切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11605阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 LD~s@}yH>  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! DB^"iof  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 z|Hc=AU8y  
    function z = zernfun(n,m,r,theta,nflag) Q}J'S5%  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. 5pBQ~m3  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N gDw:Z/1X`  
    %   and angular frequency M, evaluated at positions (R,THETA) on the s_=/p5\  
    %   unit circle.  N is a vector of positive integers (including 0), and _l&`* 2d  
    %   M is a vector with the same number of elements as N.  Each element |EJ&s393&  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) S^GB\uJ  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, >A$J5B >d  
    %   and THETA is a vector of angles.  R and THETA must have the same IeqJ>t:   
    %   length.  The output Z is a matrix with one column for every (N,M) ]U]22I'+$2  
    %   pair, and one row for every (R,THETA) pair. 3gW4\2|T  
    % ({ 7tp!@  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike FQR{w  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), y@;4F n/  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 8 oHyNo  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, JD^&d~n_  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized G\\zk  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 62B` Z5j#  
    % a2dlz@)J  
    %   The Zernike functions are an orthogonal basis on the unit circle. IED7v  
    %   They are used in disciplines such as astronomy, optics, and `eIX*R   
    %   optometry to describe functions on a circular domain. ZDZPJp,  
    % 3z[yKua\  
    %   The following table lists the first 15 Zernike functions. ~RVx~hh  
    % APT'2 -I_  
    %       n    m    Zernike function           Normalization V| >u,  
    %       -------------------------------------------------- `0rEV _$  
    %       0    0    1                                 1 G 1{F_  
    %       1    1    r * cos(theta)                    2 {4Q4aL(  
    %       1   -1    r * sin(theta)                    2 }N_9&I   
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) '|0Dt|$  
    %       2    0    (2*r^2 - 1)                    sqrt(3) vgzNT4o  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) H1uNlPT  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) IKM=Q. 7j  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) (lhbH]I  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) (9h{7<wD`  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) C#X0Cn0ln  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) K1Tq7/N  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ?aInn:FE  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ,CguY/y  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) =5EG}@  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) cLH|;  
    %       -------------------------------------------------- :K&   
    % J{=by]-rD,  
    %   Example 1: 3LZ0EYVL  
    % fbS l$jn.  
    %       % Display the Zernike function Z(n=5,m=1) US+PI`  
    %       x = -1:0.01:1; 93%U;0w[Nw  
    %       [X,Y] = meshgrid(x,x); NYD#I{h  
    %       [theta,r] = cart2pol(X,Y); w \pD'1e  
    %       idx = r<=1; ,MwwA@,9-  
    %       z = nan(size(X)); $|!VP'VI  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); y&\ J  
    %       figure wobTT1!|  
    %       pcolor(x,x,z), shading interp M'D;2qo  
    %       axis square, colorbar h"KN)xi$  
    %       title('Zernike function Z_5^1(r,\theta)') R|h9ilc  
    % 3ug{1 M3  
    %   Example 2: $kJvPwRO  
    % E.?|L-fy  
    %       % Display the first 10 Zernike functions CD(2A,u)/  
    %       x = -1:0.01:1; E7+ y W  
    %       [X,Y] = meshgrid(x,x); xaWd \]UF  
    %       [theta,r] = cart2pol(X,Y); 7t\W{y  
    %       idx = r<=1; pYJv|`+  
    %       z = nan(size(X)); 8^;[c  
    %       n = [0  1  1  2  2  2  3  3  3  3]; %FGPsHH  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; v\:>} <gc  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; _s!(9  
    %       y = zernfun(n,m,r(idx),theta(idx)); @* L^Jgn  
    %       figure('Units','normalized') 0@1AH<  
    %       for k = 1:10 w-[WJ:2.  
    %           z(idx) = y(:,k); ?gjM]Ki%:  
    %           subplot(4,7,Nplot(k)) Wx~ 0_P  
    %           pcolor(x,x,z), shading interp w :Fes  
    %           set(gca,'XTick',[],'YTick',[]) {mF:m5e  
    %           axis square a3 wUB  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 5xP\6Nx6&5  
    %       end z>NRvx0  
    % GAbX.9[V  
    %   See also ZERNPOL, ZERNFUN2. Os9xZ  
    zl46E~"]x  
    %   Paul Fricker 11/13/2006 [g/Hf(&  
    V@<tIui$  
    t/HMJ  
    % Check and prepare the inputs: q~.\NKc  
    % ----------------------------- A\lnH5A  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) +Tde#T&[  
        error('zernfun:NMvectors','N and M must be vectors.') L.lmbxn  
    end ; P I=jp  
    |h(!CFR  
    if length(n)~=length(m) #ldNWwvRGj  
        error('zernfun:NMlength','N and M must be the same length.') w``t"v4  
    end Zs e3e  
    Bm"jf]  
    n = n(:); 'Wl) )lB  
    m = m(:); ( }5k"9Z  
    if any(mod(n-m,2)) n NZq`M  
        error('zernfun:NMmultiplesof2', ... aB-*l %x  
              'All N and M must differ by multiples of 2 (including 0).') }m/aigA[1  
    end iN5~@8jAzz  
    e`'O!  
    if any(m>n) jE2k\\<a  
        error('zernfun:MlessthanN', ... e2UbeP  
              'Each M must be less than or equal to its corresponding N.')  9mwL\j  
    end \TkBV?W  
    wx BQ#OE  
    if any( r>1 | r<0 ) YMad]_XOP  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') {;);E  
    end UL$^zR3%d  
    "m0>u,HmI  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) @~'c(+<3  
        error('zernfun:RTHvector','R and THETA must be vectors.') rPkV=9ull,  
    end #JeZA0r5  
    KWCA9.w4q  
    r = r(:); AnG/A!G  
    theta = theta(:); CT3wd?)z`  
    length_r = length(r); "T?%4^:g  
    if length_r~=length(theta) (A\qZtnyl  
        error('zernfun:RTHlength', ... fyYT#r  
              'The number of R- and THETA-values must be equal.') W@AZ<(RI:  
    end !0 `44Gbq  
    5W>i'6*  
    % Check normalization:  nsij;C  
    % -------------------- 2!cP[ Ck  
    if nargin==5 && ischar(nflag) 9 Bz ~3  
        isnorm = strcmpi(nflag,'norm'); ^4x(a&  
        if ~isnorm oOBN  
            error('zernfun:normalization','Unrecognized normalization flag.') k4'rDJfB  
        end }7+G'=XI/  
    else 0vQ@n7  
        isnorm = false; ;n00kel$  
    end ?o$6w(]''  
    'h%)@q)J)  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !FZb3U@  
    % Compute the Zernike Polynomials -uqJ~gD  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C^K?"800  
    :g}WN  
    % Determine the required powers of r: $d{{><  
    % ----------------------------------- sKB])mf]  
    m_abs = abs(m); }I}RqD:`  
    rpowers = []; 52q@&')D4M  
    for j = 1:length(n) iE':ur<`  
        rpowers = [rpowers m_abs(j):2:n(j)]; {[61LQ6V9  
    end ' ]l,  
    rpowers = unique(rpowers); XWo:~\  
    WM*[+8h  
    % Pre-compute the values of r raised to the required powers, ?lnX."eAdB  
    % and compile them in a matrix: FcdbL,}=<  
    % ----------------------------- Q*ZqY  
    if rpowers(1)==0 2Y\,[$z  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); M-,vX15S  
        rpowern = cat(2,rpowern{:}); F4M<5Yi  
        rpowern = [ones(length_r,1) rpowern]; BOrfKtG\  
    else QB'-`GwL  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Pan^@B=Q  
        rpowern = cat(2,rpowern{:}); L:IaJ?+?  
    end 5Z ] `n  
    pi q%b]  
    % Compute the values of the polynomials: _' Xt  
    % -------------------------------------- 4gG&u33RrE  
    y = zeros(length_r,length(n)); }N#jA yp!  
    for j = 1:length(n) NYM$0v`0YK  
        s = 0:(n(j)-m_abs(j))/2; iSUn}%YFz!  
        pows = n(j):-2:m_abs(j); qtnLQl"M  
        for k = length(s):-1:1 ah>;wW!6/  
            p = (1-2*mod(s(k),2))* ... i d\0yRBt  
                       prod(2:(n(j)-s(k)))/              ... )3=oS1p  
                       prod(2:s(k))/                     ... 8&qCH>Cf  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... U`ey7   
                       prod(2:((n(j)+m_abs(j))/2-s(k))); rOm)s'  
            idx = (pows(k)==rpowers); S)C =Q~&  
            y(:,j) = y(:,j) + p*rpowern(:,idx); MIub^ $<C  
        end k]u0US9/  
         dz5a! e [  
        if isnorm Os?G_ziIB  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); <,(6*b  
        end v:PNt#Ta  
    end ,v4Z[ (  
    % END: Compute the Zernike Polynomials 282 m^ 2  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Dp8YzWL2^  
    !sfOde)$  
    % Compute the Zernike functions: Fx~=mYU  
    % ------------------------------ yd]W',c  
    idx_pos = m>0; 4Smno%jq  
    idx_neg = m<0; 6k%N\!_TUW  
    lRi-?I| ~9  
    z = y; 30-XFl  
    if any(idx_pos) j/TsHJ=  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); RnPJ,Z5s&&  
    end )7<JGzBZ1  
    if any(idx_neg) 5JK{dis]k  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Wo&MHMP  
    end 1 y$Bz?4  
    /0s1q  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) eL JW  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. k {_X%H/  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated @\e2Q& O  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive /Z';# G,z  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, +e);lS"+/  
    %   and THETA is a vector of angles.  R and THETA must have the same N&K:Jp  
    %   length.  The output Z is a matrix with one column for every P-value, AYeA)jk  
    %   and one row for every (R,THETA) pair. a)^f`s^aa  
    % DlC`GZEtqh  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike t%Vc1H2}  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) x[U/ 8#f&  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) f;!1=/5u-  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 _Isju S  
    %   for all p. T~J6(,"  
    % r0379 _  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 FU kO$jnO  
    %   Zernike functions (order N<=7).  In some disciplines it is 1Y6<i8  
    %   traditional to label the first 36 functions using a single mode |&`NB|  
    %   number P instead of separate numbers for the order N and azimuthal <f %JZ4p*  
    %   frequency M. vz #VW  
    % }26?bd@e`  
    %   Example: !(~eeE}|lM  
    % v]& )+0  
    %       % Display the first 16 Zernike functions 9G_bM(q'^2  
    %       x = -1:0.01:1; !4\`g?  
    %       [X,Y] = meshgrid(x,x); {P"$;_Y"<  
    %       [theta,r] = cart2pol(X,Y); Y*/:IYr`  
    %       idx = r<=1; G7yCGT)vQ  
    %       p = 0:15; [tGAo/  
    %       z = nan(size(X)); Vz6p^kMB  
    %       y = zernfun2(p,r(idx),theta(idx)); Gl}[1<~o  
    %       figure('Units','normalized') Q*&>Ui[&  
    %       for k = 1:length(p) |s`j=<rNQI  
    %           z(idx) = y(:,k); x9k(mn%,  
    %           subplot(4,4,k) ,X25-OFZ  
    %           pcolor(x,x,z), shading interp ivYHq#b59  
    %           set(gca,'XTick',[],'YTick',[]) @GDe{GG+  
    %           axis square B38_1X7  
    %           title(['Z_{' num2str(p(k)) '}']) xy)Y)yp  
    %       end Y f:xM>.%  
    % :IlRn`9X`  
    %   See also ZERNPOL, ZERNFUN. vh5`R/<3  
    _ +[;NBz  
    %   Paul Fricker 11/13/2006 0O<g) %Vz>  
    ^BIB'/Kh)  
    n[8ju,=  
    % Check and prepare the inputs: <@6K(  
    % ----------------------------- M }=X/*T  
    if min(size(p))~=1 LsH&`G^<  
        error('zernfun2:Pvector','Input P must be vector.') Kq#\P  
    end Dg3S n|!f  
    1;?n]L`T  
    if any(p)>35 Ss6mN;&D  
        error('zernfun2:P36', ... CB_ww=  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ATl.Qku@  
               '(P = 0 to 35).']) X`xmV!  
    end qp3J/(F  
    &?UIe]  
    % Get the order and frequency corresonding to the function number: /.B7y(  
    % ---------------------------------------------------------------- 2 Z K:S+c  
    p = p(:); lx _jy>$}r  
    n = ceil((-3+sqrt(9+8*p))/2); kx&Xk0F_g  
    m = 2*p - n.*(n+2); )d5H v2/0  
    lVF}G[B  
    % Pass the inputs to the function ZERNFUN: ]D_"tQ?i  
    % ---------------------------------------- UJ0fYTeuI  
    switch nargin ]S;^QZ  
        case 3 OXcQMVa 6  
            z = zernfun(n,m,r,theta); :EJ8^'0Q  
        case 4 29{Ep   
            z = zernfun(n,m,r,theta,nflag);  gP%S{<.?  
        otherwise I/4:SNha  
            error('zernfun2:nargin','Incorrect number of inputs.') K"4m)B~@Y  
    end ERD( qL.J  
    eGcc'LBr;  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) /zxLnT; 5  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. -M=#U\D  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of C>l{_J)n  
    %   order N and frequency M, evaluated at R.  N is a vector of |,!]]YO.V  
    %   positive integers (including 0), and M is a vector with the R>Q&Ax  
    %   same number of elements as N.  Each element k of M must be a | e{F;8  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) p5F=?*[}  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is ;Q*=AW  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix n-ZOe]3  
    %   with one column for every (N,M) pair, and one row for every MR4e.+#E  
    %   element in R. 2XoFmV),F  
    % : L}Fm2^  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- }E[u" @}  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is > mI1wV[  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to %C8p!)Hu  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 *B<Ig^c  
    %   for all [n,m]. J-iFA KN  
    % ~V#MI@]V~  
    %   The radial Zernike polynomials are the radial portion of the bEO\oS  
    %   Zernike functions, which are an orthogonal basis on the unit JH3$G,:zM  
    %   circle.  The series representation of the radial Zernike `N;}Gf-'  
    %   polynomials is ,Sz`$'^c  
    % ,q9nHZG^  
    %          (n-m)/2 [/Q .MmnL  
    %            __ FXLY*eRk  
    %    m      \       s                                          n-2s O5rHN;\_  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ai,\'%N  
    %    n      s=0 n*(9:y=l1  
    % RbOEXH*]  
    %   The following table shows the first 12 polynomials. h"C7l#u  
    % Ih Yso7g  
    %       n    m    Zernike polynomial    Normalization !4;A"B(  
    %       --------------------------------------------- 0%x"Va~"z  
    %       0    0    1                        sqrt(2) *[VO03  
    %       1    1    r                           2 Myj 5qh  
    %       2    0    2*r^2 - 1                sqrt(6) j?c"BF.  
    %       2    2    r^2                      sqrt(6) .\Z/j  
    %       3    1    3*r^3 - 2*r              sqrt(8) d6(R-k#B  
    %       3    3    r^3                      sqrt(8) g+( Cs  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) rE->z  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) pFB^l|\ ]  
    %       4    4    r^4                      sqrt(10) Rs$fNW@P  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) [N@t/^gRC  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) pJg'$iR!/  
    %       5    5    r^5                      sqrt(12) 5Z8Zb.  
    %       --------------------------------------------- F!k3/z  
    % bQ%6z}r  
    %   Example: c<k=8P   
    % 9_=0:GH k  
    %       % Display three example Zernike radial polynomials ;`")3~M3*  
    %       r = 0:0.01:1; cWp5' e]A  
    %       n = [3 2 5]; 4n9".UHh  
    %       m = [1 2 1]; .Iu8bN(L`  
    %       z = zernpol(n,m,r); g?7I7W~?`  
    %       figure _cRCG1CJ  
    %       plot(r,z) 9N+3S2sBx&  
    %       grid on 7lLh4__;`6  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') wOMrUWB0  
    % `s )- lI  
    %   See also ZERNFUN, ZERNFUN2. RZY[DoF8u  
    Oc,E\~  
    % A note on the algorithm. b(E}W2-t  
    % ------------------------ 54lU~ "  
    % The radial Zernike polynomials are computed using the series k?bIu  
    % representation shown in the Help section above. For many special lmGVSdo   
    % functions, direct evaluation using the series representation can xM+_rU M|h  
    % produce poor numerical results (floating point errors), because *\-$.w)k  
    % the summation often involves computing small differences between nE&`~  
    % large successive terms in the series. (In such cases, the functions ]2_b_ok  
    % are often evaluated using alternative methods such as recurrence _YK66cS3E/  
    % relations: see the Legendre functions, for example). For the Zernike WX-J4ieL  
    % polynomials, however, this problem does not arise, because the ]NEr]sc-"F  
    % polynomials are evaluated over the finite domain r = (0,1), and 7 I$~E  
    % because the coefficients for a given polynomial are generally all 7:M`k#oDP  
    % of similar magnitude. `i2:@?Kl9  
    % W>E/LBpE4  
    % ZERNPOL has been written using a vectorized implementation: multiple u?Uu>9@Z  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] cko^_V&x  
    % values can be passed as inputs) for a vector of points R.  To achieve +nIjW;RU  
    % this vectorization most efficiently, the algorithm in ZERNPOL = :/4)  
    % involves pre-determining all the powers p of R that are required to !=3Ce3-  
    % compute the outputs, and then compiling the {R^p} into a single sQ}E4Iq1#S  
    % matrix.  This avoids any redundant computation of the R^p, and *HONA>u   
    % minimizes the sizes of certain intermediate variables. m{w'&\T  
    % mfW}^mu  
    %   Paul Fricker 11/13/2006 hEh` cBO  
    3LkcK1x.  
    1PN!1=F}  
    % Check and prepare the inputs: w-j^jU><3  
    % ----------------------------- im&Nkk4n@  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) S{Q2KD  
        error('zernpol:NMvectors','N and M must be vectors.') J+(B]8aj  
    end mx!EuF$I  
    n1Wo<$#  
    if length(n)~=length(m) Bjp4:;Bb  
        error('zernpol:NMlength','N and M must be the same length.') ~Fe$/*v  
    end h(/& ;\Cr  
    5$?)f&M  
    n = n(:); KSYHG  
    m = m(:); |muZv!,E  
    length_n = length(n); T!jMh-8  
    !{+a2wi  
    if any(mod(n-m,2)) 5-RA<d#  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') =T-jG_.H  
    end r [E4/?_  
    1KadT7<0}  
    if any(m<0) S]Qf p,  
        error('zernpol:Mpositive','All M must be positive.') b{Bef*`/  
    end ;)ku SH  
    R xA:>yOPn  
    if any(m>n) rU |%  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') <'N~|B/yZ  
    end Y'+mC  
    =&"a:l  
    if any( r>1 | r<0 ) 0B]c`$"aD  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') b:Tv Ta  
    end iOB*K)U1  
    ^ AJ_  
    if ~any(size(r)==1) WjsmLb:5  
        error('zernpol:Rvector','R must be a vector.') s>I~%+V.?:  
    end UZ;FrQ(l{  
    )agrx76]3w  
    r = r(:); {rzvZ0-j}  
    length_r = length(r); Sw.Kl 0M  
    GO UO  
    if nargin==4 O& 1z-  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ~hb;kc3  
        if ~isnorm .^wBv 'Y  
            error('zernpol:normalization','Unrecognized normalization flag.') r@c!M|m@  
        end A\})H  
    else 2t;3_C  
        isnorm = false; 7po;*?Ox  
    end u)[i'ceQZ:  
    2<E@f0BVAy  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %F87"v~  
    % Compute the Zernike Polynomials %x8vvcO^t  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ujLje:Yc  
    mYFc53B  
    % Determine the required powers of r: f{-,"6Y1  
    % ----------------------------------- )Vo%}g?6!  
    rpowers = []; p{x6BVw?>  
    for j = 1:length(n) ETm:KbS  
        rpowers = [rpowers m(j):2:n(j)]; uBw[|,yn2*  
    end ^[VEr"X  
    rpowers = unique(rpowers); 0v|qP  
    ]Na;b  
    % Pre-compute the values of r raised to the required powers, N>w+YFM  
    % and compile them in a matrix: ^ f[^.k$3d  
    % ----------------------------- I2gSgv%  
    if rpowers(1)==0 >@EwfM4[e  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); {S`Rr/E|%  
        rpowern = cat(2,rpowern{:}); |fY#2\)Yx  
        rpowern = [ones(length_r,1) rpowern]; XO5E-Nh  
    else zp\_5[qJ;  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); rAk;8)O$  
        rpowern = cat(2,rpowern{:}); TVVu_ib  
    end ,x utI  
    ir5eR}H  
    % Compute the values of the polynomials: =N2@H5+7  
    % -------------------------------------- s$~H{za  
    z = zeros(length_r,length_n); s >k4G  
    for j = 1:length_n hyY^$p+  
        s = 0:(n(j)-m(j))/2; SduUXHk  
        pows = n(j):-2:m(j); ypNeTR$4  
        for k = length(s):-1:1 w+{{4<+cd  
            p = (1-2*mod(s(k),2))* ... [$M l;K  
                       prod(2:(n(j)-s(k)))/          ... C't%e  
                       prod(2:s(k))/                 ... (`<B#D;  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... MEOfVh  
                       prod(2:((n(j)+m(j))/2-s(k))); ~ujg250.L  
            idx = (pows(k)==rpowers); <bJ~Ol  
            z(:,j) = z(:,j) + p*rpowern(:,idx); }Qh%Z)  
        end a YY1*^  
         [OFT!=.y &  
        if isnorm _)~|Z~  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); uN0'n}c;1.  
        end ie/QSte  
    end W+.?J 60  
    I]B9+Z?xo  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  i]LK,'  
    Xl*-A|:j  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 _.06^5o  
    _?_Svx2  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)