切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11076阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 LK4NNZf7  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦!  RSj8T<  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 #%ld~dgz-  
    function z = zernfun(n,m,r,theta,nflag) I6;6x  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. lb9?Uc@  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N lijT L-3  
    %   and angular frequency M, evaluated at positions (R,THETA) on the #?r|6<4X  
    %   unit circle.  N is a vector of positive integers (including 0), and aaf}AIL.  
    %   M is a vector with the same number of elements as N.  Each element &`s{-<t<L  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Z~h6^h   
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, "(W;rl  
    %   and THETA is a vector of angles.  R and THETA must have the same {5  pK8  
    %   length.  The output Z is a matrix with one column for every (N,M) 'MX|=K!C  
    %   pair, and one row for every (R,THETA) pair. K%L6UQ;  
    % :4 z\Q]  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike cy(w*5Upu  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), p),* 4@2<  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral d])ctxB  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, P-[})Z=  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 8<0P Ssx  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. gi/k#3_m  
    % lr;ubBbT  
    %   The Zernike functions are an orthogonal basis on the unit circle. *^g]QQ  
    %   They are used in disciplines such as astronomy, optics, and .]KC*2  
    %   optometry to describe functions on a circular domain. Q1|6;4L  
    % &R.5t/x_  
    %   The following table lists the first 15 Zernike functions. t oDi70o  
    % gfN=0Xj4  
    %       n    m    Zernike function           Normalization '{~[e**  
    %       -------------------------------------------------- Kv1~,j6  
    %       0    0    1                                 1 f{L;,  
    %       1    1    r * cos(theta)                    2 'ParMT  
    %       1   -1    r * sin(theta)                    2 - |DWPU!"  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) *XWu)>*o  
    %       2    0    (2*r^2 - 1)                    sqrt(3) PN9vg9'  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) re%XaL  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 5Hj/7~ =  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Xl2g Hh  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) f^QC4hf0  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) *re?V9  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) d>I)_05t  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) F~E)w5?\O  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) |[5;dt_U/  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) >oyf i:  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) [S]q'c)  
    %       -------------------------------------------------- OW=3t#"7Kp  
    % D9P,[:"  
    %   Example 1: ,KM%/;1Dm  
    % b@4UR<  
    %       % Display the Zernike function Z(n=5,m=1) 19(x$=:  
    %       x = -1:0.01:1; E Lq1   
    %       [X,Y] = meshgrid(x,x); bG"FN/vg  
    %       [theta,r] = cart2pol(X,Y); kk<%VKC  
    %       idx = r<=1; :epB:r  
    %       z = nan(size(X)); e~)4v  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 5QXU"kWH  
    %       figure QaEiPn~  
    %       pcolor(x,x,z), shading interp I*o6Bn |D  
    %       axis square, colorbar ]Z\W%'q+  
    %       title('Zernike function Z_5^1(r,\theta)') ZBY}Mz$  
    % D2D+S  
    %   Example 2: 9'~qA(=.?  
    % la)+"uW  
    %       % Display the first 10 Zernike functions {_.(,Z{  
    %       x = -1:0.01:1; euT=]j  
    %       [X,Y] = meshgrid(x,x); p(I^Y{sGI  
    %       [theta,r] = cart2pol(X,Y); 9cN@y<_I  
    %       idx = r<=1; 91&=UUkK?  
    %       z = nan(size(X)); N#-. [9!  
    %       n = [0  1  1  2  2  2  3  3  3  3]; +&f_k@+  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; N GnE  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; n{<@-6  
    %       y = zernfun(n,m,r(idx),theta(idx)); Cpd>xXZz&S  
    %       figure('Units','normalized') RWM~7^JA  
    %       for k = 1:10 xo @|;Z>&F  
    %           z(idx) = y(:,k); lQ ki58.  
    %           subplot(4,7,Nplot(k)) _a"| :kX  
    %           pcolor(x,x,z), shading interp CiHx.5TiC  
    %           set(gca,'XTick',[],'YTick',[]) =&"pG` x  
    %           axis square $(0<T<\  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) @|ZUyat  
    %       end !E00I0W-h  
    % ,*lns.|n  
    %   See also ZERNPOL, ZERNFUN2. $X.F=Kv  
    B3[X{n$px  
    %   Paul Fricker 11/13/2006 W2$rC5|  
    #>_fYjT  
    d!&LpODI]*  
    % Check and prepare the inputs: 'CqAjlj  
    % ----------------------------- ;XZN0A2  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) im:[ViR {  
        error('zernfun:NMvectors','N and M must be vectors.') 6-?/kY6  
    end 6OC4?#96%'  
    @pv:uON\  
    if length(n)~=length(m) 5M)B  
        error('zernfun:NMlength','N and M must be the same length.') ^_G#JJ\@$  
    end ~v/` `s  
    qx >Z@o  
    n = n(:); CP"5E?dcK  
    m = m(:); MxGQM>  
    if any(mod(n-m,2)) zN+jn  
        error('zernfun:NMmultiplesof2', ... >yVrIko  
              'All N and M must differ by multiples of 2 (including 0).') x?0(K=h,  
    end u\xrC\Ka  
    0VR,I{<.{  
    if any(m>n) t*BCpC }  
        error('zernfun:MlessthanN', ... UDcr5u eKn  
              'Each M must be less than or equal to its corresponding N.') 9_&]7ABV  
    end GP ^^ K  
    A9DFZZ0  
    if any( r>1 | r<0 ) l&] %APL  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Q(1R=4?.Z  
    end F!C<^q~!  
    u5U^}<}y}  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 9 s2z=^  
        error('zernfun:RTHvector','R and THETA must be vectors.') ~k 6V?z}  
    end }L{GwiDMDl  
    @wAYhnxq  
    r = r(:); *E|3Vy{4  
    theta = theta(:); (l2n%LL]*  
    length_r = length(r); +\PLUOk  
    if length_r~=length(theta) ep48 r>  
        error('zernfun:RTHlength', ... _Eq,udCso  
              'The number of R- and THETA-values must be equal.') t?weD{O  
    end Gh{9nM_\"  
    K;\fJ2ag  
    % Check normalization: Pa|*Jcr  
    % -------------------- ZL!5dT&@W  
    if nargin==5 && ischar(nflag) T0@<u  
        isnorm = strcmpi(nflag,'norm'); a{By U%  
        if ~isnorm ]wbV1Y"  
            error('zernfun:normalization','Unrecognized normalization flag.') cUi6 On1C  
        end VeFfkg4  
    else }.=wQ_  
        isnorm = false; 1Sns$t%b  
    end XK0lv8(  
    /b4>0DXT5  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% dt<P6pK-  
    % Compute the Zernike Polynomials K7qR  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% h2+"e# _  
    %|2x7@&s  
    % Determine the required powers of r: rXGaav9  
    % ----------------------------------- FB~IO#E8W  
    m_abs = abs(m); AQ"rk9Z  
    rpowers = []; FPE6H:'  
    for j = 1:length(n) 5]3Mj*u\  
        rpowers = [rpowers m_abs(j):2:n(j)]; iN L>TVUM  
    end XzBl }4s  
    rpowers = unique(rpowers); 6LT.ng  
    _(@V f=t  
    % Pre-compute the values of r raised to the required powers, [A;0I jKam  
    % and compile them in a matrix: mLHl]xs4  
    % ----------------------------- ronZa0  
    if rpowers(1)==0 h)r=+Q\'(S  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); V )oKsO  
        rpowern = cat(2,rpowern{:}); leXdxpc  
        rpowern = [ones(length_r,1) rpowern];  `7V'A  
    else u@4khN: ^p  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); yyVE%e5nl  
        rpowern = cat(2,rpowern{:}); 7u%OYt D E  
    end OR10IS  
    ?Bd6<F -G  
    % Compute the values of the polynomials: urD{'FQf  
    % -------------------------------------- +5Y;JL<%/  
    y = zeros(length_r,length(n)); a7z% )i;Z  
    for j = 1:length(n) ]6WP;.[  
        s = 0:(n(j)-m_abs(j))/2; j  W -K  
        pows = n(j):-2:m_abs(j); J@q!N;eh|  
        for k = length(s):-1:1 ]#FQde4]5  
            p = (1-2*mod(s(k),2))* ... 3HndE~_C&  
                       prod(2:(n(j)-s(k)))/              ... AD'c#CT  
                       prod(2:s(k))/                     ... v +?'/Q%  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 8/|1FI  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); X&%;(`  
            idx = (pows(k)==rpowers);  7"])Y  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 5%fR9?)  
        end )},/=#C0  
         cMAY8$  
        if isnorm //}KWz  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); +L=a\8Ep  
        end `6*1mE1K&  
    end -D_xA10  
    % END: Compute the Zernike Polynomials uX&Tn1Kg  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %/K;!'7  
    d]^\qeG^p  
    % Compute the Zernike functions: 7}Jn`^!  
    % ------------------------------ Vf$q3X  
    idx_pos = m>0; &WVRh=R  
    idx_neg = m<0; tHH @[E+h  
    v *@R U  
    z = y; "A}2iI  
    if any(idx_pos) o{MmW~/o&  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); KyzdJ^xC"  
    end 1F[W~@jW  
    if any(idx_neg) hJoh5DIE95  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); w `>g^_xsg  
    end Q~)A fa{  
    E vD g{M}  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) ,) 3Eog\-  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. h1QrFPQnu  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated A@ 4Oq  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive pm'i4!mY<P  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, Jnq}SUev  
    %   and THETA is a vector of angles.  R and THETA must have the same 1(m[L=H5>  
    %   length.  The output Z is a matrix with one column for every P-value, 2[Bw+<YA`  
    %   and one row for every (R,THETA) pair. bBXUD;$  
    % sj%\lq  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike w?A6S-z  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) ,gn**E  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) uBxs`'C  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 <FU1|  
    %   for all p. K}Rq<z W  
    % ;cW9NS3:  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 5^GrG|~  
    %   Zernike functions (order N<=7).  In some disciplines it is Gbc2\A\  
    %   traditional to label the first 36 functions using a single mode ]*pro|  
    %   number P instead of separate numbers for the order N and azimuthal , Y cF~  
    %   frequency M. E'F87P^>  
    % ,Q>wcE6v  
    %   Example: ?H(']3X5@  
    % +>o} R?xj  
    %       % Display the first 16 Zernike functions iKe68kx  
    %       x = -1:0.01:1; %&S :W%qm?  
    %       [X,Y] = meshgrid(x,x); 0z=^_Fb  
    %       [theta,r] = cart2pol(X,Y); "|K D$CY  
    %       idx = r<=1; ,~qjL|9  
    %       p = 0:15; Vi\kB%  
    %       z = nan(size(X)); {t QZqqdn@  
    %       y = zernfun2(p,r(idx),theta(idx)); oh^QW`#(  
    %       figure('Units','normalized') g.eMGwonTJ  
    %       for k = 1:length(p) :,FI 6`  
    %           z(idx) = y(:,k); y>_*}>2,O  
    %           subplot(4,4,k) s<fzk1LZ  
    %           pcolor(x,x,z), shading interp #)EVi7UP  
    %           set(gca,'XTick',[],'YTick',[]) s_Gf7uC  
    %           axis square 9|1J pb  
    %           title(['Z_{' num2str(p(k)) '}']) o_&*?k*  
    %       end  B/ACU  
    % Rkz[x  
    %   See also ZERNPOL, ZERNFUN. zT"W(3  
    E|hW{oX3  
    %   Paul Fricker 11/13/2006 -4nSiI  
    137:T:  
    G}p* oz~  
    % Check and prepare the inputs: i[a1ij=  
    % ----------------------------- !Di*y$`}b  
    if min(size(p))~=1 >p@v'h/Cr  
        error('zernfun2:Pvector','Input P must be vector.') ":,J<|Oy  
    end %t J@)  
    cr<ty"3\  
    if any(p)>35 $ jgEB+  
        error('zernfun2:P36', ... $WHmG!)*  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... },(Ln%M  
               '(P = 0 to 35).']) ^%~ux0%^T  
    end `%A>{A"  
    oBZzMTPe  
    % Get the order and frequency corresonding to the function number: Z^SF $+UN  
    % ---------------------------------------------------------------- kxVR#:  
    p = p(:); X*Cvh|  
    n = ceil((-3+sqrt(9+8*p))/2); -/ h'uG  
    m = 2*p - n.*(n+2); 'r_NA!R  
    !Au9C   
    % Pass the inputs to the function ZERNFUN: -x0VvkHu  
    % ---------------------------------------- 5>*~1}0T  
    switch nargin :Vl2\H=P  
        case 3 OVgx2_F  
            z = zernfun(n,m,r,theta); _vgFcE~E@  
        case 4 t~@~XI5  
            z = zernfun(n,m,r,theta,nflag); O[/l';i  
        otherwise :bV1M5  
            error('zernfun2:nargin','Incorrect number of inputs.') [Uw/;Kyh  
    end EoD[,:*  
    etkKVr;Kv  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) &m J +#vT  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. #\X="' /  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of uw,p\:D&  
    %   order N and frequency M, evaluated at R.  N is a vector of 6I`Lszs  
    %   positive integers (including 0), and M is a vector with the G(6MLh1  
    %   same number of elements as N.  Each element k of M must be a a= *qsgPGL  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) 7xr@$-U  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is mz kv/  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix JTn\NSa  
    %   with one column for every (N,M) pair, and one row for every [TFd|ywn  
    %   element in R. !?u{2 D  
    % mqFo`Ee  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- l[D5JnWxt  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is C_~hX G  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to v Ol<  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 5o&noRIIr  
    %   for all [n,m].  edv&!  
    % sWc_,[b  
    %   The radial Zernike polynomials are the radial portion of the cB ,l=/?  
    %   Zernike functions, which are an orthogonal basis on the unit CCQ38P@rv  
    %   circle.  The series representation of the radial Zernike wmQT$`$b  
    %   polynomials is B<p -.tv  
    % |)pRkn8x  
    %          (n-m)/2 y$7vJl.uS/  
    %            __ 5!pof\/a  
    %    m      \       s                                          n-2s l#;DO9  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r r%^l~PN  
    %    n      s=0 5RysN=czA  
    % dvl'Sq<  
    %   The following table shows the first 12 polynomials. 9h$08l  
    % yK3b^  
    %       n    m    Zernike polynomial    Normalization /P>t3E2c  
    %       --------------------------------------------- !iO%?nW;  
    %       0    0    1                        sqrt(2) ".Q``d&X  
    %       1    1    r                           2 qij<XNZU"&  
    %       2    0    2*r^2 - 1                sqrt(6) )*wM DM5q  
    %       2    2    r^2                      sqrt(6) C=&rPUX{  
    %       3    1    3*r^3 - 2*r              sqrt(8) 25zmde~ w  
    %       3    3    r^3                      sqrt(8) 1K`7  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) x&kM /z?/  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ?{Rv/np=F  
    %       4    4    r^4                      sqrt(10) 8w Xnc%  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) /#C}1emK  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) =>kE`"{!  
    %       5    5    r^5                      sqrt(12) &# ?2zbZ  
    %       --------------------------------------------- yDil  
    % ~7$4w# of0  
    %   Example: 3iI 4yg  
    % 3m#/1=@o  
    %       % Display three example Zernike radial polynomials 'wg>=|Q5  
    %       r = 0:0.01:1; z{N~AaY  
    %       n = [3 2 5]; $k,wA8OZ-  
    %       m = [1 2 1]; 8`{)1.d5[  
    %       z = zernpol(n,m,r); ?E*;fDEC  
    %       figure 0S%xm'|N  
    %       plot(r,z) Ddr.kXIpo  
    %       grid on Us.")GiHE  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') [K=M; $iQ  
    % 26&$vgO~:  
    %   See also ZERNFUN, ZERNFUN2. ?m(]@6qa  
    T|%pvTIe  
    % A note on the algorithm. t{ R\\j  
    % ------------------------ T.}wcQf&*  
    % The radial Zernike polynomials are computed using the series /qd5{%:  
    % representation shown in the Help section above. For many special $Sx(vq6(  
    % functions, direct evaluation using the series representation can ^]cl:m=*  
    % produce poor numerical results (floating point errors), because ,DZoE~  
    % the summation often involves computing small differences between 8nj^x?bn  
    % large successive terms in the series. (In such cases, the functions U $2"ZyFii  
    % are often evaluated using alternative methods such as recurrence s.#%hPX{  
    % relations: see the Legendre functions, for example). For the Zernike XB.xIApmy  
    % polynomials, however, this problem does not arise, because the Hrk]6*  
    % polynomials are evaluated over the finite domain r = (0,1), and zarxv| }$  
    % because the coefficients for a given polynomial are generally all ~v$1@DQ}  
    % of similar magnitude. 0{q>'dv  
    % )9]DJ!]&Q"  
    % ZERNPOL has been written using a vectorized implementation: multiple WCdl 25L#  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] VbG#)>"F  
    % values can be passed as inputs) for a vector of points R.  To achieve d5z=fH9  
    % this vectorization most efficiently, the algorithm in ZERNPOL O?=YY@j  
    % involves pre-determining all the powers p of R that are required to _&wrA3@/L  
    % compute the outputs, and then compiling the {R^p} into a single RXD*;B$v  
    % matrix.  This avoids any redundant computation of the R^p, and X9-WU\?UC  
    % minimizes the sizes of certain intermediate variables. vh/&KTe?:  
    % e2><Y<  
    %   Paul Fricker 11/13/2006 T) Zef  
    u{'|/g&  
    $0mR_pA\fW  
    % Check and prepare the inputs: pK|~G."6e  
    % ----------------------------- IrMUw$  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) s;ivoGe}  
        error('zernpol:NMvectors','N and M must be vectors.') JqmxS*_P  
    end \x7^ly$_  
    k',#T932x1  
    if length(n)~=length(m) j&Trvw<t  
        error('zernpol:NMlength','N and M must be the same length.') 7K 'uNPC  
    end /=(PMoZu  
    iCtDV5  
    n = n(:); 8)o%0#;0B  
    m = m(:); CiNOGSlDj  
    length_n = length(n); F%tV^$%  
    Dx5X6t9=  
    if any(mod(n-m,2)) M/mm2?4  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') bl3?C  
    end ;xl0J*r  
    1s_N!a  
    if any(m<0) T\wfYuc&X  
        error('zernpol:Mpositive','All M must be positive.') `9* |Y8:  
    end cFZcBiw  
    &|K9qa~)Y  
    if any(m>n) 5<>"d :9  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') bk=ee7E7>  
    end U!\~LKfA  
    FX1H2N(  
    if any( r>1 | r<0 ) sW,JnR  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') W>j@E|m$  
    end sx n{uRF  
    #I"s{*  
    if ~any(size(r)==1) -hY@r 7y  
        error('zernpol:Rvector','R must be a vector.') `oU|U!|  
    end 'N3)>!Y:8  
    % aqP{mOO  
    r = r(:); 6dncUfB  
    length_r = length(r); 6Qk[TL)t  
    < 2SWfH1>  
    if nargin==4 AGGT] 58|  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 3c=>;g  
        if ~isnorm +P=Ikbx AO  
            error('zernpol:normalization','Unrecognized normalization flag.') QnA~,z/ .w  
        end yu>o7ie+;Y  
    else !T#EkMM  
        isnorm = false; = inp>L  
    end 82M` sk3.  
    Y:R*AOx  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4l`[,BJ  
    % Compute the Zernike Polynomials ^D76_'{  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Y$5uoq%p3A  
     b]gVZ-  
    % Determine the required powers of r: bE;c&g  
    % ----------------------------------- q5G`q&O5  
    rpowers = []; DF>3)oTF  
    for j = 1:length(n) w>o/)TTJL  
        rpowers = [rpowers m(j):2:n(j)]; .b? Aq^i8  
    end 7^7Jh&b)/  
    rpowers = unique(rpowers); klR\7+lK  
    bq2f?uD-}  
    % Pre-compute the values of r raised to the required powers, Ms#rvn!J  
    % and compile them in a matrix: A5T&i]  
    % ----------------------------- y_' 6bpb  
    if rpowers(1)==0 2){O&8A  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); N8iLI`  
        rpowern = cat(2,rpowern{:}); "AP$)xM-:  
        rpowern = [ones(length_r,1) rpowern]; ~F^tLi!5  
    else e%lxRN"b  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); HbRvU}C1  
        rpowern = cat(2,rpowern{:}); B!  P/?  
    end x"n++j  
    ,{;*b v  
    % Compute the values of the polynomials: as(/ >p  
    % -------------------------------------- }K5okxio  
    z = zeros(length_r,length_n); c5_/i7  
    for j = 1:length_n /xSFW7d1  
        s = 0:(n(j)-m(j))/2; = N;5T  
        pows = n(j):-2:m(j); UwxszEHC  
        for k = length(s):-1:1 wn;)La  
            p = (1-2*mod(s(k),2))* ... U\u07^h[  
                       prod(2:(n(j)-s(k)))/          ... \Si p  
                       prod(2:s(k))/                 ... zW\s{  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... !6l*Jc3  
                       prod(2:((n(j)+m(j))/2-s(k))); `^] D;RfE  
            idx = (pows(k)==rpowers); S@'%dN6e  
            z(:,j) = z(:,j) + p*rpowern(:,idx); /Kh,  
        end i),bAU!+m  
         tY>Zy1hlI  
        if isnorm $ x:N/mMu`  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); d@p#{ -  
        end vz~Oi  
    end ; NH^+h  
    ?5jLN&A3 G  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  (<eLj Q  
    iAk:CJ{  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 -xHR6  
    [t?tLUg|6  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)