切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11591阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 {8)Pke  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! /STFXR1@.u  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 .<0|V  
    function z = zernfun(n,m,r,theta,nflag) v6Vieo=  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. Sz_bjhyT}  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N q]%eLfC(  
    %   and angular frequency M, evaluated at positions (R,THETA) on the VRuY8<E  
    %   unit circle.  N is a vector of positive integers (including 0), and T bMW?Su  
    %   M is a vector with the same number of elements as N.  Each element ETt7?,x@  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ;VhilWaF-  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, dQX<X}  
    %   and THETA is a vector of angles.  R and THETA must have the same ZY_aE  
    %   length.  The output Z is a matrix with one column for every (N,M) %gK@ R3p  
    %   pair, and one row for every (R,THETA) pair. <gvuCydsh  
    % `/ W6, ]  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike :<t%Sf  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), <>=A6  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral G@Ha t  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 0;Lt  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ZDMv8BP7  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. =ttvC"4?  
    % _ELuQ>zM]+  
    %   The Zernike functions are an orthogonal basis on the unit circle. iLQFce7d|&  
    %   They are used in disciplines such as astronomy, optics, and 6j*L]S c  
    %   optometry to describe functions on a circular domain. YJBlF2uD  
    % <OX_6d*@  
    %   The following table lists the first 15 Zernike functions. ZGILV  
    % (T290a9y>  
    %       n    m    Zernike function           Normalization I},]Y~Y3  
    %       -------------------------------------------------- WJ%4IaT  
    %       0    0    1                                 1 .b.p yVk  
    %       1    1    r * cos(theta)                    2 +<l6!r2Z  
    %       1   -1    r * sin(theta)                    2 +JyD W%a:L  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) %pikt7,Z~  
    %       2    0    (2*r^2 - 1)                    sqrt(3) QCm93YZs6E  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) K1S:P( S  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) Z2Q'9C},m  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) F0 .Rv):  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) b-)m'B}`  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) j ^Tb=  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) y7f,]<%e_  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) kGz0`8U Ru  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) @fI1|v=eF  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) BM~>=emc  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) a ~  
    %       -------------------------------------------------- w^{qut.  
    % [h5~1N  
    %   Example 1: n(}cK@  
    % yj:<3_-C*  
    %       % Display the Zernike function Z(n=5,m=1) B=?m_4\$m  
    %       x = -1:0.01:1; D^_]x51>  
    %       [X,Y] = meshgrid(x,x); g2Hz[C(  
    %       [theta,r] = cart2pol(X,Y); L<7KmN4VX  
    %       idx = r<=1; `;`fA|F^  
    %       z = nan(size(X)); k?!CJ@5$  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); JWh5gOXd  
    %       figure "b~-`ni  
    %       pcolor(x,x,z), shading interp U4$}8~o4  
    %       axis square, colorbar `G@(Z:]f,t  
    %       title('Zernike function Z_5^1(r,\theta)') `6No6.\J  
    % Kia34 ~W  
    %   Example 2: "dkDT7  
    % %qycxEVP  
    %       % Display the first 10 Zernike functions *#n#J[  
    %       x = -1:0.01:1; E Pd9'9S  
    %       [X,Y] = meshgrid(x,x); O:% ,.??<%  
    %       [theta,r] = cart2pol(X,Y); =<BPoGs5  
    %       idx = r<=1; E;o "^[we  
    %       z = nan(size(X)); zfsGf 'U  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ydZS^BqG  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3];  ~ERA  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 4MFdhJoN  
    %       y = zernfun(n,m,r(idx),theta(idx)); |8{c|Qz  
    %       figure('Units','normalized') 3+<f7  
    %       for k = 1:10 'K!u}py  
    %           z(idx) = y(:,k); p2=+cS"HC  
    %           subplot(4,7,Nplot(k)) |//D|-2  
    %           pcolor(x,x,z), shading interp Il4R R  
    %           set(gca,'XTick',[],'YTick',[]) ku3(cb!2  
    %           axis square e{Y8m Xu  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) vY"i^a`f  
    %       end +|w%}/N  
    % "<N2TDF5  
    %   See also ZERNPOL, ZERNFUN2.  Qi;62M  
    JS!`eO/8  
    %   Paul Fricker 11/13/2006 #5 %\~ f  
    n40&4n  
    n:8<Ijrh  
    % Check and prepare the inputs: *SmR|Qy  
    % ----------------------------- ,hVDGif  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) _O$7*k  
        error('zernfun:NMvectors','N and M must be vectors.') Hob n{E  
    end d69synEw>k  
    Zl\$9Q_  
    if length(n)~=length(m) ?*/1J~<(@  
        error('zernfun:NMlength','N and M must be the same length.') /)J]m  
    end 2:jWO_V@  
    L; o$vI~U,  
    n = n(:); 2v\<MrL  
    m = m(:); NY3/mS3w  
    if any(mod(n-m,2)) VprrklZ  
        error('zernfun:NMmultiplesof2', ... khb/"VYd  
              'All N and M must differ by multiples of 2 (including 0).') =K;M\_k%y  
    end @c -| Sl  
    eJy}W /  
    if any(m>n) 3EA+tG4KnO  
        error('zernfun:MlessthanN', ... {3qlx1w  
              'Each M must be less than or equal to its corresponding N.') 4> NmJrh  
    end C@P*:L_  
    }8Yu"P${Y  
    if any( r>1 | r<0 ) Kt`/+k)m  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') :\"V5  
    end #JYH5:*  
    vo"?a~kY7  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) {%BPP{OFk  
        error('zernfun:RTHvector','R and THETA must be vectors.') ,382O$C  
    end v/GZByco>  
    18WJ*q7:  
    r = r(:); DEQ7u`6  
    theta = theta(:);  V$fn$=  
    length_r = length(r); hkDew0k  
    if length_r~=length(theta) ?BnX<dbi&  
        error('zernfun:RTHlength', ... oC~+K@S  
              'The number of R- and THETA-values must be equal.') 43s8a  
    end K# kMz#B+i  
    yfZYGhPN(  
    % Check normalization: y4N2gBTKu  
    % -------------------- nU,~*Us  
    if nargin==5 && ischar(nflag) l&_PsnU  
        isnorm = strcmpi(nflag,'norm'); D$fWeG{f  
        if ~isnorm :I(d-,C  
            error('zernfun:normalization','Unrecognized normalization flag.') ho%G  
        end Zo#c[9IaC  
    else (2(y9r*1  
        isnorm = false; (b"kN(  
    end ld[BiP`B2V  
    9P&{Xhs7  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5BS !6o;P'  
    % Compute the Zernike Polynomials 7qL B9r  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )ml#2XP!f  
    j_0xE;g"]  
    % Determine the required powers of r: XaH;  
    % ----------------------------------- giHqc7-PaX  
    m_abs = abs(m); UgTgva>?  
    rpowers = []; f>[{1M]n\  
    for j = 1:length(n) eL1)_M;{  
        rpowers = [rpowers m_abs(j):2:n(j)]; 5"&=BD~D  
    end |e91KmiqJ  
    rpowers = unique(rpowers); ke19(r Ch  
    @e2P3K gg  
    % Pre-compute the values of r raised to the required powers, d Z}|G-:  
    % and compile them in a matrix: U"535<mR  
    % ----------------------------- 'xu! t'l&  
    if rpowers(1)==0 qoSZ+ khS$  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); I_is3y0  
        rpowern = cat(2,rpowern{:}); "eIE5h  
        rpowern = [ones(length_r,1) rpowern]; v,jB(B^|Z  
    else )W>9{*4 m  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); B=HE i\55K  
        rpowern = cat(2,rpowern{:}); " ""pe+Y  
    end g(l:>=g]?  
    S\sy] 1*?$  
    % Compute the values of the polynomials: ut^6UdJ+`  
    % -------------------------------------- ;v5Jps2^]  
    y = zeros(length_r,length(n)); [tkP2%1  
    for j = 1:length(n) d0YQLh  
        s = 0:(n(j)-m_abs(j))/2; '[p0+5*x  
        pows = n(j):-2:m_abs(j); rw#?NI:  
        for k = length(s):-1:1 2Yg\<Ps N  
            p = (1-2*mod(s(k),2))* ... `8kL=%(h  
                       prod(2:(n(j)-s(k)))/              ... -/R?D1kOq  
                       prod(2:s(k))/                     ... N~%~Q  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... >/'/^h  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); $9ys! <g  
            idx = (pows(k)==rpowers); ok{ F=z  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ?:3rVfO  
        end 87rHW@\](  
         <f;X s(  
        if isnorm 2+|U!X  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); w0 1u~"E  
        end n9Ktn}  
    end #kp +e)F  
    % END: Compute the Zernike Polynomials YJ>P+e\o9  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% vk<4P;A(G  
    KMXd  
    % Compute the Zernike functions: FSb4RuD9  
    % ------------------------------ wu3p2#-Z  
    idx_pos = m>0; OE2r2ad  
    idx_neg = m<0; 8aI^vP"7`=  
    -H$C3V3]  
    z = y; toel!+  
    if any(idx_pos) ~8EzK_c  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); P9M. J^<  
    end Ph17(APt,Q  
    if any(idx_neg) 9-E dT4=r,  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 5>>JQ2'W  
    end c3J12+~;  
    ]JlM/  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) Wo~;h (6  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 0xc|Wn>  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated vvF]g.,  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive Ag} P  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, =gHUY&sPu8  
    %   and THETA is a vector of angles.  R and THETA must have the same okH*2F(-  
    %   length.  The output Z is a matrix with one column for every P-value, \`-a'u=S  
    %   and one row for every (R,THETA) pair. )pG*_q  
    % 5RR4jX]  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike rV B\\  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 4M P8t@z  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) ,OBJ>_5  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 2 @t?@,c  
    %   for all p. !CR#Fyt+9  
    % /.Jq]"   
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ;-8]  
    %   Zernike functions (order N<=7).  In some disciplines it is C'a#.LM  
    %   traditional to label the first 36 functions using a single mode nTr{ D&JS  
    %   number P instead of separate numbers for the order N and azimuthal KB8_yo{y  
    %   frequency M. $8>II0C.  
    % *@g>~q{`  
    %   Example: (PSL[P  
    % HrHtA]  
    %       % Display the first 16 Zernike functions 7-d.eNQl  
    %       x = -1:0.01:1; &[_D'jm+S0  
    %       [X,Y] = meshgrid(x,x); _J>!K'Dz  
    %       [theta,r] = cart2pol(X,Y); =*KY)X  
    %       idx = r<=1; "]U_o<V  
    %       p = 0:15; 7myYs7N8[  
    %       z = nan(size(X)); 6Tsi^((Li  
    %       y = zernfun2(p,r(idx),theta(idx)); YD] :3!MI  
    %       figure('Units','normalized') n,`j~.l-=>  
    %       for k = 1:length(p) 2j=HxE  
    %           z(idx) = y(:,k); r>J%Eu/O  
    %           subplot(4,4,k) !YX_k<1E  
    %           pcolor(x,x,z), shading interp ,Gy2$mglB  
    %           set(gca,'XTick',[],'YTick',[]) KU;J2Kt  
    %           axis square zh9B8r)C  
    %           title(['Z_{' num2str(p(k)) '}']) CB`GiH/j  
    %       end EOo,olklC  
    % *z)+'D*+  
    %   See also ZERNPOL, ZERNFUN. K k|mV&3J  
    `IJTO_  
    %   Paul Fricker 11/13/2006 k<y~n*{_  
    afd.v$63  
    Wcki=ac\v!  
    % Check and prepare the inputs: eHU b4,%P  
    % ----------------------------- vCn\_Nu;W&  
    if min(size(p))~=1 a"phwCc"%  
        error('zernfun2:Pvector','Input P must be vector.') Fz2C XC  
    end Gp2C wyv  
    Q$A;Fk}-  
    if any(p)>35 9 !V,++j  
        error('zernfun2:P36', ... #BX}j&h_  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... E6#")2C~  
               '(P = 0 to 35).']) O&r9+r1`  
    end 7$Lt5rn"}  
    zA8Tp8(  
    % Get the order and frequency corresonding to the function number: {VKP&{~O  
    % ---------------------------------------------------------------- JsDT  
    p = p(:); _C@<*L=Q  
    n = ceil((-3+sqrt(9+8*p))/2); ;I~ UQgE6H  
    m = 2*p - n.*(n+2); ()zn8_z  
    '}E"M db  
    % Pass the inputs to the function ZERNFUN: ,soXX_Y>  
    % ---------------------------------------- o^Qy71Uj  
    switch nargin iw I}  
        case 3 }ni@]k#q<  
            z = zernfun(n,m,r,theta); [uFv_G{H  
        case 4 w$ jq2?l  
            z = zernfun(n,m,r,theta,nflag); )u]1j@Id  
        otherwise ZV$!dHW/  
            error('zernfun2:nargin','Incorrect number of inputs.') yD Avl+  
    end $LOf2kn  
    dm"|\7  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) rvPmd%nk-  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. T*](oA@  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of u >[hLXuB  
    %   order N and frequency M, evaluated at R.  N is a vector of 4\m#:fj %  
    %   positive integers (including 0), and M is a vector with the D9\ EkX  
    %   same number of elements as N.  Each element k of M must be a Y 9@ 2d  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) GW0e=Y=LR  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is ;qaNIOo9  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix Z%QU5.  
    %   with one column for every (N,M) pair, and one row for every WTwura,  
    %   element in R. EgTj   
    % {emym$we  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- TCK<IZKLqK  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is T 5>'q;jM  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to =Iy khrS  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ^-%O  
    %   for all [n,m]. ij02J`w:Ra  
    % !~te&ccPE  
    %   The radial Zernike polynomials are the radial portion of the {r_x\VC=p  
    %   Zernike functions, which are an orthogonal basis on the unit ||'A9  
    %   circle.  The series representation of the radial Zernike _o{w<b&  
    %   polynomials is %h& F  
    % bjql<x5d  
    %          (n-m)/2 B }  
    %            __ ~U1M -<IX  
    %    m      \       s                                          n-2s t ]P^6jw'  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r N==Y]Z$G  
    %    n      s=0 8-FW'bA  
    % 0134mw%jk  
    %   The following table shows the first 12 polynomials. /8LTM|(  
    % 'J_6SD  
    %       n    m    Zernike polynomial    Normalization #F ;@Qi3z  
    %       --------------------------------------------- 1.z]/cx<y  
    %       0    0    1                        sqrt(2) >44,Dp]  
    %       1    1    r                           2 InB'Ag"  
    %       2    0    2*r^2 - 1                sqrt(6) b@9d@@/wx  
    %       2    2    r^2                      sqrt(6) y hNy  
    %       3    1    3*r^3 - 2*r              sqrt(8) H+ 7Fw'u  
    %       3    3    r^3                      sqrt(8) }!jn%@_y@  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) /N=M9i\;  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) pZ&?uo67_  
    %       4    4    r^4                      sqrt(10) Us4#O&  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) @@#(<[S\B  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) z;PF% F  
    %       5    5    r^5                      sqrt(12) DUvF  
    %       --------------------------------------------- 6kdcFcV-]  
    % 5k`Df/  
    %   Example: ZW`wA2R0   
    %  Z6_fI  
    %       % Display three example Zernike radial polynomials M+Eg{^ q`  
    %       r = 0:0.01:1; H*h4D+Kxv  
    %       n = [3 2 5]; mZ#h p}\.  
    %       m = [1 2 1]; O.$OLK;v  
    %       z = zernpol(n,m,r); R;H>#caJ  
    %       figure z;Dc#SZnO(  
    %       plot(r,z) +/!y#&C&*  
    %       grid on zc5>)v LH=  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 7>xfQ  
    % D[<~^R;*  
    %   See also ZERNFUN, ZERNFUN2. ]3CWb>!_  
    gi<%: [jT  
    % A note on the algorithm. [}Y_O*C !  
    % ------------------------ ; nYR~~  
    % The radial Zernike polynomials are computed using the series    
    % representation shown in the Help section above. For many special (?#"S67  
    % functions, direct evaluation using the series representation can x1`zD*{  
    % produce poor numerical results (floating point errors), because RBV*e9P%  
    % the summation often involves computing small differences between h[r)HX0hA  
    % large successive terms in the series. (In such cases, the functions dS;Ui]/J  
    % are often evaluated using alternative methods such as recurrence 8eD/9PD=F  
    % relations: see the Legendre functions, for example). For the Zernike -k,?cEjCs  
    % polynomials, however, this problem does not arise, because the +=#@1k~  
    % polynomials are evaluated over the finite domain r = (0,1), and /gq\.+'{  
    % because the coefficients for a given polynomial are generally all $(&+NJ$U$  
    % of similar magnitude. H<ZXe!q(nx  
    % 0"DS>:Ntk  
    % ZERNPOL has been written using a vectorized implementation: multiple YAYwrKt  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] y{J7^o(_~  
    % values can be passed as inputs) for a vector of points R.  To achieve &-p!Lg&D  
    % this vectorization most efficiently, the algorithm in ZERNPOL QHw{@*  
    % involves pre-determining all the powers p of R that are required to $fQ'q3  
    % compute the outputs, and then compiling the {R^p} into a single M nDa ag  
    % matrix.  This avoids any redundant computation of the R^p, and YL9Tsw  
    % minimizes the sizes of certain intermediate variables. A4f;ftB  
    % o 5<w2(  
    %   Paul Fricker 11/13/2006 CzG/=#IU  
    ?/^{sW' |  
    {|R +|ow  
    % Check and prepare the inputs: 'Jl3%axR  
    % ----------------------------- 9 N9Q#o$!.  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) A5%cgr% 6  
        error('zernpol:NMvectors','N and M must be vectors.') Vl0Y'@{  
    end 7WEoyd  
    CAbT9W z&  
    if length(n)~=length(m) Wo<kKkx2  
        error('zernpol:NMlength','N and M must be the same length.') ms/Q-  
    end ,Zb_Pu   
    <gx"p#JbZ  
    n = n(:); wo_iCjmK  
    m = m(:); s^ K:cz  
    length_n = length(n); 89a`WV@}  
    <M M(Z  
    if any(mod(n-m,2)) ?D=t:=  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') |eH*Q%M  
    end Cp^%;(@  
    ./Wi(p{F  
    if any(m<0) MTeCmFe0;  
        error('zernpol:Mpositive','All M must be positive.') ki9vJ<  
    end -k}&{v  
    I8LoXY  
    if any(m>n) f}{Oj-:"CC  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') -ZBSkyMGy  
    end ?CZ*MMV  
    Pc=:j(  
    if any( r>1 | r<0 ) l#;o^H i  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') A?Gk8  
    end  @po|07  
    &1ss @-  
    if ~any(size(r)==1) }7Y @u@R  
        error('zernpol:Rvector','R must be a vector.') cT3s{k  
    end 9H,Ec,.  
    ~A-VgBbU>_  
    r = r(:); o3>D~9  
    length_r = length(r); lZ5TDS  
    _`q ei0  
    if nargin==4 3R ZD=`  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); gclw>((5  
        if ~isnorm =\)qUs\z  
            error('zernpol:normalization','Unrecognized normalization flag.') (Q ~<>  
        end cK6IyJx-  
    else G,A;`:/  
        isnorm = false; F=8gtk|U  
    end :qO)^~x  
    I=o/1:[-  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  Dv-ubki  
    % Compute the Zernike Polynomials b'TkYa^  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + u'y!@VV  
    >;OwBzB  
    % Determine the required powers of r: `#>JRQ=  
    % ----------------------------------- R*z:+p}oHy  
    rpowers = []; 7;H P_oAu  
    for j = 1:length(n) -'Y@yIb  
        rpowers = [rpowers m(j):2:n(j)]; h,)UB1  
    end XyE%<]  
    rpowers = unique(rpowers); h|Udw3N1L  
    bB"q0{9G-  
    % Pre-compute the values of r raised to the required powers, p_l.a  
    % and compile them in a matrix: +*P;Vb6D  
    % ----------------------------- vV 7L :>  
    if rpowers(1)==0 C9}m-N  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); !Zma\Ip  
        rpowern = cat(2,rpowern{:}); 8WL*Pr 1I  
        rpowern = [ones(length_r,1) rpowern]; ICB'?yZ,  
    else 8cv[|`<  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); (S#nA:E  
        rpowern = cat(2,rpowern{:});  h@"u==0  
    end 'Z ,T,zW  
    &P3ep[]j  
    % Compute the values of the polynomials: {1]/ok2k5  
    % -------------------------------------- C4/p5J  
    z = zeros(length_r,length_n); %<Te&6NU'  
    for j = 1:length_n u!K5jqP  
        s = 0:(n(j)-m(j))/2; >KMTxHE`+  
        pows = n(j):-2:m(j); agMI$  
        for k = length(s):-1:1 tA6x  
            p = (1-2*mod(s(k),2))* ... pxi/ ]6pw  
                       prod(2:(n(j)-s(k)))/          ... ql c{k/ u  
                       prod(2:s(k))/                 ... n8vteGQ  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... XH{P@2~l  
                       prod(2:((n(j)+m(j))/2-s(k))); /E0/)@pDq  
            idx = (pows(k)==rpowers); [^GXHE=  
            z(:,j) = z(:,j) + p*rpowern(:,idx); &Eqa y'  
        end Z=\wI:TY1  
         :OvTZ ?\  
        if isnorm YsXf+_._  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); NamO5(1C  
        end NY!"?Zko  
    end #Mmr{4m  
    NA9N#;  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  > $#v\8  
    @sV6g?{tI  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 %z_PEqRj  
    A+N%A] 2  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)