切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11290阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 M\x7=*\  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! wZ#~+ }T  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 1Tk\n  
    function z = zernfun(n,m,r,theta,nflag) z]4g`K+  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. "Y J;-$rb  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N J7aK3 he  
    %   and angular frequency M, evaluated at positions (R,THETA) on the  ]9l%  
    %   unit circle.  N is a vector of positive integers (including 0), and "Z1&z-   
    %   M is a vector with the same number of elements as N.  Each element B7QtB3bn  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) M%dl?9pbq  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, fgz'C?  
    %   and THETA is a vector of angles.  R and THETA must have the same 2$/gg"g+  
    %   length.  The output Z is a matrix with one column for every (N,M) h,RUL  
    %   pair, and one row for every (R,THETA) pair. (YWc%f4  
    % X +  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Gxt<kz  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), x;b+gIz*  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral 88L bO(q\d  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, u:>3j,Cs  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized Ydd>A\v\;  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. -W"0,.Dvg  
    % V<R+A*gY:  
    %   The Zernike functions are an orthogonal basis on the unit circle. l+kg4y  
    %   They are used in disciplines such as astronomy, optics, and N[D\@o  
    %   optometry to describe functions on a circular domain. >rX R;4%  
    % 7bW!u*v-c  
    %   The following table lists the first 15 Zernike functions. ,0u0 '  
    % 2ZIY{lBe  
    %       n    m    Zernike function           Normalization %<o$ J~l~  
    %       -------------------------------------------------- .mU.eLM  
    %       0    0    1                                 1 ;. [$  
    %       1    1    r * cos(theta)                    2 kIZdN D&  
    %       1   -1    r * sin(theta)                    2 4oEq,o_  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) ~m=%a  
    %       2    0    (2*r^2 - 1)                    sqrt(3) !`Yi{}1_  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ^+l\YB7pD  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) Pj5#G0i%  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) -{sv3|P>  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 5x'y{S<  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) g.sV$.T2K  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ,$(v#Tz  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 3B|-xq;]I  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) xW ZcSIH!  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) COJ!b  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 10C91/  
    %       -------------------------------------------------- gBS#Z.  
    % ZUI\0qh+  
    %   Example 1: sWCm[HpG  
    % Q]'!FmXf  
    %       % Display the Zernike function Z(n=5,m=1) '{*>hj5.8  
    %       x = -1:0.01:1; J7] 60H#P  
    %       [X,Y] = meshgrid(x,x); )'CEWc%  
    %       [theta,r] = cart2pol(X,Y); zjZTar1Re  
    %       idx = r<=1; :NyEd<'  
    %       z = nan(size(X)); ]<?)(xz  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 1^>g>bn_"  
    %       figure |dzF>8< )  
    %       pcolor(x,x,z), shading interp swgBPJ"?  
    %       axis square, colorbar ASU\O3%%  
    %       title('Zernike function Z_5^1(r,\theta)') y$Noo)Z  
    % I*R$*/)  
    %   Example 2: Qg.:w  
    % PGhZ`nl  
    %       % Display the first 10 Zernike functions e[dRHl  
    %       x = -1:0.01:1; vj$ 6  
    %       [X,Y] = meshgrid(x,x); N9|.D.#MF  
    %       [theta,r] = cart2pol(X,Y); W)~.o/;  
    %       idx = r<=1; C7_T]e<  
    %       z = nan(size(X)); 0>MI*fnY"  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Bb"4^EOZ,  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; F7l:*r,O  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ?C2;:ol  
    %       y = zernfun(n,m,r(idx),theta(idx)); j]D =\  
    %       figure('Units','normalized') !QspmCo+  
    %       for k = 1:10 jch8d(`?d  
    %           z(idx) = y(:,k); <%7 V`,*g/  
    %           subplot(4,7,Nplot(k)) /~5YTe( F  
    %           pcolor(x,x,z), shading interp s@iCfXU  
    %           set(gca,'XTick',[],'YTick',[]) >7q,[:(gs  
    %           axis square :vT%5CQ  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 28yxX431S  
    %       end dw!Eao47  
    % * XGBym  
    %   See also ZERNPOL, ZERNFUN2. 4T E ?mh}  
    I*2rS_i[T  
    %   Paul Fricker 11/13/2006 ^eRT8I  
    ,RO(k4  
    XOU$3+8q5  
    % Check and prepare the inputs: ='>UKy[=  
    % ----------------------------- ;qK6."b`;  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) =1[g`b  
        error('zernfun:NMvectors','N and M must be vectors.') +eXfT*=u5  
    end Acv{XnB  
    rv%[?Ml  
    if length(n)~=length(m) d vxEXy  
        error('zernfun:NMlength','N and M must be the same length.') ~`H<sJ?9  
    end (*BW/.Fq  
    59]9-1" +  
    n = n(:); 7#3)&"j  
    m = m(:); :n9^:srGZH  
    if any(mod(n-m,2)) ;P~S/j[ 8  
        error('zernfun:NMmultiplesof2', ... e6'O,\  
              'All N and M must differ by multiples of 2 (including 0).') ! fc)  
    end 3Q)>gh*  
    -P&e4sV{  
    if any(m>n) IBh~(6  
        error('zernfun:MlessthanN', ... -rlX<(pl)  
              'Each M must be less than or equal to its corresponding N.') Uk6!Sb  
    end 1?\Y,+  
    0&@ pX~h:  
    if any( r>1 | r<0 ) KLW+&.re8  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') xvl  
    end X+8p2xSO|  
    ,ua1xsZl&  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) f tDV3If  
        error('zernfun:RTHvector','R and THETA must be vectors.') V p{5Kxq  
    end Y cpO;md  
    T%/w^27E  
    r = r(:); Q$j48,e  
    theta = theta(:); tvRy8u;  
    length_r = length(r); 1bkUT_  
    if length_r~=length(theta) hh&y2#Io  
        error('zernfun:RTHlength', ... pa-4|)qY  
              'The number of R- and THETA-values must be equal.') 1+($"$ZC&B  
    end edx'p`%d5  
    [^~9wFNtd  
    % Check normalization: I_7EfAqg(  
    % -------------------- wP"|$HN  
    if nargin==5 && ischar(nflag) >oDP(]YGg  
        isnorm = strcmpi(nflag,'norm'); k^jCB>b  
        if ~isnorm 'bPo 5V|  
            error('zernfun:normalization','Unrecognized normalization flag.') k)Wz b  
        end ^j}sS!p  
    else wgrO W]e  
        isnorm = false; <Q)}  
    end 06 s3 b  
    12dW:#[  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ku8c)  
    % Compute the Zernike Polynomials V"iLeC  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :X*LlN  
    [bJnl>A  
    % Determine the required powers of r: qCN7i&k,  
    % ----------------------------------- "s9gQAoaO  
    m_abs = abs(m); 3=7h+ZgB  
    rpowers = []; =lQ[%&  
    for j = 1:length(n) I xBO$ 2  
        rpowers = [rpowers m_abs(j):2:n(j)]; 8f5^@K\c  
    end DjvgKy=Jr_  
    rpowers = unique(rpowers); I=a$1%BzEX  
    # HYkzjb  
    % Pre-compute the values of r raised to the required powers, :j4 [_9\  
    % and compile them in a matrix: HYmXPpse  
    % ----------------------------- );H[lKy  
    if rpowers(1)==0 kZ%W?#  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); \;gt&*$-  
        rpowern = cat(2,rpowern{:}); *PU,Rc()6  
        rpowern = [ones(length_r,1) rpowern]; Z]\^.x9S  
    else NI:N W-!  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); %=y3  
        rpowern = cat(2,rpowern{:}); Z"Ni Y  
    end #)}bUNc'  
    m]q!y3  
    % Compute the values of the polynomials: 2tm-:CPG  
    % -------------------------------------- \zL7 j 4  
    y = zeros(length_r,length(n)); I.1l  
    for j = 1:length(n) KdsvZim0>  
        s = 0:(n(j)-m_abs(j))/2; =XlIe{  
        pows = n(j):-2:m_abs(j); ?<^AXLiKV  
        for k = length(s):-1:1 15DK \_;  
            p = (1-2*mod(s(k),2))* ... Cbs4`D,  
                       prod(2:(n(j)-s(k)))/              ... CT%m_lN  
                       prod(2:s(k))/                     ... ^|(4j_.(e  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ~ O=|v/]  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); T<k1?h^7  
            idx = (pows(k)==rpowers); fhx:EZ:~  
            y(:,j) = y(:,j) + p*rpowern(:,idx); =c^=Yvc7U  
        end dU3 >h[q  
         v} ;qMceJ  
        if isnorm wN hR(M7  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); D#}Yx]Q1  
        end /C2f;h(1  
    end ,GP4I3D  
    % END: Compute the Zernike Polynomials yUwgRj  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Ltd?#HP  
    y@\Q@ 9  
    % Compute the Zernike functions: 166c\QO  
    % ------------------------------ &})d%*n  
    idx_pos = m>0; E wsq0D  
    idx_neg = m<0; >=:T ZU  
    %kFELtx  
    z = y; 7qK0!fk5  
    if any(idx_pos) 9|A-oS  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); f<altz_\q  
    end v |2q2bz  
    if any(idx_neg) -7z y  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 0W%}z}/ N  
    end  I4f  
    ?i EXFYJG  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) oT (:33$  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 6Vbv$ AU  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated m|2]lb  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive &Pg-|Ql  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, iVi3 :7*  
    %   and THETA is a vector of angles.  R and THETA must have the same ) UDJ[pL@  
    %   length.  The output Z is a matrix with one column for every P-value, f,HzrHax  
    %   and one row for every (R,THETA) pair. m9<%v0r  
    % }8F$& AFt  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike @f5@0A\0  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) M?~<w)L}  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) K l0tyeT  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 E?gu(\an@  
    %   for all p. l^UJes!  
    % 1'v!9  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ZG/8Ds  
    %   Zernike functions (order N<=7).  In some disciplines it is [X">vaa  
    %   traditional to label the first 36 functions using a single mode q]i(CaKh  
    %   number P instead of separate numbers for the order N and azimuthal <V:<x  
    %   frequency M. ;?L!1wklA  
    % "H="Ip!s  
    %   Example: |;.Pj 3)-  
    % k Kp6  
    %       % Display the first 16 Zernike functions &<w[4z\  
    %       x = -1:0.01:1; [cQ<dVaTX  
    %       [X,Y] = meshgrid(x,x); i+X2M-[Ls  
    %       [theta,r] = cart2pol(X,Y); &J^4Y!gt  
    %       idx = r<=1; Q%n{*py  
    %       p = 0:15; =2nn "YVP  
    %       z = nan(size(X)); v :+8U[x  
    %       y = zernfun2(p,r(idx),theta(idx)); s@ 2 0#D  
    %       figure('Units','normalized') [UJEU~XC  
    %       for k = 1:length(p) P"bknXL  
    %           z(idx) = y(:,k); 5Q$r@&qp  
    %           subplot(4,4,k) $\,BpZ }3  
    %           pcolor(x,x,z), shading interp 5@UC c  
    %           set(gca,'XTick',[],'YTick',[]) n-hvh-ZO  
    %           axis square ;naq-%'Sg  
    %           title(['Z_{' num2str(p(k)) '}']) Wm$`ae   
    %       end P!FEh'.  
    % eg2U+g4  
    %   See also ZERNPOL, ZERNFUN. 2 ]V>J  
    p]h*6nH>~  
    %   Paul Fricker 11/13/2006 o=-Vt,2{  
    $h 08Z  
    xBL$]>  
    % Check and prepare the inputs: Tf#2"(!  
    % ----------------------------- .|-l+   
    if min(size(p))~=1 5oU`[&=Ob  
        error('zernfun2:Pvector','Input P must be vector.') \]T=j#.S$  
    end *gd?>P7\0  
    vnC<*k4&v  
    if any(p)>35 . 0 s[{x  
        error('zernfun2:P36', ... vv2vW=\  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... $(@o$%d  
               '(P = 0 to 35).']) g|K6iY  
    end lh\ICN\O  
    /ojO>Y[<   
    % Get the order and frequency corresonding to the function number: .~.``a  
    % ---------------------------------------------------------------- AXl!cgi  
    p = p(:); (odR'#  
    n = ceil((-3+sqrt(9+8*p))/2); PTbA1.B  
    m = 2*p - n.*(n+2); SZ5O89  
    0%xR<<gir  
    % Pass the inputs to the function ZERNFUN: k_D4'(V:b  
    % ---------------------------------------- qIbg 4uE  
    switch nargin c=A(o  
        case 3 pg~zUOY  
            z = zernfun(n,m,r,theta); aO.\Qe+j  
        case 4 bp]^EVx  
            z = zernfun(n,m,r,theta,nflag); U1,~bO9  
        otherwise bQ-Gp;]  
            error('zernfun2:nargin','Incorrect number of inputs.') CM%|pB/z  
    end jWH{;V&ZV  
    A1T<  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) _W)`cr  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. slU  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of g%`i=s&N%  
    %   order N and frequency M, evaluated at R.  N is a vector of ecr886  
    %   positive integers (including 0), and M is a vector with the bTZ>@~$  
    %   same number of elements as N.  Each element k of M must be a ^"3\iA:  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) )^4ko  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is LnP3z5d(  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix wgCvD  
    %   with one column for every (N,M) pair, and one row for every \Sg<='/{L;  
    %   element in R. ;mEwQ  
    % T}C2e! _O  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- r& vFikIz  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 7OB%A&  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to q5Fs)B  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 bf& }8I$  
    %   for all [n,m]. (2UW_l  
    % L2KG0i`+  
    %   The radial Zernike polynomials are the radial portion of the z< z*Wz  
    %   Zernike functions, which are an orthogonal basis on the unit /:bKqAz;M  
    %   circle.  The series representation of the radial Zernike ,zQo {.  
    %   polynomials is _eGT2,D5r  
    % v @:~mwy  
    %          (n-m)/2 FY$fV"s  
    %            __ 6yY.!HRkr  
    %    m      \       s                                          n-2s m23+kj)+VY  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r h@=7R  
    %    n      s=0 ]1m"V;vZ  
    % J , V  
    %   The following table shows the first 12 polynomials. n5|l|#c$N  
    % J^ `hbP+2  
    %       n    m    Zernike polynomial    Normalization ?AEd(_a!q  
    %       --------------------------------------------- ]<1HM"D  
    %       0    0    1                        sqrt(2) # kyl?E  
    %       1    1    r                           2 h;-a`@rO ;  
    %       2    0    2*r^2 - 1                sqrt(6) zbNA \.y  
    %       2    2    r^2                      sqrt(6) BT]ua]T+  
    %       3    1    3*r^3 - 2*r              sqrt(8) |'tW=  
    %       3    3    r^3                      sqrt(8) F!J J6d53y  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) jk$86ma!  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) zrs<#8!Y_!  
    %       4    4    r^4                      sqrt(10) %%>_B2vc  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) U[R@x`  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) Wt^|BjbB4  
    %       5    5    r^5                      sqrt(12)  9:5:`' b  
    %       --------------------------------------------- SyO79e*t  
    % Ir5WN_EaS  
    %   Example: 1"}cdq.  
    % Wqra8u#  
    %       % Display three example Zernike radial polynomials (zG.aaz*C  
    %       r = 0:0.01:1; {XgnZ`*  
    %       n = [3 2 5]; scW'AJJq  
    %       m = [1 2 1]; MM?`voj~`p  
    %       z = zernpol(n,m,r); 1G;8MPU  
    %       figure Jic}+X*0  
    %       plot(r,z) XF}rd.K:  
    %       grid on H6 &7\Wbk  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 6"U8V ?E  
    % f6!D L<  
    %   See also ZERNFUN, ZERNFUN2. . w H*sb  
    w(j^ccPD  
    % A note on the algorithm. mf' ]O,  
    % ------------------------ *#y;8  
    % The radial Zernike polynomials are computed using the series HRB[GP+  
    % representation shown in the Help section above. For many special !g>.i`  
    % functions, direct evaluation using the series representation can 3xNMPm  
    % produce poor numerical results (floating point errors), because 2Vk\L~K  
    % the summation often involves computing small differences between fQ+\;iAU  
    % large successive terms in the series. (In such cases, the functions B@O@1?c[  
    % are often evaluated using alternative methods such as recurrence fr[3:2g-_  
    % relations: see the Legendre functions, for example). For the Zernike /\Z J   
    % polynomials, however, this problem does not arise, because the 1zftrX~v!X  
    % polynomials are evaluated over the finite domain r = (0,1), and cu&,J#r%  
    % because the coefficients for a given polynomial are generally all +Llo81j&  
    % of similar magnitude. C5W>W4EM  
    % Zj*\"Ol  
    % ZERNPOL has been written using a vectorized implementation: multiple GKiukX$'  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] *1{S*`|cJy  
    % values can be passed as inputs) for a vector of points R.  To achieve f[sF:f(zI  
    % this vectorization most efficiently, the algorithm in ZERNPOL rR,2UZR  
    % involves pre-determining all the powers p of R that are required to "&~ 0T#  
    % compute the outputs, and then compiling the {R^p} into a single Bfr'Zdw  
    % matrix.  This avoids any redundant computation of the R^p, and j>Ag\@2ME  
    % minimizes the sizes of certain intermediate variables. %O%=rUD  
    % W `z 0"  
    %   Paul Fricker 11/13/2006 '9?;"=6(  
    zf[`~g  
    BVw Wj-,  
    % Check and prepare the inputs: dQb.BOI)h  
    % ----------------------------- KCuG u}  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) k(%QIJH  
        error('zernpol:NMvectors','N and M must be vectors.') 7v7G[n  
    end {g6Qv-  
    {/<6v. v  
    if length(n)~=length(m) sC"}8+[)S3  
        error('zernpol:NMlength','N and M must be the same length.') >dzsQ^Nj  
    end RthT \%R  
    {HOy_Fiih  
    n = n(:); x3p ND  
    m = m(:); 17.x0 gW,  
    length_n = length(n); BZv+H=b  
    :_kAl? eJ  
    if any(mod(n-m,2)) N#C1-*[C  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') *e#<n_%R  
    end QK`i%TXJ  
    $ (=~r`O+1  
    if any(m<0) 7piuLq+  
        error('zernpol:Mpositive','All M must be positive.') ;z~n.0'  
    end [&?8,Q(  
    sj?3M@l95W  
    if any(m>n) V DS23Bo  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') *Vw\'%p*  
    end k0-G$|QgIp  
    WQNE2Q  
    if any( r>1 | r<0 ) Xjio Z  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') Mg,:UC:  
    end K+=+?~  
    %ir:AS k  
    if ~any(size(r)==1) llV3ka^!  
        error('zernpol:Rvector','R must be a vector.') &k7;DO  
    end CSPKP#,B0[  
    6 15s5ZA  
    r = r(:); G rmzkNlN  
    length_r = length(r); bI.t <;  
    !2UOC P  
    if nargin==4 Nc Pgq?3p  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); [+m?G4[  
        if ~isnorm ^u}L;`L  
            error('zernpol:normalization','Unrecognized normalization flag.') ph>7?3;t  
        end ((tv2  
    else 9+s.w25R  
        isnorm = false; D?yG+%&9  
    end hI?sOR!  
    )}vNOE?X~  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Vm}%ttTC  
    % Compute the Zernike Polynomials -x8nQ%X  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :0)3K7Q   
    ,#d? _?/:O  
    % Determine the required powers of r: `LAR@a5i  
    % ----------------------------------- x_Jwd^`t!  
    rpowers = []; 4wd& 55=2  
    for j = 1:length(n)  c gzwx  
        rpowers = [rpowers m(j):2:n(j)]; km^^T_ M/  
    end 'Jf^`ZT}  
    rpowers = unique(rpowers); KDl_?9E5  
    ")O`mXg-  
    % Pre-compute the values of r raised to the required powers, @_:]J1jw7  
    % and compile them in a matrix: ?m$a6'2-,J  
    % ----------------------------- 53-v|'9'  
    if rpowers(1)==0 [gy*`@w  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); X|0R= n]  
        rpowern = cat(2,rpowern{:}); {~|OE -X][  
        rpowern = [ones(length_r,1) rpowern]; jdE5~a+  
    else X U/QA [K  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 2aJS{[  
        rpowern = cat(2,rpowern{:}); 8]4U`\k4  
    end :=%0Mb:  
    ZxV"(\$n  
    % Compute the values of the polynomials: I$E.s*B9  
    % -------------------------------------- b@3_L4~  
    z = zeros(length_r,length_n); Y6,Rj:8  
    for j = 1:length_n 1]IQg;q  
        s = 0:(n(j)-m(j))/2; ~4P%%b0,o  
        pows = n(j):-2:m(j); I;VuW  
        for k = length(s):-1:1 pdJ/&ufh  
            p = (1-2*mod(s(k),2))* ... lWBb4 !l  
                       prod(2:(n(j)-s(k)))/          ... {hln?'  
                       prod(2:s(k))/                 ... p!k7C&]E  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... lds- T  
                       prod(2:((n(j)+m(j))/2-s(k))); nhIa175'  
            idx = (pows(k)==rpowers); !mWiYpbU+  
            z(:,j) = z(:,j) + p*rpowern(:,idx); =+ t^f  
        end ^c:Fy+fb  
         >pU:Gr  
        if isnorm 6[OzU2nB  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); |t; ~:A  
        end  /'31w9  
    end 6#IU*  
    JQ4{` =,b  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  d$ ^ ,bL2p  
    W]nSR RWco  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 X_7UJ jFw"  
    vPD] hs  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)