非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 g.aNITjP
function z = zernfun(n,m,r,theta,nflag) 9oS \{[x.
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 8yax.N
j
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N J]ivIQ
% and angular frequency M, evaluated at positions (R,THETA) on the pVn6>\xa
% unit circle. N is a vector of positive integers (including 0), and JbzYr]k
% M is a vector with the same number of elements as N. Each element -yfyd$5j
% k of M must be a positive integer, with possible values M(k) = -N(k) 8h9t8?
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, _m;cX!+~_
% and THETA is a vector of angles. R and THETA must have the same iQ*JU2;7t
% length. The output Z is a matrix with one column for every (N,M) 0TU~Q
% pair, and one row for every (R,THETA) pair. {y<[1Pms
% f2[z)j7
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike |GE3.g
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), w<j6ln+nM
% with delta(m,0) the Kronecker delta, is chosen so that the integral =O1CxsKt6
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, &5/`6-K
% and theta=0 to theta=2*pi) is unity. For the non-normalized DU$]e1
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. &J^@TgqL^
% '[JrP<~^o
% The Zernike functions are an orthogonal basis on the unit circle. aAO[Y"-:,Y
% They are used in disciplines such as astronomy, optics, and },0fPkVsU
% optometry to describe functions on a circular domain. isHa4 D0
% mB;W9[
% The following table lists the first 15 Zernike functions. =Y|TShKk
% jEklf0Z
% n m Zernike function Normalization rS/Q
% -------------------------------------------------- lW'6rat
% 0 0 1 1 ZA>hN3fE'
% 1 1 r * cos(theta) 2 N-jFA8n
% 1 -1 r * sin(theta) 2 NAV}q<@v
% 2 -2 r^2 * cos(2*theta) sqrt(6) Z<En3^j`
% 2 0 (2*r^2 - 1) sqrt(3) K"eR6_k
% 2 2 r^2 * sin(2*theta) sqrt(6) <VB
% 3 -3 r^3 * cos(3*theta) sqrt(8) \A:m<::
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) VJD$nh
#M5
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) t-dN:1
% 3 3 r^3 * sin(3*theta) sqrt(8) O(,Ezyx
% 4 -4 r^4 * cos(4*theta) sqrt(10) &