非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 )ow|n^D($M
function z = zernfun(n,m,r,theta,nflag) cD6$C31Y]
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ~CQYF,[Th
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N H1,;Xrm
% and angular frequency M, evaluated at positions (R,THETA) on the :VPZGzK4
% unit circle. N is a vector of positive integers (including 0), and o0>z6Ya<
% M is a vector with the same number of elements as N. Each element 3N) bJ
% k of M must be a positive integer, with possible values M(k) = -N(k) 0ih=<@1 K
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, [Hn4&PET
% and THETA is a vector of angles. R and THETA must have the same xQ
`>\f
% length. The output Z is a matrix with one column for every (N,M) zkdyfl5
% pair, and one row for every (R,THETA) pair. :bLLN
% xj/ +Z!,9
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike D]9I-|
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), uvK1gJrA)
% with delta(m,0) the Kronecker delta, is chosen so that the integral !\a'GO[
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, b7It8
% and theta=0 to theta=2*pi) is unity. For the non-normalized :QnN7&j|(w
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. TR8<=
% 1/Pou)D
% The Zernike functions are an orthogonal basis on the unit circle. w.gI0`
% They are used in disciplines such as astronomy, optics, and s@sr.'yU
% optometry to describe functions on a circular domain. qV$\.T>x
% j*m7&wOE
% The following table lists the first 15 Zernike functions. K .cMuh
% (u81p
% n m Zernike function Normalization We#u-#k_O
% -------------------------------------------------- , C88%k
% 0 0 1 1 .kSx>3
% 1 1 r * cos(theta) 2 ZM/*cA!"
% 1 -1 r * sin(theta) 2 ocCC63J
% 2 -2 r^2 * cos(2*theta) sqrt(6) P1b5=/}:V
% 2 0 (2*r^2 - 1) sqrt(3) 6mJa
% 2 2 r^2 * sin(2*theta) sqrt(6) y K~;LV
% 3 -3 r^3 * cos(3*theta) sqrt(8) DFKU?#R
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) m}] bP
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) K@P5]}'#
% 3 3 r^3 * sin(3*theta) sqrt(8) $UMxO`F
% 4 -4 r^4 * cos(4*theta) sqrt(10) }g:y!pk
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 7hq*+e
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 0^4uZeW?
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Ey$J.qw3
% 4 4 r^4 * sin(4*theta) sqrt(10) =PiDZS^"
% -------------------------------------------------- ,v$gWA!l
% U+t|wK
% Example 1: @Iz vObK
% e%w>QN`
% % Display the Zernike function Z(n=5,m=1) k:nR'TI
% x = -1:0.01:1; A.<HOx
% [X,Y] = meshgrid(x,x); klduJT
>
% [theta,r] = cart2pol(X,Y); W is_N3M
% idx = r<=1; C`c;I7
% z = nan(size(X)); $v?+X20
% z(idx) = zernfun(5,1,r(idx),theta(idx)); r3oAP[+n
% figure -o<L%Y<n2
% pcolor(x,x,z), shading interp 'f9fw^
% axis square, colorbar cg$@x\fJ
% title('Zernike function Z_5^1(r,\theta)') F gM<2$h
% 6CBk,2DswI
% Example 2: <JE-#i
% /238pg~Cw5
% % Display the first 10 Zernike functions ]w.:K*_=
% x = -1:0.01:1; hM")DmvB4
% [X,Y] = meshgrid(x,x); 6'UtB !gr
% [theta,r] = cart2pol(X,Y); h4x*C=?A
% idx = r<=1; |'WaBy1
% z = nan(size(X)); "Zd4e2>{M\
% n = [0 1 1 2 2 2 3 3 3 3]; @O#4duM4Qz
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; pmd=3,D'u
% Nplot = [4 10 12 16 18 20 22 24 26 28]; JX,&im*BG
% y = zernfun(n,m,r(idx),theta(idx)); >;}np
F>
% figure('Units','normalized') r-
0BLq]~{
% for k = 1:10 Ml)~%ZbF
% z(idx) = y(:,k); OI"vC1.5
% subplot(4,7,Nplot(k)) <:)T7yVq
% pcolor(x,x,z), shading interp a<l(zJptG
% set(gca,'XTick',[],'YTick',[]) nYG$V)iCb
% axis square ,Ju f
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) _ETG.SYq
% end A6Ttx{]
% =D.M}xqo
% See also ZERNPOL, ZERNFUN2. ,@ A1eX}
_y&m4V