非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 *R"/ |Ka
function z = zernfun(n,m,r,theta,nflag) lFkR=!?=
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. .VqhV
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N \^LFkp
% and angular frequency M, evaluated at positions (R,THETA) on the +_`7G^U?%
% unit circle. N is a vector of positive integers (including 0), and 5^cCY'I
% M is a vector with the same number of elements as N. Each element #z(]xI)"
% k of M must be a positive integer, with possible values M(k) = -N(k) . me;.,$#
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, "&] -2(
% and THETA is a vector of angles. R and THETA must have the same Kq!3wb;
% length. The output Z is a matrix with one column for every (N,M) t:S+%u U
% pair, and one row for every (R,THETA) pair. g7|@
% ta0|^KAA
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike k'YTpO
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), E$e5^G9
% with delta(m,0) the Kronecker delta, is chosen so that the integral Smh,zCc>s
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, N#]ypl
% and theta=0 to theta=2*pi) is unity. For the non-normalized F{wzB
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. yu|>t4#GT
% JT?h1v<H]
% The Zernike functions are an orthogonal basis on the unit circle. eE Kf|I
% They are used in disciplines such as astronomy, optics, and :3PH8TL
% optometry to describe functions on a circular domain. 46x'I(
% AX INThJ
% The following table lists the first 15 Zernike functions. cNrg#Asen&
% /1 dT+>
% n m Zernike function Normalization xk5]^yDp
% -------------------------------------------------- h;Kx!5)y
% 0 0 1 1 }vuARZ>
% 1 1 r * cos(theta) 2 Y2TtY;
% 1 -1 r * sin(theta) 2 !Cs_F&l"j
% 2 -2 r^2 * cos(2*theta) sqrt(6) sA~]$A;DM!
% 2 0 (2*r^2 - 1) sqrt(3) b>W%t
% 2 2 r^2 * sin(2*theta) sqrt(6) sKWfXCd
% 3 -3 r^3 * cos(3*theta) sqrt(8) s~>}a
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) B~mj 8l4
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) wzA$'+Mb
% 3 3 r^3 * sin(3*theta) sqrt(8) +|v90ed
% 4 -4 r^4 * cos(4*theta) sqrt(10) zA 3_Lx!
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 1 zZlC#V
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 9$t(&z=
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) hgmCRC
% 4 4 r^4 * sin(4*theta) sqrt(10) Xvv6~
% -------------------------------------------------- -=="<0c
% K9[UB
% Example 1: 1oS/`)
% M:8R-c#; ^~dWU>
% [theta,r] = cart2pol(X,Y); :/#rZPPF
% idx = r<=1; 45e~6",
% z = nan(size(X)); QZs!{sZ
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ig!+2g
% figure g-A-kqo9
% pcolor(x,x,z), shading interp _w{Qtj~s|
% axis square, colorbar .H|-_~Yx|
% title('Zernike function Z_5^1(r,\theta)') *hx
% .8R@2c`}Cs
% Example 2: "[k3kAm
% ]lbuy7xj63
% % Display the first 10 Zernike functions b-DvW4B
% x = -1:0.01:1; 8mMQ[#0:}
% [X,Y] = meshgrid(x,x); f 2.HF@
% [theta,r] = cart2pol(X,Y); &&+H+{_Q
% idx = r<=1; j^'go&p
% z = nan(size(X)); pkzaNY/q
% n = [0 1 1 2 2 2 3 3 3 3]; zdYjF|
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; :]KAkhFkbb
% Nplot = [4 10 12 16 18 20 22 24 26 28];
}pYqWTG
% y = zernfun(n,m,r(idx),theta(idx)); +R &gqja
% figure('Units','normalized') s#11FfF`
% for k = 1:10 ]`K2N
% z(idx) = y(:,k); 2 nCA<&
% subplot(4,7,Nplot(k)) 6t$8M[0-U
% pcolor(x,x,z), shading interp rH-23S
% set(gca,'XTick',[],'YTick',[]) \85i+q:LuA
% axis square
)2.Si#
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) WE?5ehEme
% end tA;}h7/Lc~
% WJ#[LF!e
% See also ZERNPOL, ZERNFUN2. Tbq;h?D
Upe%rC(
% Paul Fricker 11/13/2006 KPF1cJ2N
!zo{tI19
2ESo2
% Check and prepare the inputs: %v|B *
% ----------------------------- ";F'~}bDA
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) aOp\91
error('zernfun:NMvectors','N and M must be vectors.') G[=c
Ss,
end t0S1QC+
_b 0&!l<
if length(n)~=length(m) C]6O!Pb0
error('zernfun:NMlength','N and M must be the same length.') Vksuu@cch
end Da|z"I
x
AH^/V}9H
n = n(:); KoT\pY^7\
m = m(:); ^!d3=}:0
if any(mod(n-m,2)) V`- 9m$
error('zernfun:NMmultiplesof2', ... `3pW]&
'All N and M must differ by multiples of 2 (including 0).') d=(mw_-?
end *w&e\i|7
ax`o>_)
if any(m>n) R_C)
error('zernfun:MlessthanN', ... OXA7w.^
'Each M must be less than or equal to its corresponding N.') HN"Z]/5j
end F5<Hm_\:
N7"W{"3D
if any( r>1 | r<0 ) KO [Yi
error('zernfun:Rlessthan1','All R must be between 0 and 1.') l#o
~W`
end 1Mzmg[L8
ll^#JpT[S
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) {c'lhUB
error('zernfun:RTHvector','R and THETA must be vectors.') ?9/G[[(
end c{|p.hd
%J(:ADu]
r = r(:); 9{l}bu/u
theta = theta(:); G{}VPcrbC
length_r = length(r); RZLq]8pM
if length_r~=length(theta) o/E >f_k[
error('zernfun:RTHlength', ... M3\AY30L
'The number of R- and THETA-values must be equal.') ?s01@f#
end afVT~Sf{
';CNGv -
% Check normalization: QRUz`|U
% -------------------- L!9 2P{ K
if nargin==5 && ischar(nflag) SUiOJ[5,
isnorm = strcmpi(nflag,'norm'); D*jM1w_`
if ~isnorm )9g2D`a4
error('zernfun:normalization','Unrecognized normalization flag.') X?O[r3<
end Wr
4,YQM
else /uc>@!F
isnorm = false; I7onX,U+
end (PLUFT
aE8VZ8tvq
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% y29m/i:
% Compute the Zernike Polynomials #a#F,ZT
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% w)f#V s
Jy)/%p~
% Determine the required powers of r: sJZiI}Xc
% ----------------------------------- 6nn*]|7
m_abs = abs(m); 3";q[&F9y
rpowers = []; Rcuz(yS8
for j = 1:length(n) rq{$,/6.
rpowers = [rpowers m_abs(j):2:n(j)]; [Xkx_B
end 6ujWNf
rpowers = unique(rpowers); X|dlt{Gf
pa+hL,w{6
% Pre-compute the values of r raised to the required powers, 2?C)&
% and compile them in a matrix: 203s^K61
% ----------------------------- 0GwR~Z}Z
if rpowers(1)==0 8*X4\3:*N
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); $nb[GV
rpowern = cat(2,rpowern{:}); 0GL M(JmK
rpowern = [ones(length_r,1) rpowern]; + {]j]OP
else iZmcI;?u
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); >P(.:_^p
rpowern = cat(2,rpowern{:}); mFeP9MfJ
end y_)FA"IkE
kJU2C=m@e2
% Compute the values of the polynomials: %#+Hl0,Tt
% -------------------------------------- +`4A$#$+y
y = zeros(length_r,length(n)); sOY:e/_F
for j = 1:length(n) Iu{V,U
s = 0:(n(j)-m_abs(j))/2; 9r9NxKuAO
pows = n(j):-2:m_abs(j); (7Qo
for k = length(s):-1:1 DU^loB+
p = (1-2*mod(s(k),2))* ... ceA9){
prod(2:(n(j)-s(k)))/ ... SbZ6t$"
prod(2:s(k))/ ... y_,bu^+*
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... MV"=19]
prod(2:((n(j)+m_abs(j))/2-s(k))); +ZYn? #IQ
idx = (pows(k)==rpowers); )oZ dj`
y(:,j) = y(:,j) + p*rpowern(:,idx); =4!mAo}
end KvSG;
HW|IILFB
if isnorm jPeYmv]
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); x-c"%Z|
end M|-)GvR$J
end Kw}'W
8` c
% END: Compute the Zernike Polynomials ~&O%N
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% rqq1TRg
(H]AR8%W
% Compute the Zernike functions: k)u[0}
% ------------------------------ L];b<*d
idx_pos = m>0; hZ3bVi)L\
idx_neg = m<0; ysN3
$]1=\I
z = y; G3]4A&h9v~
if any(idx_pos) 0(Ij%Wi,
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 6@o*xK7L
end w!CNRtM:~
if any(idx_neg) GILfbNcd
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 4Hg9N}
end /?!u{(h }
C~[,z.FvO
% EOF zernfun