非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 C/w!Y)nB=
function z = zernfun(n,m,r,theta,nflag) `f9I#B
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. @+3@Z?!SZ
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N LS=HX~5C
% and angular frequency M, evaluated at positions (R,THETA) on the 3'H 1T
% unit circle. N is a vector of positive integers (including 0), and '<35XjW
% M is a vector with the same number of elements as N. Each element UaQR0,#0y
% k of M must be a positive integer, with possible values M(k) = -N(k) -m.SN>V
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, Gg3cY{7
% and THETA is a vector of angles. R and THETA must have the same AIR\>.~"i*
% length. The output Z is a matrix with one column for every (N,M) l$_Yl&!q$
% pair, and one row for every (R,THETA) pair. <opBOZ
d
% g`}+K U
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike _FET$$>z N
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ;&N;6V"}
% with delta(m,0) the Kronecker delta, is chosen so that the integral MU ;
L7^
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ) DzbJ}
% and theta=0 to theta=2*pi) is unity. For the non-normalized ?>_[hZ
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. O<1qU
M
% Zljj
% The Zernike functions are an orthogonal basis on the unit circle. ].j;d2xT\
% They are used in disciplines such as astronomy, optics, and F .(zS(q
% optometry to describe functions on a circular domain. XkWO -L
% O+Zt*jN;
% The following table lists the first 15 Zernike functions. 1%?J l~M
% J 1?)z+t9~
% n m Zernike function Normalization >^8=_i !
% -------------------------------------------------- /GK1}h
% 0 0 1 1 5,0fL
% 1 1 r * cos(theta) 2 Z>)(yi9+
% 1 -1 r * sin(theta) 2 Hvn{aLa.
% 2 -2 r^2 * cos(2*theta) sqrt(6) zF6]2Y?k%
% 2 0 (2*r^2 - 1) sqrt(3) >&|C
E2'
% 2 2 r^2 * sin(2*theta) sqrt(6) O;u&>BMk
% 3 -3 r^3 * cos(3*theta) sqrt(8) q&h&GZ
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ZE ())W"
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) OIuEC7XM^C
% 3 3 r^3 * sin(3*theta) sqrt(8) E6{|zF/3'
% 4 -4 r^4 * cos(4*theta) sqrt(10) [f'V pId8
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ^MyuD?va
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) qeK_w
'
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ohHKZZ
% 4 4 r^4 * sin(4*theta) sqrt(10) J!$q"0G'WT
% -------------------------------------------------- >Jl(9)e
% =AhXEu ^
% Example 1: t,*hxzD"
% ay\ e#)
% % Display the Zernike function Z(n=5,m=1) Ylc[ghx
% x = -1:0.01:1; nMK,g>wp
% [X,Y] = meshgrid(x,x); [>IAS>
% [theta,r] = cart2pol(X,Y); akuV9S
% idx = r<=1; 1rr\l`
% z = nan(size(X)); @O7hY8",
% z(idx) = zernfun(5,1,r(idx),theta(idx)); =tJ}itcJ'
% figure Jl-Lz03YG
% pcolor(x,x,z), shading interp w&eX)!
% axis square, colorbar cr{;gP
% title('Zernike function Z_5^1(r,\theta)') zFy0SzF
% ZSKSMI%D
% Example 2: 3|=9aM^ x^
% e12.suv
% % Display the first 10 Zernike functions Oy:;v7
% x = -1:0.01:1; x
\.qzi
% [X,Y] = meshgrid(x,x); ]ov>VF,<
% [theta,r] = cart2pol(X,Y); a=<l}`*
% idx = r<=1; }u=-Y'!#]
% z = nan(size(X)); ,k*g`OTW
% n = [0 1 1 2 2 2 3 3 3 3]; " "GeO%J8
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; }uJH!@j
% Nplot = [4 10 12 16 18 20 22 24 26 28]; RR u1/nam
% y = zernfun(n,m,r(idx),theta(idx)); 5]/i[T_
% figure('Units','normalized') VP|ga}(
% for k = 1:10 %!5[3b'h
% z(idx) = y(:,k); B|Y6;4?
% subplot(4,7,Nplot(k)) "XWrd[Df
% pcolor(x,x,z), shading interp ?U~9d"2=
% set(gca,'XTick',[],'YTick',[]) `K.2&6xc
% axis square "~y@rqIba
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) |[ymNG
% end tta\.ic
% 29(s^#e8A
% See also ZERNPOL, ZERNFUN2. [FHSFr
E,5
~_SoP
% Paul Fricker 11/13/2006 K5O8G
$"z|^ze
:wn9bCom?M
% Check and prepare the inputs: :Ogt{t
% ----------------------------- VKW9Rn9Qg
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) l6^IX0&p
error('zernfun:NMvectors','N and M must be vectors.') C]ev"Am_)
end Gj6(ycaS
Sm6hyZFy
if length(n)~=length(m) K
!&{k94
error('zernfun:NMlength','N and M must be the same length.') [89qg+z
end *U vh;d{
:"Vfn:Q
n = n(:); ;A~efC^<
m = m(:); |{ E\ 2U
if any(mod(n-m,2)) M_wqb'=
error('zernfun:NMmultiplesof2', ... dg9
DBn#
'All N and M must differ by multiples of 2 (including 0).') E1(2wJ-3"
end
bL: !3|M
FdR!jt
if any(m>n) >7yOu!l
error('zernfun:MlessthanN', ... |D `r o
'Each M must be less than or equal to its corresponding N.') vs3px1Xe#
end v%_5!SR
=D<{uovQB
if any( r>1 | r<0 ) 8`e75%f:2
error('zernfun:Rlessthan1','All R must be between 0 and 1.') Q{ hXP*5
end a2l\B ~n
7,.Hj&'B
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 2b|$z"97jj
error('zernfun:RTHvector','R and THETA must be vectors.') .VFa,&5;3
end os|Y=a
6#egy|("nF
r = r(:); )<w`E{q
theta = theta(:); aJ[K' 5|
length_r = length(r); /s91[n(d
if length_r~=length(theta) %y(oY
error('zernfun:RTHlength', ... q9GSUkb
'The number of R- and THETA-values must be equal.') pkd#SY
end 9,h'cf`F
y H\z+A|
% Check normalization: OGgP~hd
% -------------------- !+qy~h
if nargin==5 && ischar(nflag) ?LP&VU1
isnorm = strcmpi(nflag,'norm'); 1
J3h_z6/
if ~isnorm p~ `f.q$'
error('zernfun:normalization','Unrecognized normalization flag.') >EQd;Af
end qA4w*{JN
else U%2[,c_
isnorm = false; 9EryHV|
end Ne^md
+9S_H(
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% O gQE1{C
% Compute the Zernike Polynomials qPJU}(9#B
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% qT(
3M9!
{-28%
% Determine the required powers of r: JGS4r+
% ----------------------------------- i3T]<&+j5
m_abs = abs(m); yqdhLX|Mk
rpowers = []; 4~<
:Pj
for j = 1:length(n) F8(6P1}E
rpowers = [rpowers m_abs(j):2:n(j)]; Ol8ma`}Nq3
end .Rq|F
rpowers = unique(rpowers); [cSoo+Mlx
2Z3c` /k
% Pre-compute the values of r raised to the required powers, X{SD3j=G#
% and compile them in a matrix: Isa]5>
% ----------------------------- DL&\iR
if rpowers(1)==0 (+'*_
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); [[{y?-U
rpowern = cat(2,rpowern{:}); K1S)S8.EZ8
rpowern = [ones(length_r,1) rpowern]; dpHK~n j\_
else -V
Rby
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 1b)^5U ;
rpowern = cat(2,rpowern{:}); Z-(V fp4
end 7r=BGoA2E
92}UP=RW!
% Compute the values of the polynomials: 1-.UkdZ}
% -------------------------------------- !oTF2Q+C
y = zeros(length_r,length(n)); \IZfp=On
for j = 1:length(n) :G#>):
s = 0:(n(j)-m_abs(j))/2; Y|bCbaF
pows = n(j):-2:m_abs(j); cwK6$Ax
for k = length(s):-1:1 B2UQO4[w
p = (1-2*mod(s(k),2))* ... Q_<CG[,6D1
prod(2:(n(j)-s(k)))/ ... n
GE3O#fv
prod(2:s(k))/ ... ;M '?k8L
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ...
r"s
<;
prod(2:((n(j)+m_abs(j))/2-s(k))); K*Tj;
idx = (pows(k)==rpowers); u_.`I8qa
y(:,j) = y(:,j) + p*rpowern(:,idx); ] -O/{FIv
end RC5b'+E