切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11335阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 !H.lVA  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! U.jMK{  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 SS-   
    function z = zernfun(n,m,r,theta,nflag) ymqhI\>y#  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. {)xrg sB  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N _en8hi@Z  
    %   and angular frequency M, evaluated at positions (R,THETA) on the \NRRN eu|  
    %   unit circle.  N is a vector of positive integers (including 0), and o!&*4>tF  
    %   M is a vector with the same number of elements as N.  Each element ?whp _  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) {QJ`.6Kt  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, N9Vcp~;  
    %   and THETA is a vector of angles.  R and THETA must have the same @n3PCH6:Ao  
    %   length.  The output Z is a matrix with one column for every (N,M) O%{>Zo_<  
    %   pair, and one row for every (R,THETA) pair. uEY5&wX`  
    % C<ljBz`,t  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike  _^ZII  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), n9ih^H  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral v4zARE9#  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, zSO9 U  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized p`0Tpgi  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. d?qz7#kc  
    % /xnhHwJm  
    %   The Zernike functions are an orthogonal basis on the unit circle. %0'f`P6  
    %   They are used in disciplines such as astronomy, optics, and (C|%@61S  
    %   optometry to describe functions on a circular domain. %-.GyG$i  
    % ;!b(b%  
    %   The following table lists the first 15 Zernike functions. R7>@-EG  
    % fC[gu$f][  
    %       n    m    Zernike function           Normalization }W J`q`g  
    %       -------------------------------------------------- 7 #`:m|$  
    %       0    0    1                                 1 XafyI*pOX  
    %       1    1    r * cos(theta)                    2 7;V5hul  
    %       1   -1    r * sin(theta)                    2 12E"6E)  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) jTJ[2WaS  
    %       2    0    (2*r^2 - 1)                    sqrt(3) NgQl;$  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) 6W o7q\"  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) wO9<An  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Q*5d~Yr]R  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) muLTYgaM  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 1zffPC8jl  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) O_q_O  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) g$qh(Z_s  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 62q-7nV  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ' =kX   
    %       4    4    r^4 * sin(4*theta)             sqrt(10) ))vwofkw4  
    %       -------------------------------------------------- 1*"Uc!7.%  
    % gkjZX wp  
    %   Example 1: I <7K^j+5:  
    % _nt%&f  
    %       % Display the Zernike function Z(n=5,m=1) \`^jl  
    %       x = -1:0.01:1; 3ml|`S  
    %       [X,Y] = meshgrid(x,x); 4C$,X!kzF  
    %       [theta,r] = cart2pol(X,Y); ,o`qB81  
    %       idx = r<=1; !WmpnPr1  
    %       z = nan(size(X)); aNz%vbh\  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); YZ}gZQ.A0  
    %       figure 5y)kQ<x"  
    %       pcolor(x,x,z), shading interp Us<lWEX;k  
    %       axis square, colorbar =W6P>r_  
    %       title('Zernike function Z_5^1(r,\theta)') YY9q'x,w  
    % w;:,W@K  
    %   Example 2: b({2|R  
    % hH\(> 4l  
    %       % Display the first 10 Zernike functions A, os rv  
    %       x = -1:0.01:1; N=kACEo  
    %       [X,Y] = meshgrid(x,x); t%%I.zIV7  
    %       [theta,r] = cart2pol(X,Y);  Y+N87C<  
    %       idx = r<=1; 8CL05:&  
    %       z = nan(size(X)); !dGgLU_  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ` mi!"pmw  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 1VeCAx[e  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; s}.nh>Q  
    %       y = zernfun(n,m,r(idx),theta(idx)); >&TktQO_T  
    %       figure('Units','normalized') er_aol e  
    %       for k = 1:10 cb+!H>+  
    %           z(idx) = y(:,k); @1pdyKK  
    %           subplot(4,7,Nplot(k)) ^ZsME,  
    %           pcolor(x,x,z), shading interp CNwhH)*  
    %           set(gca,'XTick',[],'YTick',[]) FR&RIFy  
    %           axis square `4o;Lz~  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Vo\d&}Q  
    %       end * PZ=$>r  
    % ZE9*i}r  
    %   See also ZERNPOL, ZERNFUN2. 4DNZ y2`  
    k$hWR;U  
    %   Paul Fricker 11/13/2006 1)%o:Xy o  
    %l,Xt"nS#  
    \l:n  
    % Check and prepare the inputs: BdceINI  
    % ----------------------------- 4]cOTXk9C  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) lfhB2^ ^  
        error('zernfun:NMvectors','N and M must be vectors.') cc>h=%s`  
    end k";;Snk  
    5rc<ibGh  
    if length(n)~=length(m) oxRu:+N  
        error('zernfun:NMlength','N and M must be the same length.') BH}u\K  
    end Bg3^BOT  
    l6O2B/2j  
    n = n(:); :{sX8U%  
    m = m(:); WN0^hDc-  
    if any(mod(n-m,2)) ZK;HW  
        error('zernfun:NMmultiplesof2', ... k~?@~xm,R  
              'All N and M must differ by multiples of 2 (including 0).') >Nov9<p  
    end 'HC4Q{b`  
    wC[J=:]tA5  
    if any(m>n) &1I0i[R  
        error('zernfun:MlessthanN', ... 4-TM3Cw`d&  
              'Each M must be less than or equal to its corresponding N.') }/=VnCfU  
    end 'd28YjtoX  
    F 4k`x/ak  
    if any( r>1 | r<0 ) ,0~'#x>  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') cgU7)`0j  
    end shi#K<gVC  
    R4o_zwWgPw  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) Fv3fad@x  
        error('zernfun:RTHvector','R and THETA must be vectors.') FNUue  
    end O9qEKW)a  
    LOQEU? z  
    r = r(:); +>s[w{Svy  
    theta = theta(:); >FY`xl\m}<  
    length_r = length(r); 8U-}%D<a  
    if length_r~=length(theta) NZ Xmrc{S  
        error('zernfun:RTHlength', ... $,R|$0B7  
              'The number of R- and THETA-values must be equal.') )37|rB E  
    end rc"Z$qU?  
    k: c)|2  
    % Check normalization: N~a?0x  
    % -------------------- N[AX29  
    if nargin==5 && ischar(nflag) 8&3G|m1-2  
        isnorm = strcmpi(nflag,'norm'); n\d-^ml  
        if ~isnorm 2cww7z/B  
            error('zernfun:normalization','Unrecognized normalization flag.') TEY%OI zU+  
        end [Y5B$7|s<  
    else #/YKA{  
        isnorm = false; rHP5;j<]  
    end A$ s4Q0Mf  
    h'wI/Z_'  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% l2$6ojpo  
    % Compute the Zernike Polynomials rtOXK4)]I  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% kMUjSa~\  
     snX5mD  
    % Determine the required powers of r: Og^b'Kx/  
    % ----------------------------------- 32dR`qb  
    m_abs = abs(m); Z5+qb  
    rpowers = []; BaqRAO7  
    for j = 1:length(n) "/wZtc  
        rpowers = [rpowers m_abs(j):2:n(j)]; )Wgh5C`  
    end }" A.[9 b  
    rpowers = unique(rpowers); b^rPw@  
    <D=U=5  
    % Pre-compute the values of r raised to the required powers, $+-2/=>Xk  
    % and compile them in a matrix: *;Sj&O  
    % ----------------------------- ^xFZ;Yf  
    if rpowers(1)==0 @*!8  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); {8'I+-  
        rpowern = cat(2,rpowern{:}); `O*+%/(  
        rpowern = [ones(length_r,1) rpowern]; /JJU-A(  
    else %I?uO( @  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); >/GVlXA'  
        rpowern = cat(2,rpowern{:}); A[^fG_l4  
    end ~Sh8. ++}  
    fm Fh.m.+N  
    % Compute the values of the polynomials: {4\(HrGNk  
    % -------------------------------------- L-vy,[9)[*  
    y = zeros(length_r,length(n));  qauk,t  
    for j = 1:length(n) k\I+T~~xD  
        s = 0:(n(j)-m_abs(j))/2;  {|a=  
        pows = n(j):-2:m_abs(j); UhXZ^ k3  
        for k = length(s):-1:1 EN'}+E 8  
            p = (1-2*mod(s(k),2))* ... {p-&8-  
                       prod(2:(n(j)-s(k)))/              ... LL4yafh  
                       prod(2:s(k))/                     ... J1KV?aR  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... xmsw'\  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 9+_SG/@  
            idx = (pows(k)==rpowers); ;(5b5PA  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ~{/"fTif  
        end oYI7 .w  
         B^Fe.ty  
        if isnorm 73 ix4C  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ?%d]iTZE  
        end GB&<+5t2  
    end j&(aoGl@  
    % END: Compute the Zernike Polynomials \ ?sM  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ===M/}r  
    vu Vcv  
    % Compute the Zernike functions: oF7o"NHaWa  
    % ------------------------------ Db3# ;  
    idx_pos = m>0; fq-e2MCX5  
    idx_neg = m<0; 76Ho\}-U">  
    H$^IT#  
    z = y; * `1W})  
    if any(idx_pos) OXAr..  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); .?|pv}V  
    end Rw-!P>S$  
    if any(idx_neg) Po_y7 8ZD  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ^~XsHmcQ  
    end pbJC A&  
    js^+{~  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) JiH^N!  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. RKru hF  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated u2\QhP 9  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive Fp=O:]  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, &puPn:_  
    %   and THETA is a vector of angles.  R and THETA must have the same ZMa@/\pf1  
    %   length.  The output Z is a matrix with one column for every P-value, >x'R7z23  
    %   and one row for every (R,THETA) pair. }3HN $Fwo  
    % ' ?tx?t  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike (+aU,EQ  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) aq,Ab~V]  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) ;[) O{%s  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 b}<?& @  
    %   for all p. !DU4iq_.  
    % skeH~-`M@  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 n[+$a)$8  
    %   Zernike functions (order N<=7).  In some disciplines it is \P~ h0zg?  
    %   traditional to label the first 36 functions using a single mode 3mP251"dIW  
    %   number P instead of separate numbers for the order N and azimuthal 5TynAiSD_>  
    %   frequency M. q# C;iK4  
    % v0q(k;Ya  
    %   Example: "($"T v2  
    % E! "N}v  
    %       % Display the first 16 Zernike functions {f1iys'Om  
    %       x = -1:0.01:1; (Y!{ UNq5  
    %       [X,Y] = meshgrid(x,x); y) .dw(  
    %       [theta,r] = cart2pol(X,Y); 1buVV]*~  
    %       idx = r<=1; Gv\39+9 =  
    %       p = 0:15; ka=EOiX.  
    %       z = nan(size(X)); yor6h@F1  
    %       y = zernfun2(p,r(idx),theta(idx)); Q  h~  
    %       figure('Units','normalized') 9Ib#A  
    %       for k = 1:length(p) dQljG.PiK  
    %           z(idx) = y(:,k); |X47&Y  
    %           subplot(4,4,k) v{r,Wy3  
    %           pcolor(x,x,z), shading interp 0]k-0#JM  
    %           set(gca,'XTick',[],'YTick',[]) 2e?a"Vss  
    %           axis square M4}b l h#  
    %           title(['Z_{' num2str(p(k)) '}']) -4Hf5!  
    %       end i&m t-  
    % eXA@J[- M:  
    %   See also ZERNPOL, ZERNFUN. WzhY4"p  
    *G&3NSM-  
    %   Paul Fricker 11/13/2006 g>*P}r~;^b  
    +?9. &<?  
    ^!A@:}t>  
    % Check and prepare the inputs: nq%GLUH   
    % ----------------------------- Q@(tyW+8U@  
    if min(size(p))~=1 Fa+#bX7  
        error('zernfun2:Pvector','Input P must be vector.') uz;zmK  
    end FE'F@aS\  
    1fMl8[!JLu  
    if any(p)>35 1ir~WFP  
        error('zernfun2:P36', ... 4{6XZ_J1  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... Mwtd<7<!A  
               '(P = 0 to 35).']) rO[ Zx'a  
    end wl5+VC*l0  
    l1UN.l'p  
    % Get the order and frequency corresonding to the function number: <wTD}.n  
    % ---------------------------------------------------------------- 3)*Twqt  
    p = p(:); s;W1YN  
    n = ceil((-3+sqrt(9+8*p))/2); I?OnEw  
    m = 2*p - n.*(n+2); HDQH7Bs  
    'U*Kb  
    % Pass the inputs to the function ZERNFUN: VMl)_M:'  
    % ---------------------------------------- AQgagE^  
    switch nargin  WfH4*e  
        case 3 !n3J6%b9y/  
            z = zernfun(n,m,r,theta); ,V`[;~49  
        case 4 St|B9V?eEB  
            z = zernfun(n,m,r,theta,nflag); M32Z3<  
        otherwise k)TNmpL%"  
            error('zernfun2:nargin','Incorrect number of inputs.') 1kczlTF  
    end }J+ \o~  
    4l?"zv1  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) HwxME%w  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. Bs;.oK5!n@  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of Zp_vv@s  
    %   order N and frequency M, evaluated at R.  N is a vector of "zx4k8  
    %   positive integers (including 0), and M is a vector with the LgJUMR8vUO  
    %   same number of elements as N.  Each element k of M must be a ;S}_/'  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) us>$f20T  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 2[~|6 @n  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix @ $2xiE.[  
    %   with one column for every (N,M) pair, and one row for every CAtdx!  
    %   element in R. ^k}%k#)  
    % ]vUTb9>{?  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- vJfj1 f  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is &? z6f9*$  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to tish%Qnpd  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 DcX,o*ec!  
    %   for all [n,m]. 'Ej&zh  
    % >*e,+ok  
    %   The radial Zernike polynomials are the radial portion of the $94l('B6H  
    %   Zernike functions, which are an orthogonal basis on the unit .?LP$O=  
    %   circle.  The series representation of the radial Zernike hM~zO1XW  
    %   polynomials is 3fhlMOm  
    % -=VGXd  
    %          (n-m)/2 jCxg)D7W  
    %            __ <Kt;uu>  
    %    m      \       s                                          n-2s 'G8.)eTA'  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r lAA s/  
    %    n      s=0 C?fa-i0l^  
    % u ioBI d  
    %   The following table shows the first 12 polynomials. D9-D%R,  
    % +X4/l"|  
    %       n    m    Zernike polynomial    Normalization '/~j!H4q9  
    %       --------------------------------------------- bqSp4TI  
    %       0    0    1                        sqrt(2) ?)mM]2%%  
    %       1    1    r                           2 C ]+J  
    %       2    0    2*r^2 - 1                sqrt(6) W>T6Wlxu`6  
    %       2    2    r^2                      sqrt(6) \iM  
    %       3    1    3*r^3 - 2*r              sqrt(8) 4@1C$|k  
    %       3    3    r^3                      sqrt(8) +9[s(E?SY  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) /d-d8n  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) h+d3JM  
    %       4    4    r^4                      sqrt(10) vY'E+M"+@  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) pqnZ:'V  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) Y/Q/4+  
    %       5    5    r^5                      sqrt(12) -Gn0TA2/C  
    %       --------------------------------------------- 0pl |  
    % .E&-gXJ4  
    %   Example: T Z_](%  
    % *\T ]Z&E"  
    %       % Display three example Zernike radial polynomials 7^*[ XH  
    %       r = 0:0.01:1; QX >Pni  
    %       n = [3 2 5]; \&. ]!!Q  
    %       m = [1 2 1]; #t?tt,nc}  
    %       z = zernpol(n,m,r); eZk4 $y  
    %       figure %VmHw~xyF:  
    %       plot(r,z) s6.#uT7h  
    %       grid on cr"AK"TQ  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') {v~.zRW%]r  
    % C3z#A3&J  
    %   See also ZERNFUN, ZERNFUN2. kSq1Q#Bxq  
    7qT>wCVT  
    % A note on the algorithm. e9@7GaL`"S  
    % ------------------------ i! DO  
    % The radial Zernike polynomials are computed using the series c]!Yb-  
    % representation shown in the Help section above. For many special N;.}g*_+}  
    % functions, direct evaluation using the series representation can m[%*O#_  
    % produce poor numerical results (floating point errors), because Yk!TQY4  
    % the summation often involves computing small differences between T~JE.Y3B3  
    % large successive terms in the series. (In such cases, the functions M qG`P  
    % are often evaluated using alternative methods such as recurrence v\3}5v%YI  
    % relations: see the Legendre functions, for example). For the Zernike J8:f9a:|M  
    % polynomials, however, this problem does not arise, because the M8}t`q[-&  
    % polynomials are evaluated over the finite domain r = (0,1), and 72;ot`  
    % because the coefficients for a given polynomial are generally all ^oT!%"\  
    % of similar magnitude. 5\\a49k.p  
    % N]iu o.  
    % ZERNPOL has been written using a vectorized implementation: multiple !i77v, (#|  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] eV)'@ 8p  
    % values can be passed as inputs) for a vector of points R.  To achieve C=uYX"  
    % this vectorization most efficiently, the algorithm in ZERNPOL JOvRU DZ  
    % involves pre-determining all the powers p of R that are required to afNqK~  
    % compute the outputs, and then compiling the {R^p} into a single *D6X&Hg&5  
    % matrix.  This avoids any redundant computation of the R^p, and 7GVI={ b  
    % minimizes the sizes of certain intermediate variables. Vp~c$y+  
    % Hd9vS"TN]  
    %   Paul Fricker 11/13/2006 =vc8u&L2  
    P}RewMJ$L  
    qTD^Vz V  
    % Check and prepare the inputs: xhmrep6+<  
    % ----------------------------- hEv}g  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) eg$y,Tx  
        error('zernpol:NMvectors','N and M must be vectors.') d9kN @W  
    end 3HI- G.]hC  
    {'e%Hx  
    if length(n)~=length(m) /;rPzP4K6  
        error('zernpol:NMlength','N and M must be the same length.') W`2Xn?g  
    end V.U9Q{y"  
    4IH,:w=ofN  
    n = n(:); 1QPS=;|)  
    m = m(:); P/hV{@x  
    length_n = length(n); d?Y|w3lB  
    nnol)|C{5Y  
    if any(mod(n-m,2)) U81--'@y  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 7\xGMCctM  
    end zIE{U  
    ;ZVT[gi*  
    if any(m<0) p,'Z{7HG  
        error('zernpol:Mpositive','All M must be positive.') HX&G  k  
    end 1#m'u5L  
    iF#|Z$g-(  
    if any(m>n) FC BsC#  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') |*5803h  
    end d$}z,~sN  
    F\G-. 1  
    if any( r>1 | r<0 ) znxP.=GB   
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') _>k&M7OU4  
    end k~,({T<  
    7u|X . X  
    if ~any(size(r)==1) >ukn<  
        error('zernpol:Rvector','R must be a vector.') ZJ Ke}F`l  
    end i3[%]_eP.  
    D{)K00mm  
    r = r(:); P56B~M_  
    length_r = length(r); :U!@  
    5zf bI  
    if nargin==4 a(Fx1`}  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); !`h^S)$  
        if ~isnorm lH#C:n  
            error('zernpol:normalization','Unrecognized normalization flag.') 9>I&Z8J$M  
        end Pn|;VCh  
    else (<ZpT%2  
        isnorm = false; V }?MP-.c  
    end ??u*qO:p  
     Z,Z4Sp  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "!F%X%/  
    % Compute the Zernike Polynomials yPXa  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% WNmG'hlA  
    j2GTo~muq  
    % Determine the required powers of r: w28&qNha  
    % ----------------------------------- ZCC T  
    rpowers = []; hq|I%>y  
    for j = 1:length(n) `:>N.9'o  
        rpowers = [rpowers m(j):2:n(j)]; |mp~d<&  
    end mQka?_if)  
    rpowers = unique(rpowers); `Hp=1a  
    Krw'|<  
    % Pre-compute the values of r raised to the required powers, 1&.q#,EMn(  
    % and compile them in a matrix: f]C`]qg  
    % ----------------------------- pg9 feIW1  
    if rpowers(1)==0 L}M%z9K` h  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 9 7Ua,  
        rpowern = cat(2,rpowern{:}); L4t( Y7  
        rpowern = [ones(length_r,1) rpowern]; q*'-G]tH=  
    else RE%25t|  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); uy'qIq  
        rpowern = cat(2,rpowern{:}); /Y#Q<=X  
    end #9e2+5s  
    7zcmv"`  
    % Compute the values of the polynomials: l&Cy K#B:\  
    % -------------------------------------- %+ : $uk[  
    z = zeros(length_r,length_n); 9~5LKg7Ac  
    for j = 1:length_n {\u6Cjx  
        s = 0:(n(j)-m(j))/2; O/b1^ Y   
        pows = n(j):-2:m(j); LF X[v   
        for k = length(s):-1:1 G vTA/zA  
            p = (1-2*mod(s(k),2))* ... C-sFTf7  
                       prod(2:(n(j)-s(k)))/          ... >v'@p  
                       prod(2:s(k))/                 ... *ORa@ x  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... $g&_7SJ@  
                       prod(2:((n(j)+m(j))/2-s(k))); ZU68\cL  
            idx = (pows(k)==rpowers); <0btwsv}  
            z(:,j) = z(:,j) + p*rpowern(:,idx); vtw97G  
        end }Dx5W9Ri"  
         @>q4hYF  
        if isnorm .Mxt F\  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 8'-E>+L   
        end "BA&  
    end =: =s  
    [5;_XMj%  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  9UeK}Rl^n  
    "jEf$]  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 +)l6%QKcW  
    G9P)Y#WB  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)