=K  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); }g]O_fN7~  
        end 2nsW)bd  
    end )Co&(;zf  
    % END: Compute the Zernike Polynomials vf-cx\y7  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;G\RGU~  
    k}tT l 2  
    % Compute the Zernike functions: # qPWJ  
    % ------------------------------ O\=c&n~`  
    idx_pos = m>0; fJ8Q\lb<_  
    idx_neg = m<0; :0o,pndU  
    oe,37xa4  
    z = y; gT8%?U:  
    if any(idx_pos) -!JnyD   
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); VHlo}Ek<#  
    end XaH%i~}3  
    if any(idx_neg) _`LQnRp(  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); S(MVL!Lm  
    end aH(B}wh{  
    }_GI%+t  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) XZ1oV?Z4  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. B+Ox#[<75  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 4,.B#: 8  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive E%tGwbi7  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, fH6mv0  
    %   and THETA is a vector of angles.  R and THETA must have the same $<QOMfY>  
    %   length.  The output Z is a matrix with one column for every P-value, oBqWIXM  
    %   and one row for every (R,THETA) pair. p%?m|(4f  
    % 0Xx&Z8E  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike ^;[|,:8f7L  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) g[ dI%  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) B!X;T9^d  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ehe;<A  
    %   for all p. +`D,7"{Eu  
    % `L#`WC@[o  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 }_vUsjK  
    %   Zernike functions (order N<=7).  In some disciplines it is W!.vP~>  
    %   traditional to label the first 36 functions using a single mode } 63Qh}_Y  
    %   number P instead of separate numbers for the order N and azimuthal Jg:%|g  
    %   frequency M. `eXTVi|0"~  
    % t7 ].33%\  
    %   Example: 5:W 5@e{  
    % $~s|%>@  
    %       % Display the first 16 Zernike functions {~u#.(  
    %       x = -1:0.01:1; ytkV"^1^  
    %       [X,Y] = meshgrid(x,x); XNd%3rm,  
    %       [theta,r] = cart2pol(X,Y); Z&w/JP?  
    %       idx = r<=1; 34e> R?J  
    %       p = 0:15; L2GUrf  
    %       z = nan(size(X)); $MPh\T  
    %       y = zernfun2(p,r(idx),theta(idx)); LFHzd@Y7"  
    %       figure('Units','normalized') "jFRGgd79  
    %       for k = 1:length(p) y53f73Cg  
    %           z(idx) = y(:,k); piv/QP-X  
    %           subplot(4,4,k) v0|[w2Q2  
    %           pcolor(x,x,z), shading interp 40ZHDtIu<  
    %           set(gca,'XTick',[],'YTick',[]) ^xZo .P  
    %           axis square npD`9ff  
    %           title(['Z_{' num2str(p(k)) '}']) F!yr};@^p  
    %       end xQ{n|)i>  
    % _5%NG 3c  
    %   See also ZERNPOL, ZERNFUN. _pZaVx  
    d \[cFe1d  
    %   Paul Fricker 11/13/2006 %; 0l1X  
    M!Hn`_E  
    RD1N@sHDKc  
    % Check and prepare the inputs: FK~FC:K  
    % ----------------------------- p#fd+  
    if min(size(p))~=1 q[rBu9  
        error('zernfun2:Pvector','Input P must be vector.') 6&Al9+$  
    end [->uDbtzL  
    H)u<$y!8  
    if any(p)>35 YN<:k Wu  
        error('zernfun2:P36', ... N%:)MT,&g  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... aOWfu^&H:  
               '(P = 0 to 35).']) djGzJLH  
    end E?@batIrf  
    s1/:Ts[3i  
    % Get the order and frequency corresonding to the function number: mxxuD"5  
    % ---------------------------------------------------------------- =^L?Sgg  
    p = p(:); 2wKW17wj,  
    n = ceil((-3+sqrt(9+8*p))/2); :j=/>d],%  
    m = 2*p - n.*(n+2); sh|@X\EZO  
    GLIe8T*ht  
    % Pass the inputs to the function ZERNFUN: 4Z"JC9As  
    % ---------------------------------------- 3$E\B=7/U  
    switch nargin )C0dN>Gb  
        case 3 CG -^}xE:  
            z = zernfun(n,m,r,theta);  <m7T`5+  
        case 4 beN(7jo  
            z = zernfun(n,m,r,theta,nflag); 4PVkKP'/  
        otherwise xbeVq P  
            error('zernfun2:nargin','Incorrect number of inputs.') 9N?BWv }  
    end JC[G5$E  
    ,*Vt53@E  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) [nBdq"K  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. S<+/Ep 2  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of ?'I[[KuG  
    %   order N and frequency M, evaluated at R.  N is a vector of c,\!<4  
    %   positive integers (including 0), and M is a vector with the HalkNR-eEm  
    %   same number of elements as N.  Each element k of M must be a kN99(  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) jZ;dY~fE  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is x-Cy,d:YX  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix /61P`1y(J  
    %   with one column for every (N,M) pair, and one row for every xq.HR_\  
    %   element in R. |6mDooTy  
    % w,'"2^Cwy  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- %kcyE<c  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is m ^O9G?  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to f8m%T%]f  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 r-ldqj  
    %   for all [n,m]. kCq]#e~wq  
    % ) Apg  
    %   The radial Zernike polynomials are the radial portion of the ~;pv &s5}  
    %   Zernike functions, which are an orthogonal basis on the unit 2`-yzm  
    %   circle.  The series representation of the radial Zernike le*1L8n$'  
    %   polynomials is <}^W9 >u<  
    % ,s?7EHtC  
    %          (n-m)/2 Pd,+= ML  
    %            __ 2rr}5i)r|  
    %    m      \       s                                          n-2s {u1Rc/Lw  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r +&w=*IAKZ  
    %    n      s=0 1b6o x6  
    % 5g{L -8XwI  
    %   The following table shows the first 12 polynomials. fCA/   
    % yWs_Z6b  
    %       n    m    Zernike polynomial    Normalization HhmC+3w.7  
    %       --------------------------------------------- qrFC4\q}  
    %       0    0    1                        sqrt(2) ?Q~6\xA  
    %       1    1    r                           2 1lxsj{>U  
    %       2    0    2*r^2 - 1                sqrt(6) $9}z^sGIM  
    %       2    2    r^2                      sqrt(6) >UP{= `  
    %       3    1    3*r^3 - 2*r              sqrt(8) y5XHJUTu  
    %       3    3    r^3                      sqrt(8) IQZBH2R  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) s[V$f vW  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) C3H q&TVf/  
    %       4    4    r^4                      sqrt(10) &IQp&  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 3lyk/',  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) g[rxK n\Z  
    %       5    5    r^5                      sqrt(12) 6~ *w~U  
    %       --------------------------------------------- FN#6pM']|  
    % Jl"),;Od  
    %   Example: ,1\nd{  
    % %f{1u5+5  
    %       % Display three example Zernike radial polynomials =sqh PS<>  
    %       r = 0:0.01:1; AC=/BU3<yc  
    %       n = [3 2 5]; 9I a4PPEH1  
    %       m = [1 2 1]; Wdt9k.hzN  
    %       z = zernpol(n,m,r); <p48?+K9  
    %       figure [e2sUO0~r  
    %       plot(r,z) p< fKj  
    %       grid on @quNVx(y  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') -fl?G%:(!0  
    % @#T*OH  
    %   See also ZERNFUN, ZERNFUN2. $B6"fYiDk  
    rf+'U9  
    % A note on the algorithm. wW3fsXu  
    % ------------------------ c2}?[\U]  
    % The radial Zernike polynomials are computed using the series {gE19J3  
    % representation shown in the Help section above. For many special z$3 3NM  
    % functions, direct evaluation using the series representation can f\Bd lOJ>  
    % produce poor numerical results (floating point errors), because 73$^y)AvY  
    % the summation often involves computing small differences between H61 ,pr>  
    % large successive terms in the series. (In such cases, the functions m6a q_u{W  
    % are often evaluated using alternative methods such as recurrence FhgO5@BO  
    % relations: see the Legendre functions, for example). For the Zernike dbTPY`  
    % polynomials, however, this problem does not arise, because the Y[AL!h  
    % polynomials are evaluated over the finite domain r = (0,1), and 360V  
    % because the coefficients for a given polynomial are generally all h[D"O6 y  
    % of similar magnitude. |Ire#0Nwx  
    % &qki NS  
    % ZERNPOL has been written using a vectorized implementation: multiple &zsaVm8  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] D?w?0b Eu  
    % values can be passed as inputs) for a vector of points R.  To achieve `}1IQ.3  
    % this vectorization most efficiently, the algorithm in ZERNPOL #zC_;u$  
    % involves pre-determining all the powers p of R that are required to $_-f}E  
    % compute the outputs, and then compiling the {R^p} into a single k zhek >  
    % matrix.  This avoids any redundant computation of the R^p, and .+<Ul ]e/  
    % minimizes the sizes of certain intermediate variables. ^CUeq"GYoZ  
    % <|~8Ezd  
    %   Paul Fricker 11/13/2006 m~%\f8w-x  
    :CO>g=`  
     {g?$u  
    % Check and prepare the inputs: Kk2PWJ7  
    % ----------------------------- 4P@Ak7iL(V  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) & ?mH[rG"  
        error('zernpol:NMvectors','N and M must be vectors.') \|Pp%U [  
    end \*x]xc/^  
    {n8mE,;M  
    if length(n)~=length(m) UQ#"^`=R<  
        error('zernpol:NMlength','N and M must be the same length.') xzg81sV7  
    end Z 6^AO=3  
    D 8^wR{-;J  
    n = n(:); z'K&LH  
    m = m(:); 7aVQp3<  
    length_n = length(n); {J2*6_  
    3]BK*OqJ  
    if any(mod(n-m,2)) &MnS( 82L  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') dzMlfJp  
    end (tV/.x*G  
    OD !b*Iy|  
    if any(m<0) Qvh: hkR  
        error('zernpol:Mpositive','All M must be positive.') l5ww-#6Z  
    end w-l:* EV8  
    7A|n*'[T>  
    if any(m>n) =$6z1] ;3  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') RiC1lCE  
    end :R+}[|FV  
    p\66`\\l  
    if any( r>1 | r<0 ) GGcN aW'  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') M=hxOta  
    end mGZ^K,)&OR  
    FU9q|!2Y  
    if ~any(size(r)==1) s^F6sXhyPi  
        error('zernpol:Rvector','R must be a vector.') Md_S};!QN6  
    end ,)3%@MwO  
    Lu!o!>b  
    r = r(:); E}K6Op;=v5  
    length_r = length(r); }p 0 \  
    +CL`]'~;E-  
    if nargin==4 =n>&Bl-Bl  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); r9<OB`)3+  
        if ~isnorm <U(wLG'XS  
            error('zernpol:normalization','Unrecognized normalization flag.') XVcY?_AS#  
        end <&:OSd:%  
    else T9.3  
        isnorm = false; 9~i=Af@  
    end 5hwe ul>S  
    {/SUfXq  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]cvP !  
    % Compute the Zernike Polynomials &@CcH_d*  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >5Y%4++(  
    ?-w<H!Y7  
    % Determine the required powers of r: %fB]N  
    % ----------------------------------- {%W'Zx  
    rpowers = []; rEEoR'c6  
    for j = 1:length(n) <7-:flQz~  
        rpowers = [rpowers m(j):2:n(j)]; IzPnbnS}  
    end D?ojxHe  
    rpowers = unique(rpowers); Fd!Np7xw  
    (/TYET_H  
    % Pre-compute the values of r raised to the required powers,  [@YeQ{  
    % and compile them in a matrix: M?mPi 3  
    % ----------------------------- / i[F  
    if rpowers(1)==0 <4r3ZV;'  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); *HiN:30DZ  
        rpowern = cat(2,rpowern{:}); Yxik .S+G  
        rpowern = [ones(length_r,1) rpowern]; Aw#@}TGT  
    else bzYj`t?  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); -JgN$Sf  
        rpowern = cat(2,rpowern{:}); <y4hK3wP  
    end 4mYJi#e6x  
    x_Y03__/  
    % Compute the values of the polynomials: }7)iLfi  
    % -------------------------------------- %l{0z<  
    z = zeros(length_r,length_n); *K}h >b 1  
    for j = 1:length_n r{oRN  
        s = 0:(n(j)-m(j))/2; _{$eOwB  
        pows = n(j):-2:m(j); [_kis  
        for k = length(s):-1:1 Lg6;FbY?  
            p = (1-2*mod(s(k),2))* ... KV&4Ep#  
                       prod(2:(n(j)-s(k)))/          ... `^_c&y K  
                       prod(2:s(k))/                 ... h"O4r8G}  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... ~)ut"4  
                       prod(2:((n(j)+m(j))/2-s(k))); 8NP|>uaj  
            idx = (pows(k)==rpowers); hbfN1 "z  
            z(:,j) = z(:,j) + p*rpowern(:,idx); )>-94xx|  
        end f%#q}vK-  
         =(]yl_  
        if isnorm :{7gZ+*  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); jimWLF5Q5"  
        end _m0B6?KJ  
    end dV/ ^@[  
    ULT,>S6r  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  zOn% \  
    E6+ 6  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 [W Ud9fUL  
    $^5c8wT  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)