切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11391阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 ?G+v#?A  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! % w 6fB  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 !]7Z),s  
    function z = zernfun(n,m,r,theta,nflag) d%NO_=I.  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Ly/"da  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N A#RA;Dt:  
    %   and angular frequency M, evaluated at positions (R,THETA) on the y|Tb&XPD  
    %   unit circle.  N is a vector of positive integers (including 0), and  Zm!T4pL  
    %   M is a vector with the same number of elements as N.  Each element l4u_Z:<w  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) kUUeyq  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, q3TAWNzI0  
    %   and THETA is a vector of angles.  R and THETA must have the same &z8@  rk|  
    %   length.  The output Z is a matrix with one column for every (N,M) .Ebg>j:\  
    %   pair, and one row for every (R,THETA) pair. R2yiExw<  
    % 7RM$%'n \  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike PsMoH/+"  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), $3zs?Fd`  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral v#{Sx>lO  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, q asbK:}  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized Z0s}65BR  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. QI'ule  
    % wZ6LiYiHl  
    %   The Zernike functions are an orthogonal basis on the unit circle. URdCV{@42  
    %   They are used in disciplines such as astronomy, optics, and =<MSM\Rb  
    %   optometry to describe functions on a circular domain. FM$XMD0=  
    % ET;YAa*  
    %   The following table lists the first 15 Zernike functions. O{SP4|0JV  
    % .(^KA{  
    %       n    m    Zernike function           Normalization 1p=^I'#  
    %       -------------------------------------------------- .w/w] Eq  
    %       0    0    1                                 1 3&:Us| }  
    %       1    1    r * cos(theta)                    2 fmrd 7*MW  
    %       1   -1    r * sin(theta)                    2 YAQ]2<H  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ZpvURp,I  
    %       2    0    (2*r^2 - 1)                    sqrt(3) cw|3W]  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) / E}L%OvE  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) C?m2R(RF  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) s.`:9nj  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) T'B43Q  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) "c` $U]M%  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) N^z4I,GV(  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) }5 ^2g!M  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) i#]}k  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) j>Wb$p6S  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) jL o(Uf  
    %       -------------------------------------------------- KM li!.(b  
    % X)^eaw]Q0  
    %   Example 1: S^(OjS  
    % CC&opC  
    %       % Display the Zernike function Z(n=5,m=1) 15dhr]8E  
    %       x = -1:0.01:1; Ro3C(aRx  
    %       [X,Y] = meshgrid(x,x); 9oBK(Sf@^  
    %       [theta,r] = cart2pol(X,Y); ~A^E_  
    %       idx = r<=1; 4o?_G[  
    %       z = nan(size(X)); '0q.zzv|_  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); NU[{ANbl  
    %       figure V&)Jvx}^  
    %       pcolor(x,x,z), shading interp N$]B$vv  
    %       axis square, colorbar VZuluV  
    %       title('Zernike function Z_5^1(r,\theta)') PJ}d-   
    % 4A0 ,N8ja}  
    %   Example 2: y0s=yN_  
    % z5.Uv/n\1  
    %       % Display the first 10 Zernike functions ov;1=M~RF  
    %       x = -1:0.01:1; .5$"qb ?  
    %       [X,Y] = meshgrid(x,x); cG!\P:re  
    %       [theta,r] = cart2pol(X,Y); A1>fNilC9  
    %       idx = r<=1; DR]=\HQ  
    %       z = nan(size(X)); ZtHTl\z  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 7p1f*N[X  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; s1 mKz0q  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; u7||]|2  
    %       y = zernfun(n,m,r(idx),theta(idx)); ,GO H8h  
    %       figure('Units','normalized') :Kq]b@ X  
    %       for k = 1:10 FgwIOpqE*  
    %           z(idx) = y(:,k); RfoEHN  
    %           subplot(4,7,Nplot(k)) H!SFSgAu  
    %           pcolor(x,x,z), shading interp m&S *S_c  
    %           set(gca,'XTick',[],'YTick',[]) hK]mnA[Y  
    %           axis square ,bTpD!  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) _43'W{%  
    %       end P^'TI[\L9  
    % i?{)o]i  
    %   See also ZERNPOL, ZERNFUN2. a4d7;~tZ  
    U80h0t%  
    %   Paul Fricker 11/13/2006 *Aqd["q  
    KC+jHk  
    xP{)+$n  
    % Check and prepare the inputs: *jQ?(Tf  
    % ----------------------------- LX'z7fh  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) <n1panS  
        error('zernfun:NMvectors','N and M must be vectors.') '`s+e#rs4{  
    end -v %n@8p  
    ]`eP"U{  
    if length(n)~=length(m) 52,[dP,g  
        error('zernfun:NMlength','N and M must be the same length.') 8 $qj&2 N  
    end }G/!9Zq  
    = Ed0vw  
    n = n(:); ;_X2E~i[  
    m = m(:); `!(I Q&  
    if any(mod(n-m,2)) 3xIelTf*  
        error('zernfun:NMmultiplesof2', ... %6.WGuO  
              'All N and M must differ by multiples of 2 (including 0).') 7Is:hx|:  
    end \s?8}k  
    /hN;\Z[@  
    if any(m>n) fI v?HD:j  
        error('zernfun:MlessthanN', ... a%nf )-}|  
              'Each M must be less than or equal to its corresponding N.') c_4K  
    end zq(4@S-TU  
    (b;Kl1Ql]  
    if any( r>1 | r<0 ) @}\i`H1s  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') xyD2<?dGUb  
    end 5>6:#.f%!e  
    G^|!'V  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) k{F]^VXQ  
        error('zernfun:RTHvector','R and THETA must be vectors.') a[_IG-l|i4  
    end KAJR.YNm  
    "&:H }Jd  
    r = r(:); F|jl=i  
    theta = theta(:); \483S]_-z{  
    length_r = length(r); bj6;>Ezp3(  
    if length_r~=length(theta) eo*l^7  
        error('zernfun:RTHlength', ... a]/KJn /B(  
              'The number of R- and THETA-values must be equal.') B:Y F|k}T  
    end e9RH[:  
    xtBu]I)%  
    % Check normalization:  PI.Zd1r  
    % -------------------- ,j6 R/sg  
    if nargin==5 && ischar(nflag) _\8jnpT:  
        isnorm = strcmpi(nflag,'norm'); P;`Awp?  
        if ~isnorm K491QXG  
            error('zernfun:normalization','Unrecognized normalization flag.') h,?%,GI  
        end 8_VGB0~3i  
    else $1$0M  
        isnorm = false; jddhX]>I  
    end aGd wuD  
    ~N%+ZXh&E  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% qSGM6kb  
    % Compute the Zernike Polynomials Pr:\zI  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% hVz] wKP  
    H:|.e)$i  
    % Determine the required powers of r: 0l3[?YtXc  
    % ----------------------------------- %AN,cE*  
    m_abs = abs(m); OwT_W)$  
    rpowers = []; NLra"Z  
    for j = 1:length(n) q_6fr$-Qh  
        rpowers = [rpowers m_abs(j):2:n(j)]; TQu.jC  
    end 'ieTt_1.G  
    rpowers = unique(rpowers); \%&A? D  
    8_E(.]U  
    % Pre-compute the values of r raised to the required powers, EDz;6Z*4N  
    % and compile them in a matrix: }h sNsQ   
    % ----------------------------- t7xJ$^p[|K  
    if rpowers(1)==0 dl"=ZI '^  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ttdY]+Fj  
        rpowern = cat(2,rpowern{:}); Zs]n0iwM'@  
        rpowern = [ones(length_r,1) rpowern]; _9]vlxgtG(  
    else :tbgX;tCs5  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); R`Fgne$4  
        rpowern = cat(2,rpowern{:}); o l41%q*  
    end MhR`  
    2{.g7bO  
    % Compute the values of the polynomials: Yn[>Y)  
    % -------------------------------------- Z;V(YK(WO.  
    y = zeros(length_r,length(n)); H[nco#  
    for j = 1:length(n) v)T# iw[  
        s = 0:(n(j)-m_abs(j))/2; t V( WhP  
        pows = n(j):-2:m_abs(j); UWnF2,<s;  
        for k = length(s):-1:1  B$6KI  
            p = (1-2*mod(s(k),2))* ... 0zA;%oP  
                       prod(2:(n(j)-s(k)))/              ... eAo+w*D(  
                       prod(2:s(k))/                     ... SswcO9JCX3  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ;<q 2  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); Z1jxu;O(  
            idx = (pows(k)==rpowers); <{k`K[)  
            y(:,j) = y(:,j) + p*rpowern(:,idx); tT!' qL.*  
        end vQ* RrHG?c  
         8HFCmY#  
        if isnorm kc0MQ TJU  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); <$yA*  
        end q01 L{~>bz  
    end g<(!>:h  
    % END: Compute the Zernike Polynomials wgIm{;T[u  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {f\wIZ-K A  
    #2s}s<Sc;  
    % Compute the Zernike functions: ;-8.~Sm  
    % ------------------------------ JH{/0x#+  
    idx_pos = m>0; zt: !hM/Vt  
    idx_neg = m<0; 1Xo0(*O  
    '5 Yzo^R;  
    z = y; .SjJG67OyA  
    if any(idx_pos) D h;5hu2"  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); _qR?5;v  
    end AwXzI;F^  
    if any(idx_neg) g=[OH  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); J{^md0l  
    end j &,Gv@  
    kBhjqI*  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) kW)3naUf<  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. tO{{ci$-T  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated zI4rAsysL  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 'KA$^  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, @>Yd6C  
    %   and THETA is a vector of angles.  R and THETA must have the same #0r~/gW  
    %   length.  The output Z is a matrix with one column for every P-value, M i& ;1!bg  
    %   and one row for every (R,THETA) pair. z )'9[t  
    % -DdHl8  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 6&os`!  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) a$|U4Eqo  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) p /-du^:2  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 EjLq&QR.  
    %   for all p. n#g_)\  
    % .qSDe+A  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 &Gjpc>d  
    %   Zernike functions (order N<=7).  In some disciplines it is 6 X~><r  
    %   traditional to label the first 36 functions using a single mode gLX<> |)*  
    %   number P instead of separate numbers for the order N and azimuthal w\acgQ^%e  
    %   frequency M. uK@d?u!`  
    % 9$\s v5  
    %   Example: uP'L6p5  
    % %`C*8fc&  
    %       % Display the first 16 Zernike functions UE'=9{o`  
    %       x = -1:0.01:1; xT"V9t[f  
    %       [X,Y] = meshgrid(x,x); RG{T\9]n  
    %       [theta,r] = cart2pol(X,Y); YbU8 xq  
    %       idx = r<=1; (U.Go/A#wE  
    %       p = 0:15; ?Z 2,?G  
    %       z = nan(size(X)); QFx3N%  
    %       y = zernfun2(p,r(idx),theta(idx)); =$J(]KPv!?  
    %       figure('Units','normalized') zbxW U]<S?  
    %       for k = 1:length(p) :|s8v2am  
    %           z(idx) = y(:,k); D6Ad "|Z  
    %           subplot(4,4,k) _li3cXE  
    %           pcolor(x,x,z), shading interp +r3)\L{U  
    %           set(gca,'XTick',[],'YTick',[]) >Bb X:  
    %           axis square &#2&V>pE  
    %           title(['Z_{' num2str(p(k)) '}']) eL SzGbKf  
    %       end }_'5Vb_  
    % f\hMTebma$  
    %   See also ZERNPOL, ZERNFUN. ?gMx  
    }qiZ%cT.G  
    %   Paul Fricker 11/13/2006 &YXJ{<s  
    !G3AD3  
    R'v~:wNTNs  
    % Check and prepare the inputs: =sYILe[  
    % ----------------------------- ;\*3A22 #  
    if min(size(p))~=1 {nV/_o$$  
        error('zernfun2:Pvector','Input P must be vector.') @PvO;]]%  
    end 8z1z<\  
    (  zo7h  
    if any(p)>35 O=2|'L'h!  
        error('zernfun2:P36', ... J{ju3jo  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... zl1*GVg  
               '(P = 0 to 35).']) ^!1!l-  
    end H.ZIRt !RB  
    yl-:9|LT  
    % Get the order and frequency corresonding to the function number: {]Zan'{PCO  
    % ---------------------------------------------------------------- mw 28E\U  
    p = p(:); Y*c]C;%=  
    n = ceil((-3+sqrt(9+8*p))/2); :oIBJ u%/  
    m = 2*p - n.*(n+2); !rUP&DA  
    jA{5)-g  
    % Pass the inputs to the function ZERNFUN: jo:Z  
    % ---------------------------------------- efQ8jO  
    switch nargin |q w0:c=7!  
        case 3 z;qDl%AF  
            z = zernfun(n,m,r,theta); [KK |_  
        case 4 z+"$G  
            z = zernfun(n,m,r,theta,nflag); 4EqThvI{  
        otherwise h0PDFMM<  
            error('zernfun2:nargin','Incorrect number of inputs.') gI^&z  
    end e"04jd/  
    6|jZv~rS$  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) <[db)r~c  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. Sb`[+i' `  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of cI2Ps3~"Q  
    %   order N and frequency M, evaluated at R.  N is a vector of +KTfGwKt  
    %   positive integers (including 0), and M is a vector with the *$eH3nn6g  
    %   same number of elements as N.  Each element k of M must be a <Q|\mUS6  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) cu/"=]D  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is DsHF9Mn  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix x4q}xwH  
    %   with one column for every (N,M) pair, and one row for every P =X]'m_B  
    %   element in R. tRoSq;VrS  
    % d {!P c<  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- O=o}uB-*6  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is W>pe-  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to W3.[d->X  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 =!\Nh,\eQ  
    %   for all [n,m]. +VUkV-kP  
    % y[ dB mTY  
    %   The radial Zernike polynomials are the radial portion of the p'h'Cz  
    %   Zernike functions, which are an orthogonal basis on the unit X?_rD'3  
    %   circle.  The series representation of the radial Zernike Usf@kVQ  
    %   polynomials is doanTF4Da  
    % .\XRkr'-  
    %          (n-m)/2 SP%X@~d  
    %            __ s 4`-mIa  
    %    m      \       s                                          n-2s xv]z>4@z,  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r HJl?@& l/  
    %    n      s=0 2y!n c%  
    % r)t[QoD1  
    %   The following table shows the first 12 polynomials. ~-'2jb*8  
    % iV{_?f1jo  
    %       n    m    Zernike polynomial    Normalization e1Db +QBV  
    %       --------------------------------------------- a OmG,+o  
    %       0    0    1                        sqrt(2) 9~UR(Ts}l  
    %       1    1    r                           2 0!\gK <,z  
    %       2    0    2*r^2 - 1                sqrt(6) $wM..ee  
    %       2    2    r^2                      sqrt(6) B /;(#{U;  
    %       3    1    3*r^3 - 2*r              sqrt(8) k[x-O?$O@  
    %       3    3    r^3                      sqrt(8) q'jOI_b  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) 1GN^ui a7  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) x]7:MG$  
    %       4    4    r^4                      sqrt(10) )w].m  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) ;#Po}8Y=  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) .B`$hxl*0c  
    %       5    5    r^5                      sqrt(12) &E`Nu (e  
    %       --------------------------------------------- <f7 O3 >  
    % =i)%AnZ^9  
    %   Example: ^(;x-d3  
    % $oW= N   
    %       % Display three example Zernike radial polynomials /gu VA  
    %       r = 0:0.01:1; UuIjtqW  
    %       n = [3 2 5]; 4u5j 7`O  
    %       m = [1 2 1]; aqSOC(jU  
    %       z = zernpol(n,m,r); a?-Jj\q  
    %       figure L\4rvZa  
    %       plot(r,z) ;<i u*a  
    %       grid on DGJ:#U E  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') XoyxS:=>|[  
    % 5]i#l3")  
    %   See also ZERNFUN, ZERNFUN2. EP38Ho=[  
    KF7w{A){  
    % A note on the algorithm. j)@W1I]2#  
    % ------------------------ _h1bVd-  
    % The radial Zernike polynomials are computed using the series `v?hL~  
    % representation shown in the Help section above. For many special !/}4_s`,  
    % functions, direct evaluation using the series representation can $PM r)U  
    % produce poor numerical results (floating point errors), because e,s  S.  
    % the summation often involves computing small differences between JlSqTfA  
    % large successive terms in the series. (In such cases, the functions ^6Aa^|  
    % are often evaluated using alternative methods such as recurrence Jz''UJY/O  
    % relations: see the Legendre functions, for example). For the Zernike >.SO2w  
    % polynomials, however, this problem does not arise, because the +vZYuEq_  
    % polynomials are evaluated over the finite domain r = (0,1), and <~|n}&  
    % because the coefficients for a given polynomial are generally all S:!5 |o|  
    % of similar magnitude. z"6o|]9I  
    % lZwjrU| _  
    % ZERNPOL has been written using a vectorized implementation: multiple :+ YHj )mN  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] 4s m [y8  
    % values can be passed as inputs) for a vector of points R.  To achieve S[y'{;  
    % this vectorization most efficiently, the algorithm in ZERNPOL bAt!S  
    % involves pre-determining all the powers p of R that are required to Rc)]A&J  
    % compute the outputs, and then compiling the {R^p} into a single b#7nt ?`7p  
    % matrix.  This avoids any redundant computation of the R^p, and 0faf4LzU!  
    % minimizes the sizes of certain intermediate variables. 5^uX!_ r`  
    % K14.!m  
    %   Paul Fricker 11/13/2006 zDYJe_m ~  
    `_yksh3zL4  
    k8E2?kbF  
    % Check and prepare the inputs: OC5oxL2HTe  
    % ----------------------------- YEV;GFI1  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) dZ|bw0~_!  
        error('zernpol:NMvectors','N and M must be vectors.') oxFd@WV5  
    end BSS4}qyS  
    4=q4_ \_T  
    if length(n)~=length(m) !T`g\za/  
        error('zernpol:NMlength','N and M must be the same length.') -)J*(7F(6^  
    end Gad&3M0r  
    Il/`#b@h  
    n = n(:); Wr Wz+5M8  
    m = m(:); h9S f  
    length_n = length(n); qw4wg9w5p  
    o ^w^dgJ  
    if any(mod(n-m,2)) P3bRv^  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') (q"S0{  
    end -X EK[  
    J{Ij  
    if any(m<0) e>Q:j_?.e  
        error('zernpol:Mpositive','All M must be positive.') b0f6?s  
    end j; /@A lZl  
    QdZHIgh`i  
    if any(m>n) 2aivc,m{r  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') !OV+2suu1  
    end 7OZ0;fK  
    7TX$  
    if any( r>1 | r<0 ) #\~m}O,  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') ;|rFP  
    end Uwiy@ T Z  
    %Y`)ZKh  
    if ~any(size(r)==1) ,vi6<C\  
        error('zernpol:Rvector','R must be a vector.') bN*zx)f  
    end 'e))i#/VF  
    `5t~ Vlp  
    r = r(:); Rv*x'w ==  
    length_r = length(r); $v{s b,  
    l5e`m^GK  
    if nargin==4 #I yM`YB0  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 7<Ut/1$MI  
        if ~isnorm tchpO3u,  
            error('zernpol:normalization','Unrecognized normalization flag.') +],2smd@N  
        end -J!k|GK#MX  
    else blV'-Al  
        isnorm = false; ({rescQB  
    end ng2yZ @$  
    _#UhXXD  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2\}6b4  
    % Compute the Zernike Polynomials M>Ws}Y  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% XK l3B=h  
    9 LEUj  
    % Determine the required powers of r: ELV$!f|u  
    % ----------------------------------- MM+nE_9lV  
    rpowers = []; d cht8nX7~  
    for j = 1:length(n) ilj9&.isB  
        rpowers = [rpowers m(j):2:n(j)]; 0w^awT<$6  
    end >>7m'-k%D  
    rpowers = unique(rpowers); JENq?$S  
    ~i@Z4t j7  
    % Pre-compute the values of r raised to the required powers, j"+R*H(#  
    % and compile them in a matrix: 2L2)``*   
    % ----------------------------- f#vVk  
    if rpowers(1)==0 1K$8F ~%Z  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); p)Q='  
        rpowern = cat(2,rpowern{:}); [\i1I`7pE  
        rpowern = [ones(length_r,1) rpowern]; z2V_nkI  
    else < uzDuBN  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); W{'tS{  
        rpowern = cat(2,rpowern{:}); ^nL_*+V`f  
    end q(@hYp#O"3  
    5@Lz4 `  
    % Compute the values of the polynomials: Oz,/y3_  
    % -------------------------------------- qxwD4L`S  
    z = zeros(length_r,length_n); 78+PG(Q_M  
    for j = 1:length_n U@?Ro enn  
        s = 0:(n(j)-m(j))/2; HQ8;d9cGir  
        pows = n(j):-2:m(j); xqzdXL}  
        for k = length(s):-1:1 [318Q%W&  
            p = (1-2*mod(s(k),2))* ... 4~{q=-]V  
                       prod(2:(n(j)-s(k)))/          ... yX8$LOjE  
                       prod(2:s(k))/                 ... 1@0ZP~LTB  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... Hq$?-%4  
                       prod(2:((n(j)+m(j))/2-s(k))); #PRkqg+|  
            idx = (pows(k)==rpowers); ?\Jl] {i2  
            z(:,j) = z(:,j) + p*rpowern(:,idx); {7X80KI  
        end '%9e8C|  
         *9Nq^+  
        if isnorm -5yEd>Z  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); a2un[$Jq`  
        end 1vBXO bk  
    end y| %rW  
    Ol]+l]  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  a%a_sR\)  
    n$n)!XL/  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。  -z9-f\  
    XS5*=hv:  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)