切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11368阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 _ +[;NBz  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! F$<>JEdX  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 MI8f(ZJK5  
    function z = zernfun(n,m,r,theta,nflag) J)(KGdk  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. @o4+MQFn  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N m# y`  
    %   and angular frequency M, evaluated at positions (R,THETA) on the NQB a+N  
    %   unit circle.  N is a vector of positive integers (including 0), and Y2lBQp8'|  
    %   M is a vector with the same number of elements as N.  Each element ~)J]`el,Q  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 7oUecyoj  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, $glt%a  
    %   and THETA is a vector of angles.  R and THETA must have the same 3JhT  
    %   length.  The output Z is a matrix with one column for every (N,M) ,Sz`$'^c  
    %   pair, and one row for every (R,THETA) pair. OYnxEdo7  
    % kH;DAphk  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike }~B@Z\`O  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), U(xN}Y ?  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral VTS7K2lBvX  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 7Iz%Jty  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized U`)\|\NY  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. _:N+mEF  
    % FYwMmb ~3  
    %   The Zernike functions are an orthogonal basis on the unit circle. g+( Cs  
    %   They are used in disciplines such as astronomy, optics, and s R~D3-  
    %   optometry to describe functions on a circular domain. 1gK<dg  
    % 4lM)ZDg  
    %   The following table lists the first 15 Zernike functions. bQ%6z}r  
    % \@\r`=WgB  
    %       n    m    Zernike function           Normalization 2SjH7 '  
    %       -------------------------------------------------- egXHp<bqw  
    %       0    0    1                                 1 R #f*QXv  
    %       1    1    r * cos(theta)                    2 Xu.Wdl/{Ra  
    %       1   -1    r * sin(theta)                    2 yr;~M{{4  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) kv!QO^;^Y  
    %       2    0    (2*r^2 - 1)                    sqrt(3)  v|K,  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Ru&>8Ln0  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) z`Jcpt  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) @V\ u<n  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) k^H&IS!  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 6D\$K  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) *dAQ{E(rO  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) /VmtQ{KTt+  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 0I v(ioB=  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) CD! Aa  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 2iWS k6%R  
    %       -------------------------------------------------- ?lPn{oB9"  
    % M1mx{<]A  
    %   Example 1: ; _K3/:  
    % "y9]>9:$-  
    %       % Display the Zernike function Z(n=5,m=1) XsEo tW  
    %       x = -1:0.01:1; 1PN!1=F}  
    %       [X,Y] = meshgrid(x,x); {i^F4A@=Z  
    %       [theta,r] = cart2pol(X,Y); o#Viz:  
    %       idx = r<=1; |Wg!> g!  
    %       z = nan(size(X)); Ql1J?9W  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); A"}Ib'  
    %       figure 0'g e}2^  
    %       pcolor(x,x,z), shading interp h}U>K4BJ  
    %       axis square, colorbar BO,xA-+  
    %       title('Zernike function Z_5^1(r,\theta)') 'lMDlTU O  
    % r [E4/?_  
    %   Example 2: *%ta5a  
    % 8Q(A1U  
    %       % Display the first 10 Zernike functions u_=^Bd   
    %       x = -1:0.01:1; <'N~|B/yZ  
    %       [X,Y] = meshgrid(x,x); ;U&~tpd  
    %       [theta,r] = cart2pol(X,Y); |Kq<}R  
    %       idx = r<=1; DP.Y <V)B  
    %       z = nan(size(X)); WjsmLb:5  
    %       n = [0  1  1  2  2  2  3  3  3  3]; C({r1l4[D  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; %w;wQ_  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; yTR5*{?j  
    %       y = zernfun(n,m,r(idx),theta(idx)); 717OzrF}A?  
    %       figure('Units','normalized') v[\GhVb  
    %       for k = 1:10 +TC##}Zmb  
    %           z(idx) = y(:,k); Ov;q]Vn>  
    %           subplot(4,7,Nplot(k)) b=kY9!GN,v  
    %           pcolor(x,x,z), shading interp %RIlu[J  
    %           set(gca,'XTick',[],'YTick',[]) w$0*5n>)  
    %           axis square (7C$'T-ZK  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) |)OC1=As  
    %       end cp&1yB   
    % u/apnAW@M  
    %   See also ZERNPOL, ZERNFUN2. 6Z5$cR_vC7  
    rrSFmhQUk  
    %   Paul Fricker 11/13/2006 bQ-n<Lx  
    ? CU;  
    W/.n R[!  
    % Check and prepare the inputs: ma6Wr !J  
    % ----------------------------- }_D{|! !!T  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) N}Or+:"O:q  
        error('zernfun:NMvectors','N and M must be vectors.') P6)d#M  
    end \Rw^&;\1  
    G_}oI|B  
    if length(n)~=length(m) ~i0>[S3 '  
        error('zernfun:NMlength','N and M must be the same length.') D7Y?$=0ycb  
    end L7"<a2J  
    l-2lb&n  
    n = n(:); & j*Ylj}  
    m = m(:); %reW/;)l{  
    if any(mod(n-m,2)) AMN`bgxW  
        error('zernfun:NMmultiplesof2', ... 3}B-n!|*  
              'All N and M must differ by multiples of 2 (including 0).') p2gu@!   
    end ,=2)1I]  
    Pk5 %lu  
    if any(m>n) ]d*O>Pm  
        error('zernfun:MlessthanN', ... GL^ j |1  
              'Each M must be less than or equal to its corresponding N.') }Qh%Z)  
    end yMOYTN@]  
    _)~|Z~  
    if any( r>1 | r<0 ) X^C $|:  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') z'zC  
    end )O\l3h"  
    ~]BR(n  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) @^`5;JiUk  
        error('zernfun:RTHvector','R and THETA must be vectors.') y*8;T v|  
    end ^.M_1$-  
    {XW>3 "  
    r = r(:); 0.#% KfQ  
    theta = theta(:); !9^GkFR6n  
    length_r = length(r); YGi_7fTyc=  
    if length_r~=length(theta) 7A  
        error('zernfun:RTHlength', ... VKi3z%kwK  
              'The number of R- and THETA-values must be equal.') kEg~yN  
    end Q8DKU  
    `U;V-  
    % Check normalization: d%Ku 'Jy  
    % -------------------- l4OPzNc'  
    if nargin==5 && ischar(nflag) vf`]  
        isnorm = strcmpi(nflag,'norm'); ~'):1}KN]  
        if ~isnorm }Ub "Vb  
            error('zernfun:normalization','Unrecognized normalization flag.') ^Cg@'R9  
        end & aF'IJC  
    else 1'5 !")r  
        isnorm = false; Z8pZm`g)T  
    end ,=P0rbtK  
    cr{dl\ Na  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% B^hK  
    % Compute the Zernike Polynomials U4Pk^[,p1G  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [oH,FSuO!2  
    6.4,Qae9E  
    % Determine the required powers of r: +Jc-9Ko\c;  
    % ----------------------------------- 16I(S  
    m_abs = abs(m); b$FXRR\G  
    rpowers = []; gwYTOs ^  
    for j = 1:length(n) ,]?l(H $x'  
        rpowers = [rpowers m_abs(j):2:n(j)]; q{.~=~  
    end tQ4{:WPG  
    rpowers = unique(rpowers); z yI4E\  
    l1RFn,Tzr  
    % Pre-compute the values of r raised to the required powers, Jaf=qwZ/`  
    % and compile them in a matrix: &S# bLE  
    % ----------------------------- \y/+H  
    if rpowers(1)==0 t{/ EN)J  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); J15$P8J  
        rpowern = cat(2,rpowern{:}); $E@ke:  
        rpowern = [ones(length_r,1) rpowern]; B?_ujH80m  
    else E9[8th,t  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); jdVdz,Y  
        rpowern = cat(2,rpowern{:}); Eb9M;u  
    end ?Qs>L~  
    ?r~](l   
    % Compute the values of the polynomials: 9$'Edi=6  
    % -------------------------------------- g:c @  
    y = zeros(length_r,length(n)); 3!B3C(g  
    for j = 1:length(n) BcoE&I?[m|  
        s = 0:(n(j)-m_abs(j))/2; FdJC@Y-#uA  
        pows = n(j):-2:m_abs(j); ?)5M3 lV3k  
        for k = length(s):-1:1 |m7`:~ow  
            p = (1-2*mod(s(k),2))* ... RwwX;I"o%  
                       prod(2:(n(j)-s(k)))/              ... Qod2m$>wp}  
                       prod(2:s(k))/                     ... QfM*K.7Sl  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... E0S[TEDa]  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); N:/$N@"Ge  
            idx = (pows(k)==rpowers); )uyh  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Wkv **X}  
        end I!Za2?  
         IN]bAd8"  
        if isnorm )O%lh 8fI  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Lp*T=]C]  
        end JGD{cr[S  
    end Jq`fD~(7  
    % END: Compute the Zernike Polynomials am05>c9  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (;h]'I@  
    j|(bDa4\  
    % Compute the Zernike functions: XT_BiZ%l5O  
    % ------------------------------ ?-'Q-\j  
    idx_pos = m>0; |qNrj~n@  
    idx_neg = m<0; V2]S{!p}k  
    o6K BJx  
    z = y; /ADxHw`k  
    if any(idx_pos) 0KT{K(  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); S8vmXlD  
    end emS+%6U  
    if any(idx_neg) 90aPIs-  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); r5iO%JFg  
    end cmN0ya  
    "x$S%:p  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 4!}fCP ty  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. /l$noaskX  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated j'J*QK&Q  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive MM8)yCI  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, wbS++cF<  
    %   and THETA is a vector of angles.  R and THETA must have the same a@jP^VVk  
    %   length.  The output Z is a matrix with one column for every P-value, eu:_V+  
    %   and one row for every (R,THETA) pair. N~ozyIP,  
    % Csc2yI%3  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike ,6buo~?W:  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) GKd>AP_  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) `( a^=e5  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 ^ KjqS\<  
    %   for all p. G<dXJ ]\\  
    % 86I*  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 !aEp88u  
    %   Zernike functions (order N<=7).  In some disciplines it is |}|;OG  
    %   traditional to label the first 36 functions using a single mode P%lLKSA  
    %   number P instead of separate numbers for the order N and azimuthal B&$89]gs|  
    %   frequency M. 8Z!ea3kAT  
    % H5I#/j  
    %   Example: I.<#t(io  
    % 5y'Yosy:  
    %       % Display the first 16 Zernike functions n{yjH*\Z  
    %       x = -1:0.01:1; M:SxAo-D2  
    %       [X,Y] = meshgrid(x,x); ]\ezES  
    %       [theta,r] = cart2pol(X,Y); U+i[r&{gb  
    %       idx = r<=1; UiEB?X]-l'  
    %       p = 0:15; XHg %X  
    %       z = nan(size(X)); 3*TS 4xX  
    %       y = zernfun2(p,r(idx),theta(idx)); @&W?e?O ~G  
    %       figure('Units','normalized') QaO`:wJj  
    %       for k = 1:length(p) D{l((t3=T  
    %           z(idx) = y(:,k); z,7^dlT  
    %           subplot(4,4,k) %dU}GYL_  
    %           pcolor(x,x,z), shading interp p{J_d,JH  
    %           set(gca,'XTick',[],'YTick',[]) >?'FH +2K  
    %           axis square HW G~m:km  
    %           title(['Z_{' num2str(p(k)) '}']) I{PN6bn{>  
    %       end >8tuLd*T  
    % u@E M,o  
    %   See also ZERNPOL, ZERNFUN. B<RONQj_  
    ;R!H\  
    %   Paul Fricker 11/13/2006 p o`$^TB^+  
    XL3h ; $,  
    K0g:Q*J-  
    % Check and prepare the inputs: \d+HYLAJn  
    % ----------------------------- F%d"gF0qu  
    if min(size(p))~=1 #c>MUC(?s:  
        error('zernfun2:Pvector','Input P must be vector.') }BrE|'.j'  
    end <.B s`P  
    `[\phv  
    if any(p)>35 #0D.37R+k  
        error('zernfun2:P36', ... }(K6 YL  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... N96BWgT  
               '(P = 0 to 35).']) j#f&!&G5<&  
    end ,Tl5@RN  
    GvOAs-$  
    % Get the order and frequency corresonding to the function number: eNFUjDm  
    % ---------------------------------------------------------------- \ c&)8.r  
    p = p(:); }j1Zk4}[x  
    n = ceil((-3+sqrt(9+8*p))/2);  ^gyp- !  
    m = 2*p - n.*(n+2); V2,WP  
    ~a%hRJg  
    % Pass the inputs to the function ZERNFUN: rk|(BA  
    % ---------------------------------------- ,<^HB+{Wo  
    switch nargin B,833Azi  
        case 3 HJR<d&l;p  
            z = zernfun(n,m,r,theta); cvA\C_  
        case 4 ..!-)q'?  
            z = zernfun(n,m,r,theta,nflag); )<F\IM  
        otherwise ~,68S^nP)H  
            error('zernfun2:nargin','Incorrect number of inputs.') B7MW" y  
    end *h:EE6|  
    S\5k' ifh  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) @:9fS  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 9[{>JRm.  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of B"9hQb  
    %   order N and frequency M, evaluated at R.  N is a vector of ;nKHm  
    %   positive integers (including 0), and M is a vector with the G5#}Ed4  
    %   same number of elements as N.  Each element k of M must be a .00=U;H%`  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) #6s C&w3  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 4<< bk_7'  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix 7b,,%rUd  
    %   with one column for every (N,M) pair, and one row for every Au} ;z6k  
    %   element in R. *X l<aNNx  
    % p <=%  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- _G[I2]  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is KzX ,n_`an  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to C!{AnWf  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ~po%GoH(K  
    %   for all [n,m]. xY'qm8V  
    % N@*wi"Q  
    %   The radial Zernike polynomials are the radial portion of the Tj21YK.mk  
    %   Zernike functions, which are an orthogonal basis on the unit 3U"')  
    %   circle.  The series representation of the radial Zernike Wt9iL  
    %   polynomials is RC{Z)M{~  
    % @" 0tW:  
    %          (n-m)/2 'gZbNg=&[  
    %            __ mH*@d"  
    %    m      \       s                                          n-2s gMBQtPNM  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 4m~7 ~-h  
    %    n      s=0 aaz"`,7_  
    % bV$8 >[`  
    %   The following table shows the first 12 polynomials. Rw}2*5#y  
    % 6{+_T  
    %       n    m    Zernike polynomial    Normalization 5Z6-R}uXk  
    %       --------------------------------------------- 3P#+) F~  
    %       0    0    1                        sqrt(2) 0L0Jc,(F+  
    %       1    1    r                           2 dxn0HXU  
    %       2    0    2*r^2 - 1                sqrt(6) r*N~. tFo  
    %       2    2    r^2                      sqrt(6) =Esbeb7P  
    %       3    1    3*r^3 - 2*r              sqrt(8) PM-PP8h  
    %       3    3    r^3                      sqrt(8) ?D(FNd  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) EARfbb"SG7  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) m c\ C  
    %       4    4    r^4                      sqrt(10) J7ktfyQ0W  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) BLwfm+ m"  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) ;Lsjh#  
    %       5    5    r^5                      sqrt(12) x\`RW 3 K  
    %       --------------------------------------------- n4WSV  
    % w.D4dv_H  
    %   Example: 0ck&kpL:9  
    % ]CIQq1iY  
    %       % Display three example Zernike radial polynomials OgKWgvy  
    %       r = 0:0.01:1; /1 US,  
    %       n = [3 2 5]; EItxRHV5  
    %       m = [1 2 1]; wrQydI  
    %       z = zernpol(n,m,r); mX@j  
    %       figure oE!hF}O  
    %       plot(r,z) ]HyHz9QkL  
    %       grid on @TA8^ND  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') BZJKiiD  
    % #u8*CA9  
    %   See also ZERNFUN, ZERNFUN2. ,Um5S6 Z  
    >HcYVp~G  
    % A note on the algorithm. 8> Du  
    % ------------------------ Bw 3F7W~l  
    % The radial Zernike polynomials are computed using the series NWJcFj_  
    % representation shown in the Help section above. For many special JlC<MQ?  
    % functions, direct evaluation using the series representation can N b3I%r  
    % produce poor numerical results (floating point errors), because DYo<5^0  
    % the summation often involves computing small differences between [|a( y6Q  
    % large successive terms in the series. (In such cases, the functions pxw{  
    % are often evaluated using alternative methods such as recurrence oUQGLl!V  
    % relations: see the Legendre functions, for example). For the Zernike b&=]S(  
    % polynomials, however, this problem does not arise, because the #D`S  
    % polynomials are evaluated over the finite domain r = (0,1), and pXPqDA  
    % because the coefficients for a given polynomial are generally all J16=!q()  
    % of similar magnitude. ?CH?kP  
    % # #k #q=4  
    % ZERNPOL has been written using a vectorized implementation: multiple M'cJ)-G  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] _YH<YOrMh  
    % values can be passed as inputs) for a vector of points R.  To achieve c8#T:HM|`  
    % this vectorization most efficiently, the algorithm in ZERNPOL Zk]k1]u*5  
    % involves pre-determining all the powers p of R that are required to +"YTCzv;t  
    % compute the outputs, and then compiling the {R^p} into a single 3D 9N: c  
    % matrix.  This avoids any redundant computation of the R^p, and F~z_>1lpP&  
    % minimizes the sizes of certain intermediate variables. UvPp~N 7,  
    % fd?bU|I_2  
    %   Paul Fricker 11/13/2006 6oj4Rg+(  
    j6n2dMRvSE  
    $Q8P@L)[  
    % Check and prepare the inputs: '"` Lv/  
    % ----------------------------- D^,\cZbY  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) H9%l?r5  
        error('zernpol:NMvectors','N and M must be vectors.') tgO+*q5B  
    end cwu$TP A>  
    [zY!'cz?  
    if length(n)~=length(m) 6RH/V:YY  
        error('zernpol:NMlength','N and M must be the same length.') gWFL  
    end rW:iBq  
    uDILjOT  
    n = n(:); "w*@R8v  
    m = m(:);  LsQs:O  
    length_n = length(n); 7}<Sg  
    G3H#XK D  
    if any(mod(n-m,2)) M} O[`Fx{W  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 'To<T  
    end (-bRj#  
    iH[E= 6*  
    if any(m<0) d2ohW|  
        error('zernpol:Mpositive','All M must be positive.') dO+kPC  
    end PPN q:,  
    f 4R1$(<  
    if any(m>n) Qqp)@uM^  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') +d=~LQ}*  
    end q;p.wEbr4U  
    --Oprl  
    if any( r>1 | r<0 ) 0[lS(K  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') bKYY{V55  
    end PM@XtL7J  
    !{IC[g n  
    if ~any(size(r)==1) /[0F6  
        error('zernpol:Rvector','R must be a vector.') DX|uHbGg  
    end aJI>FTdK  
    7k>zuzRyF  
    r = r(:); JdtPY~k0  
    length_r = length(r); !@( M_Z'  
    M z9 3  
    if nargin==4 . /Y&\<  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); P2>:p%Z  
        if ~isnorm /n(9&'H<  
            error('zernpol:normalization','Unrecognized normalization flag.') hPcS, p{%  
        end [4Y[?)7  
    else NNgK:YibD  
        isnorm = false; }bp.OV-+  
    end <p09oZ{6  
    gTnS[  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Q2q| *EL  
    % Compute the Zernike Polynomials N.jA 8X  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9MT3T?IS  
    &T7cH>E'K^  
    % Determine the required powers of r: R+s1[Z  
    % ----------------------------------- WI6(#8^p  
    rpowers = []; M=W 4:H,gx  
    for j = 1:length(n) Oohq9f#!  
        rpowers = [rpowers m(j):2:n(j)]; "i&fp:E0  
    end NK~PcdGl  
    rpowers = unique(rpowers); mzu<C)9d,  
    /0 _zXQyV  
    % Pre-compute the values of r raised to the required powers, o,J^ e_  
    % and compile them in a matrix: mdaYYD=c%  
    % ----------------------------- `T=1<Twc  
    if rpowers(1)==0 #J\s%60pt  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 8|6~o.B.G  
        rpowern = cat(2,rpowern{:}); <z',]hy  
        rpowern = [ones(length_r,1) rpowern]; Z&A0hI4d  
    else kAeNQRjR  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); l/M[am  
        rpowern = cat(2,rpowern{:}); hl**zF  
    end iyc$)"w  
    V;k#})_-  
    % Compute the values of the polynomials: T RDxT  
    % -------------------------------------- %uua_&#)  
    z = zeros(length_r,length_n); z#RuwB+  
    for j = 1:length_n x df?nt  
        s = 0:(n(j)-m(j))/2; >4~#%&  
        pows = n(j):-2:m(j); w]}f6VlEl  
        for k = length(s):-1:1 `4skwvS=  
            p = (1-2*mod(s(k),2))* ... rfc|`*m}0  
                       prod(2:(n(j)-s(k)))/          ... $7Cgo&J  
                       prod(2:s(k))/                 ... l77'Lne  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... IhfZLE.,  
                       prod(2:((n(j)+m(j))/2-s(k))); fQO ""qh  
            idx = (pows(k)==rpowers); ]hL:33  
            z(:,j) = z(:,j) + p*rpowern(:,idx); .+HcAx{/2  
        end jccOsG9;_  
         }Bi@?Sb  
        if isnorm xvB8YW"  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); *t]v}ZV*  
        end zC#%6@P\  
    end 6m@0;Ht  
    bLco:-G1E1  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  bs P6\'\4  
    ydup)[n  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 Q.1XP  
    ]LVnt-q  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)