切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10755阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 FgLV>#)-  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 8ex{N3  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 .SzP ig  
    function z = zernfun(n,m,r,theta,nflag) 5[suwaJQ  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 'B>fRN  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N d e)7_pCF|  
    %   and angular frequency M, evaluated at positions (R,THETA) on the a\;Vly;  
    %   unit circle.  N is a vector of positive integers (including 0), and "^Y)&<J&  
    %   M is a vector with the same number of elements as N.  Each element noJ5h |  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) QQ;<L"VW  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, bis}zv^%v  
    %   and THETA is a vector of angles.  R and THETA must have the same Er509zZ,[  
    %   length.  The output Z is a matrix with one column for every (N,M) Ws$<B b  
    %   pair, and one row for every (R,THETA) pair. Z\c^CN  
    % Xf o3fW)s  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike vkUXMMuf+e  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), |, #DB  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 5P'o+Vwz  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 7/C,<$Ep  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized $De14  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. qRi;[`  
    % HGIPz{/5U  
    %   The Zernike functions are an orthogonal basis on the unit circle. M uz+j.0  
    %   They are used in disciplines such as astronomy, optics, and q=Xda0c  
    %   optometry to describe functions on a circular domain. qM}Uk3N0  
    % B6 rz  
    %   The following table lists the first 15 Zernike functions. }(tuBJ9  
    % uzG{jc^  
    %       n    m    Zernike function           Normalization /6S% h-#\  
    %       -------------------------------------------------- 3>vSKh1z  
    %       0    0    1                                 1 IY_u|7d  
    %       1    1    r * cos(theta)                    2 yR}PC/>  
    %       1   -1    r * sin(theta)                    2 *WTmS2?'h  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) J5Pi"U$FkY  
    %       2    0    (2*r^2 - 1)                    sqrt(3) ygI81\ D  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) _%M+!Ltz  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) CVxqNR*DN  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) y-C=_v_X  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) xwvg @  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) Yvmo%.oU  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) TgC8EcLr  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ;zq3>A  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) (p6$Vgdt  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) NWL\"xp `t  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) dOG]Yjc  
    %       -------------------------------------------------- ,EsPm'`?A/  
    % V%|CCrR  
    %   Example 1: _T\/kJ)Q\  
    % *aem5 E`c  
    %       % Display the Zernike function Z(n=5,m=1) Jeb"t1.$  
    %       x = -1:0.01:1; Xgb ~ED]  
    %       [X,Y] = meshgrid(x,x); C6<*'5T  
    %       [theta,r] = cart2pol(X,Y); J]h$4"  
    %       idx = r<=1; +,8j]<wpo  
    %       z = nan(size(X)); *;N6S~_'Y  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ,?k0~fuG6  
    %       figure cpY'::5.%  
    %       pcolor(x,x,z), shading interp  <xn96|$  
    %       axis square, colorbar ;pH&YBY  
    %       title('Zernike function Z_5^1(r,\theta)') 322)r$!"  
    % yW@0Q:  
    %   Example 2: fS@V`"O6  
    % uDe%M  
    %       % Display the first 10 Zernike functions .@5Ro D[o  
    %       x = -1:0.01:1; W'98ues%  
    %       [X,Y] = meshgrid(x,x); ' \8|`Zb  
    %       [theta,r] = cart2pol(X,Y); An.Qi=Cv  
    %       idx = r<=1; sLHUQ(S!  
    %       z = nan(size(X)); 9>QGsf.3  
    %       n = [0  1  1  2  2  2  3  3  3  3]; PQ0l<]Y  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; UgqfO(  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; r0Cc0TMdj  
    %       y = zernfun(n,m,r(idx),theta(idx)); %jBI*WzR  
    %       figure('Units','normalized') N'5AU (  
    %       for k = 1:10 a ](Jc)  
    %           z(idx) = y(:,k); I38j[Xk  
    %           subplot(4,7,Nplot(k)) {.HFB:<!}  
    %           pcolor(x,x,z), shading interp 3QZ~t#,7ij  
    %           set(gca,'XTick',[],'YTick',[]) C<G`wXlP|  
    %           axis square .sqX>sU/]  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) s3Wjg  
    %       end u*h+ c8|zI  
    % L!>EW0  
    %   See also ZERNPOL, ZERNFUN2. W]TO%x{  
    )8,)&F  
    %   Paul Fricker 11/13/2006 TXH9BlDn  
    {J[5 {]Je[  
    ^7p>p8  
    % Check and prepare the inputs: 1s"/R  
    % ----------------------------- B* hW  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ,ve$bSp  
        error('zernfun:NMvectors','N and M must be vectors.') Ho^rYz  
    end .[Hv/?L  
    $~G=Hcl9  
    if length(n)~=length(m)  f3E%0cg  
        error('zernfun:NMlength','N and M must be the same length.') 12olVTuw  
    end [t{ed)J  
    MJ% gF=$X  
    n = n(:); :~PzTUz  
    m = m(:); Vi:<W0:  
    if any(mod(n-m,2)) w(6(Fze  
        error('zernfun:NMmultiplesof2', ... WGC'k s ^  
              'All N and M must differ by multiples of 2 (including 0).') B |pdqSI  
    end +\D?H.P  
    uG:xd0X+W  
    if any(m>n) QPZ|C{Ce  
        error('zernfun:MlessthanN', ... .I1k+   
              'Each M must be less than or equal to its corresponding N.') J;R1OJs S  
    end Fx]}<IudA^  
    y]YUuJ9a  
    if any( r>1 | r<0 ) ;*AK eI2  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ]ysEj3  
    end lDU@Q(V#}<  
    O\z]1`i*o  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 2<X.kM?N{B  
        error('zernfun:RTHvector','R and THETA must be vectors.') Jmcf9g  
    end EWZ?q$  
    C%LXGMt  
    r = r(:); wVMR&R<t  
    theta = theta(:); >vny9^_  
    length_r = length(r); E4;@P']`  
    if length_r~=length(theta) 0D Q\akh  
        error('zernfun:RTHlength', ... loR,f&80=O  
              'The number of R- and THETA-values must be equal.') O)EA2`)E  
    end 8~6H\.0Q  
    (;(P3h  
    % Check normalization: g UAx8=h  
    % -------------------- ~ MZEAY9  
    if nargin==5 && ischar(nflag) #ts;s\!  
        isnorm = strcmpi(nflag,'norm'); P-25]-  
        if ~isnorm fa:V8xa  
            error('zernfun:normalization','Unrecognized normalization flag.') 7#G8qh<  
        end !h[xeLlU  
    else [>#@?@x`P  
        isnorm = false; 9`8D Ga  
    end ']'V?@H]4  
    DX\|*:,  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %fH&UFby  
    % Compute the Zernike Polynomials %+F%C=GqI  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %c`P`~sp  
    m&&Y=2  
    % Determine the required powers of r: =IC cN|  
    % ----------------------------------- i7#PYt  
    m_abs = abs(m); ,!i!q[YkL9  
    rpowers = []; ijuIf9!  
    for j = 1:length(n) NB@TyU  
        rpowers = [rpowers m_abs(j):2:n(j)]; Fr{}~fRW<  
    end 4 >2g&);B  
    rpowers = unique(rpowers); O_bgrXg6x  
    -rXo}I,VI  
    % Pre-compute the values of r raised to the required powers, t_\;G~O9-M  
    % and compile them in a matrix: a*GiLq  
    % ----------------------------- ~REP@!\r^  
    if rpowers(1)==0 .r4M]1Of  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Lo-\;%y  
        rpowern = cat(2,rpowern{:}); \:[J-ySJ  
        rpowern = [ones(length_r,1) rpowern]; W, YYL(L  
    else F&[MyXU4  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); :3h'Hr  
        rpowern = cat(2,rpowern{:}); q8-*3K  
    end M%S.Z4D (0  
    R&P}\cf8T  
    % Compute the values of the polynomials: x4 .Y&Wq#  
    % -------------------------------------- M"l<::z  
    y = zeros(length_r,length(n)); +@5@`"Jry  
    for j = 1:length(n) h F4gz*Q  
        s = 0:(n(j)-m_abs(j))/2; ?K9zTas@  
        pows = n(j):-2:m_abs(j); |(Q !$  
        for k = length(s):-1:1 \'[C_+;X  
            p = (1-2*mod(s(k),2))* ... c'Mi9,q  
                       prod(2:(n(j)-s(k)))/              ... 'v?"TZ  
                       prod(2:s(k))/                     ... z!> H^v  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... \7elqX`.yY  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); [/'=M h  
            idx = (pows(k)==rpowers); vOnhJN  
            y(:,j) = y(:,j) + p*rpowern(:,idx); L2P#5B!S  
        end y%NZ(Y,v  
         0n('F  
        if isnorm PZB_6!}2[F  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); n `Ry!  
        end fJ8Q\lb<_  
    end _G1C5nkDl4  
    % END: Compute the Zernike Polynomials S#g=;hD  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% iF!r}fUU6  
    \Ng|bWR>LQ  
    % Compute the Zernike functions: j$Unw  
    % ------------------------------ 8*[Q{:'.  
    idx_pos = m>0; eABLBsx  
    idx_neg = m<0; p^/6Rb"e  
    L,PD4H"8  
    z = y; $EUlh^  
    if any(idx_pos) pjaDtNb  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); >ngP\&\  
    end R[Y{pT,AY  
    if any(idx_neg) }2CVA.Qm!  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); u?-X07_  
    end ,R8:Y*@P  
    6 OLp x)fG  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) 1GA$nFBVC  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. XzV:q!e-  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ,rZp(moj  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 2zQ62t}  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, ?r"QJa>  
    %   and THETA is a vector of angles.  R and THETA must have the same G$T#ql  
    %   length.  The output Z is a matrix with one column for every P-value, [ _N w5_  
    %   and one row for every (R,THETA) pair. 20Rj Rd  
    % LH_rc  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike U 4Sxr  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) hCvK2Xu   
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) l*(Ml= O{  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 /6@~XO) w  
    %   for all p. I C?bqC+  
    % {P[>B}'rW  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 9S8>"w^R  
    %   Zernike functions (order N<=7).  In some disciplines it is brXLx +H8  
    %   traditional to label the first 36 functions using a single mode DE659=Tq  
    %   number P instead of separate numbers for the order N and azimuthal 52H'aHO1  
    %   frequency M. /yhGc}h  
    % g(`m#&P>G  
    %   Example: $22_>OsA  
    % A.@/~\  
    %       % Display the first 16 Zernike functions a"6AZT"8  
    %       x = -1:0.01:1; |:jka  
    %       [X,Y] = meshgrid(x,x); `$hna{e^n  
    %       [theta,r] = cart2pol(X,Y); ~,jBm^4  
    %       idx = r<=1; P_{jZ}y(  
    %       p = 0:15; g4"0:^/  
    %       z = nan(size(X)); ,|u^-J@  
    %       y = zernfun2(p,r(idx),theta(idx)); wEu"X  
    %       figure('Units','normalized') S>y(3E]I  
    %       for k = 1:length(p) 45+w)Vf!  
    %           z(idx) = y(:,k); L UitY  
    %           subplot(4,4,k) ZA>p~Zt  
    %           pcolor(x,x,z), shading interp  I0v$3BQ4  
    %           set(gca,'XTick',[],'YTick',[]) dYP-QUM$7  
    %           axis square uOU?-WtPz  
    %           title(['Z_{' num2str(p(k)) '}']) <.6bni )  
    %       end HXY,e$c#y  
    % V < ;vy&&  
    %   See also ZERNPOL, ZERNFUN. ZBX,4kxK7  
    sb^%eUU])  
    %   Paul Fricker 11/13/2006 BEfp3|Stb  
    V_.n G;  
    Ta 0Ln  
    % Check and prepare the inputs: Gs7#W:e7  
    % ----------------------------- {TV6eV  
    if min(size(p))~=1 ?oKY"C8/  
        error('zernfun2:Pvector','Input P must be vector.') [ S_8;j  
    end p l.D h  
    n@"h^-  
    if any(p)>35 gXzp$#  
        error('zernfun2:P36', ... :% o32  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... kCoTz"Z-  
               '(P = 0 to 35).']) H|]~(.w 1}  
    end 0 jszZ_  
    `VB]4i}u  
    % Get the order and frequency corresonding to the function number: K$K6,54y  
    % ---------------------------------------------------------------- afJ`1l  
    p = p(:); iCK p"(kf  
    n = ceil((-3+sqrt(9+8*p))/2); GNIZHyT(O  
    m = 2*p - n.*(n+2); TGe)%jZ  
    w)u6J ,  
    % Pass the inputs to the function ZERNFUN: DQ a0S7I  
    % ---------------------------------------- sp VE'"^  
    switch nargin Q:/BC= ~  
        case 3 @}Y,A~   
            z = zernfun(n,m,r,theta); >gqd y*Bg  
        case 4 ! 4ZszQg  
            z = zernfun(n,m,r,theta,nflag); ?mjQN|D  
        otherwise ZV?~~_ 9  
            error('zernfun2:nargin','Incorrect number of inputs.') Le*sLuxk<  
    end pO~lVM  
    Mr8r(LGY  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) D8b~-#  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. rTR4j>Ua~  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of :Y AxL J  
    %   order N and frequency M, evaluated at R.  N is a vector of XehpW}2\  
    %   positive integers (including 0), and M is a vector with the D)u 9Y  
    %   same number of elements as N.  Each element k of M must be a WrS|$: 0  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) `(RQh@H  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is H,F/u&O  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix &vy/Vd  
    %   with one column for every (N,M) pair, and one row for every %dyEF8)  
    %   element in R. 6@2 S*\&  
    % X)tf3M {J@  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- :n4X>YL)  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is G O=&  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 6"d^4L?  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ?&H1C4   
    %   for all [n,m]. {APsi7HYBr  
    % 6__#n`  
    %   The radial Zernike polynomials are the radial portion of the A=v^`a03I  
    %   Zernike functions, which are an orthogonal basis on the unit KvFGwq"X  
    %   circle.  The series representation of the radial Zernike ;U +;NsCH  
    %   polynomials is ]G0`W6;$]  
    % OYWW<N+R2  
    %          (n-m)/2 | Q Y_ci  
    %            __ V ifQ@  
    %    m      \       s                                          n-2s l>Nz]Ul%{  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r :oH~{EQ  
    %    n      s=0 A1zqm_X5)P  
    % 1-Fz#v7p  
    %   The following table shows the first 12 polynomials. 31w9$H N  
    % 0]F'k8yLN  
    %       n    m    Zernike polynomial    Normalization q;))3aQe  
    %       --------------------------------------------- ?D].Za^km  
    %       0    0    1                        sqrt(2) 7VF^&6  
    %       1    1    r                           2 N@M(Iw  
    %       2    0    2*r^2 - 1                sqrt(6) g[rxK n\Z  
    %       2    2    r^2                      sqrt(6) 1I?D$I>CV  
    %       3    1    3*r^3 - 2*r              sqrt(8) FN#6pM']|  
    %       3    3    r^3                      sqrt(8) Jl"),;Od  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) ,1\nd{  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) k~(j   
    %       4    4    r^4                      sqrt(10) =sqh PS<>  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) AC=/BU3<yc  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) d(>7BV  
    %       5    5    r^5                      sqrt(12) G;n'c7BV  
    %       --------------------------------------------- ~zklrBn&  
    % ;CU<\  
    %   Example: _)J;PbK~  
    % 58H[sM4>  
    %       % Display three example Zernike radial polynomials FtUOgL)|  
    %       r = 0:0.01:1; dQ=mg#(  
    %       n = [3 2 5]; k,L,  
    %       m = [1 2 1]; ~RQ6DG^  
    %       z = zernpol(n,m,r); gr'M6&>  
    %       figure E^.y$d~dS  
    %       plot(r,z) *t;'I -1w^  
    %       grid on  +X i#y}%  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') }+[H~8)5  
    % Ni$WI{e9  
    %   See also ZERNFUN, ZERNFUN2. Bi"7FF(z  
    Ni5~Buf  
    % A note on the algorithm. FhgO5@BO  
    % ------------------------ dbTPY`  
    % The radial Zernike polynomials are computed using the series ^X6fgsjz  
    % representation shown in the Help section above. For many special %}+!%A.3  
    % functions, direct evaluation using the series representation can pV:c`1\`  
    % produce poor numerical results (floating point errors), because {:&t;5qz^  
    % the summation often involves computing small differences between f>)k<-<yj  
    % large successive terms in the series. (In such cases, the functions h1.]Nl C  
    % are often evaluated using alternative methods such as recurrence XEF|B--,  
    % relations: see the Legendre functions, for example). For the Zernike Epm\ =s  
    % polynomials, however, this problem does not arise, because the *P_ 3A:_  
    % polynomials are evaluated over the finite domain r = (0,1), and 6i/x"vl>  
    % because the coefficients for a given polynomial are generally all h+k:G9;sS  
    % of similar magnitude. x+zz:^yHYf  
    % T}(J`{ 9i  
    % ZERNPOL has been written using a vectorized implementation: multiple N|c;Qzl  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] @[0zZX2EE  
    % values can be passed as inputs) for a vector of points R.  To achieve tBgB>-h(  
    % this vectorization most efficiently, the algorithm in ZERNPOL ,?GEL>F  
    % involves pre-determining all the powers p of R that are required to i,R<`K0  
    % compute the outputs, and then compiling the {R^p} into a single X>w(^L*>  
    % matrix.  This avoids any redundant computation of the R^p, and w/r wE  
    % minimizes the sizes of certain intermediate variables. <4z |"(  
    % OWsK>egD  
    %   Paul Fricker 11/13/2006 &B uO-  
    <d,Qi.G4  
    *%L:soM'Ll  
    % Check and prepare the inputs: u8pJjn;  
    % ----------------------------- n?*Fr sZ  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) +Zu*9&Cx  
        error('zernpol:NMvectors','N and M must be vectors.') 7/lXy3B4  
    end 0  ;$[  
    1u&}Lq(  
    if length(n)~=length(m) -QL_a8NL  
        error('zernpol:NMlength','N and M must be the same length.') DfP4 `  
    end h#9X0u7j  
    oLEqy  
    n = n(:); !(PAUW S@  
    m = m(:); Jg=[!j0(  
    length_n = length(n); y^:!]-+  
    bCY8CIF  
    if any(mod(n-m,2)) R]e?<,"X  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') H8+7rM  
    end VfOm#Ue0 q  
    JQQP!]%}  
    if any(m<0) {)]5o| Hx  
        error('zernpol:Mpositive','All M must be positive.') b f.__3{  
    end gT$`a  
    Q?KWiFA}'  
    if any(m>n) bD[W`yW0  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') (K"U #Zn  
    end p`lv$ @q'  
    bhaIi>W~G  
    if any( r>1 | r<0 ) a#t:+iw  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') UU')V  
    end '+LbFGrO3  
    6('2.^8  
    if ~any(size(r)==1) iB1"aE3  
        error('zernpol:Rvector','R must be a vector.') ?yop#tjCbY  
    end <U(wLG'XS  
    XVcY?_AS#  
    r = r(:); <&:OSd:%  
    length_r = length(r); T9.3  
    9~i=Af@  
    if nargin==4 !t/I j~o  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); Eb66GXF[  
        if ~isnorm oUrNz#U  
            error('zernpol:normalization','Unrecognized normalization flag.') BH"f\oc  
        end {\3ZmF  
    else 555j@  
        isnorm = false; ?-w<H!Y7  
    end tB4dkWt.}  
    w.w(*5[  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% tQ=P.14>:  
    % Compute the Zernike Polynomials *#p}>\Y{  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% xi|T7,\X  
    2fIHFo\8  
    % Determine the required powers of r: g{wOq{7V  
    % ----------------------------------- yO\ .dp  
    rpowers = []; ayR=GqZ1  
    for j = 1:length(n) Q!7il<S  
        rpowers = [rpowers m(j):2:n(j)]; M4[(.8iE  
    end C;]}Ht:~I  
    rpowers = unique(rpowers); #[$^M:X.  
    ~JhH ,E  
    % Pre-compute the values of r raised to the required powers, \ vf&Ldk  
    % and compile them in a matrix: ?:DeOBAb  
    % ----------------------------- E Dh$UB)  
    if rpowers(1)==0 aQzDOeTi  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 4#?Sxs  
        rpowern = cat(2,rpowern{:}); \\w<.\Yh  
        rpowern = [ones(length_r,1) rpowern]; `5da  
    else {/|RKV83  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); h"R{{y f2  
        rpowern = cat(2,rpowern{:}); (55k70>i3  
    end RLl*@SEi"  
    >1luLp/,$  
    % Compute the values of the polynomials: *Ae> ,LyE  
    % -------------------------------------- )b AOA  
    z = zeros(length_r,length_n); {v CB$@/o  
    for j = 1:length_n Lg6;FbY?  
        s = 0:(n(j)-m(j))/2; KV&4Ep#  
        pows = n(j):-2:m(j); `^_c&y K  
        for k = length(s):-1:1 C8dC_9  
            p = (1-2*mod(s(k),2))* ... g~ubivl2  
                       prod(2:(n(j)-s(k)))/          ... ;5S'?fj  
                       prod(2:s(k))/                 ... :Y4 m3|  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... |.]sL0; 4Z  
                       prod(2:((n(j)+m(j))/2-s(k))); 2h=QJgpCG  
            idx = (pows(k)==rpowers); j >pv@D  
            z(:,j) = z(:,j) + p*rpowern(:,idx); M/<>'%sj  
        end ":igYh  
         ::<v; `l  
        if isnorm @J~hi\&`  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); MKiP3kt8  
        end $W_sIS0\z  
    end /[V}   
    GN0s`'#"3%  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    851
    光币
    831
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ppR; v  
    b@ OF  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 k.?@qCs[  
    W/G75o~6  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)