非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 DF1I[b=]
function z = zernfun(n,m,r,theta,nflag) $}J5xG,}$
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. jGXO\:sO
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N b7NM#Hb
% and angular frequency M, evaluated at positions (R,THETA) on the jT8#C=a7
% unit circle. N is a vector of positive integers (including 0), and i=i(%yQ%
% M is a vector with the same number of elements as N. Each element )2V:
% k of M must be a positive integer, with possible values M(k) = -N(k) )-0kb~;|
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 3a?o3=
% and THETA is a vector of angles. R and THETA must have the same q*F{/N**
% length. The output Z is a matrix with one column for every (N,M) q#vQv5
% pair, and one row for every (R,THETA) pair. ;pqg/>W'
% rs,2rSsg!
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike -R57@D>j\
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), : YXX8|>
% with delta(m,0) the Kronecker delta, is chosen so that the integral MS\>DW
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, A*2
bA
% and theta=0 to theta=2*pi) is unity. For the non-normalized &>%T^Y|J4
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. .QA }u ,EN
% R%Q@
% The Zernike functions are an orthogonal basis on the unit circle. 6^]!gR#B
% They are used in disciplines such as astronomy, optics, and @2Z#x
% optometry to describe functions on a circular domain. xnmmXtk
% MYla OT
% The following table lists the first 15 Zernike functions. Po ZuMF
% <F}_ /q1
% n m Zernike function Normalization G]+&!4
% -------------------------------------------------- oASY7k_3
% 0 0 1 1 ^C_#<m_k
% 1 1 r * cos(theta) 2 zUKmx y@
% 1 -1 r * sin(theta) 2 1+9W+$=h2
% 2 -2 r^2 * cos(2*theta) sqrt(6) i'9vL:3
% 2 0 (2*r^2 - 1) sqrt(3) 2^^`n1?'
% 2 2 r^2 * sin(2*theta) sqrt(6) ~(Q)"s\1I
% 3 -3 r^3 * cos(3*theta) sqrt(8) I_<I&{N>
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) _9=Yvc=
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) Ezr:1 GJ
% 3 3 r^3 * sin(3*theta) sqrt(8) H-~6Z",1
% 4 -4 r^4 * cos(4*theta) sqrt(10) ^:#D0[
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) vH#huZA?7
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) cm?\
-[cV
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) U-IpH+E
% 4 4 r^4 * sin(4*theta) sqrt(10) A<1hOSCz\
% -------------------------------------------------- oW<5|FaN
% 5qr'.m
% Example 1: %]>KvoA
% +n#V[~~8AI
% % Display the Zernike function Z(n=5,m=1) @&1ZB6OCb:
% x = -1:0.01:1; nHm}zOLc
% [X,Y] = meshgrid(x,x); w+yC)Rmz
% [theta,r] = cart2pol(X,Y); 4WJ.^ (
% idx = r<=1; rd9e \%A
% z = nan(size(X)); %@.v2 cT
% z(idx) = zernfun(5,1,r(idx),theta(idx)); Y8o)FVcyNy
% figure .Yf:[`Q6g
% pcolor(x,x,z), shading interp B5X(ykaX~
% axis square, colorbar Ed_N[I
% title('Zernike function Z_5^1(r,\theta)') )rekY;
% r7b1-
% Example 2: qWODs
% B)qWtMZx
% % Display the first 10 Zernike functions _NMm/]mN /
% x = -1:0.01:1; <Dwar>}
% [X,Y] = meshgrid(x,x); B oC5E#;G
% [theta,r] = cart2pol(X,Y); @ Wd9I;hWv
% idx = r<=1; !t gi
% z = nan(size(X)); UazP6^{L
% n = [0 1 1 2 2 2 3 3 3 3]; .
koYHq
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; MBqt&_?K
% Nplot = [4 10 12 16 18 20 22 24 26 28]; C!fMW+C@
% y = zernfun(n,m,r(idx),theta(idx)); ^-,xE>3o
% figure('Units','normalized') Bs O+NP
% for k = 1:10 6f\Lf?vF
% z(idx) = y(:,k); wS%Q<uK
% subplot(4,7,Nplot(k)) ;xzUE`uUfJ
% pcolor(x,x,z), shading interp f'
3q(a<p
% set(gca,'XTick',[],'YTick',[]) A1.7O
% axis square
w-Da~[J
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) !*oi!ysU;O
% end v
8$>rwB
% 4`!Z$kt
% See also ZERNPOL, ZERNFUN2. Sgp;@4`M
k3)dEH1z
% Paul Fricker 11/13/2006 WJ4li@T7V
qI~xlW
x
"^Xj]-
% Check and prepare the inputs: 0V'nK V"|
% ----------------------------- {TX]\ufG
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) vTlwRG=5
error('zernfun:NMvectors','N and M must be vectors.') K95p>E`9e
end (Q.waI
^yyC
[Mz
if length(n)~=length(m) cm&I* 0\
error('zernfun:NMlength','N and M must be the same length.') YKO){f5
end fjs
[f'L
=8; {\
n = n(:); UrYZ`J
m = m(:); :=wTvz
if any(mod(n-m,2)) b\-&sM(W"
error('zernfun:NMmultiplesof2', ... wnM9('\
'All N and M must differ by multiples of 2 (including 0).') DDPxmuNG
end rdJ d#S
5[*
qi?w=
if any(m>n) ,PWgH$+
error('zernfun:MlessthanN', ... lzYnw)Pv
'Each M must be less than or equal to its corresponding N.') :9$F'd\
end 1@QZnF5[
/4`
0?/V
if any( r>1 | r<0 ) PDrZY.-
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ^OstR`U3
end ReM=eS
(UU(:/
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) rld67'KcE
error('zernfun:RTHvector','R and THETA must be vectors.') ]8f ms(
end 5ZMR,SZhC
2ioQb`=
r = r(:); {`K m_<Te!
theta = theta(:); BPdfYu,il
length_r = length(r); ~ ; -! n;
if length_r~=length(theta) YEj8S5"Su\
error('zernfun:RTHlength', ... }RwSp!}C
'The number of R- and THETA-values must be equal.') V??dYB(
end Kd=%tNp
{ Fawt:
% Check normalization: uoXAQ6k
% -------------------- rfNm&!K
if nargin==5 && ischar(nflag) IuNiEtKx
isnorm = strcmpi(nflag,'norm'); UmQ?rS8d
if ~isnorm )e a :Q?
error('zernfun:normalization','Unrecognized normalization flag.') {3.r6ZwCn
end xv&Q+HD
else %oq[,h
<X
isnorm = false; 8AnP7}n;?'
end ~fT_8z
Zxbo^W[[
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% R
+WP0&d'
% Compute the Zernike Polynomials wyQzM6:,yX
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% gMaN)ESqd4
p\JfFfC
% Determine the required powers of r: T)Y=zIQ1]7
% ----------------------------------- 2EfF=Fm>
m_abs = abs(m); !kE-_dY6)
rpowers = []; /yZQ\ {=
for j = 1:length(n) JXu$ew>q
rpowers = [rpowers m_abs(j):2:n(j)]; US%^#D q
end -*m+(7G\
rpowers = unique(rpowers); .] sf0S!
8`fjF/
% Pre-compute the values of r raised to the required powers, Ygl%eP%Z
% and compile them in a matrix: l?Fb ='#
% ----------------------------- `/~8}Y{
if rpowers(1)==0 QC X8IIHG
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ;d'Z|H;
rpowern = cat(2,rpowern{:}); 1$81E.
rpowern = [ones(length_r,1) rpowern]; i}o[- S4
else <]b7ZF]
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Vgyew9>E
rpowern = cat(2,rpowern{:});
NsJ(`zk:
end <F.Tx$s
e`v`XSA[p
% Compute the values of the polynomials: ?HV`|
Cw
% -------------------------------------- Hx\H $Y
y = zeros(length_r,length(n)); ~I799Xi
for j = 1:length(n) e&qh9mlE
s = 0:(n(j)-m_abs(j))/2; ,i,q!M{-
pows = n(j):-2:m_abs(j); &ZX{R#[L
for k = length(s):-1:1 rn=m\Gv
e
p = (1-2*mod(s(k),2))* ... '8T=~R6
prod(2:(n(j)-s(k)))/ ... gW1b~(
fD
prod(2:s(k))/ ... LJ(1RK GCz
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... hweaGL t0
prod(2:((n(j)+m_abs(j))/2-s(k))); '^FGc
idx = (pows(k)==rpowers); _Jt 2YZdA
y(:,j) = y(:,j) + p*rpowern(:,idx); NU*fg`w
end p$x{yz3
S:x?6IDPC^
if isnorm NM6Teu_
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Q]w&N30
end yT#{UA^
end v!FMs<
% END: Compute the Zernike Polynomials =pznu+,
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% S9>0t0
m~D&gGFt
% Compute the Zernike functions: {|yob4N
% ------------------------------ ryc& n5
idx_pos = m>0; pOrWg@<\L
idx_neg = m<0; ^-a8V'
n9\]S7]52
z = y; H=\!2XS
if any(idx_pos) Q26qNn
bK
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ZZ.m(ATR
end @j4U^"_QB
if any(idx_neg) = 07]z@s
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); XbZ*&
end k~|-gfFP
Izv+i*(dl
% EOF zernfun