切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11143阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 -8:&>~4`  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 2XFU1 AW  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 DF1I[b=]  
    function z = zernfun(n,m,r,theta,nflag) $}J5xG,}$  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. jGXO\:s O  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N b7 NM#Hb  
    %   and angular frequency M, evaluated at positions (R,THETA) on the jT8#C=a7  
    %   unit circle.  N is a vector of positive integers (including 0), and i=i(%yQ%  
    %   M is a vector with the same number of elements as N.  Each element )2V:  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) )-0kb~;|  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 3a?o3=  
    %   and THETA is a vector of angles.  R and THETA must have the same q*F{/N **  
    %   length.  The output Z is a matrix with one column for every (N,M) q#vQv 5  
    %   pair, and one row for every (R,THETA) pair. ;pqg/>W'  
    % rs,2rSsg!  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike -R57@D>j\  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), :YXX8|>  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral MS\>DW  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, A*2  bA  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized &>%T^Y|J4  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. .QA }u ,EN  
    % R%Q@   
    %   The Zernike functions are an orthogonal basis on the unit circle. 6^]!gR#B  
    %   They are used in disciplines such as astronomy, optics, and  @2Z#x  
    %   optometry to describe functions on a circular domain. xnmmXtk  
    % MYla OT  
    %   The following table lists the first 15 Zernike functions. Po ZuMF  
    % <F}_ /q1  
    %       n    m    Zernike function           Normalization G]+&!4  
    %       -------------------------------------------------- oASY7k_3  
    %       0    0    1                                 1 ^C_#<m_k  
    %       1    1    r * cos(theta)                    2 zUKmxy@  
    %       1   -1    r * sin(theta)                    2 1+9W+$=h2  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) i'9vL:3  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 2^^`n1?'  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ~(Q)"s\1I  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) I_<I&{N>  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) _9=Yvc=  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Ezr:1 GJ  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) H-~6Z",1  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ^:#D0[  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) vH#huZA?7  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) cm?\ -[cV  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) U-IpH+E  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) A<1hOSCz\  
    %       -------------------------------------------------- oW<5|FaN  
    % 5qr'.m  
    %   Example 1: %] >KvoA  
    % +n#V[~~8AI  
    %       % Display the Zernike function Z(n=5,m=1) @&1ZB6OCb:  
    %       x = -1:0.01:1; nHm}zOLc  
    %       [X,Y] = meshgrid(x,x); w+yC)Rmz  
    %       [theta,r] = cart2pol(X,Y); 4WJ.^(  
    %       idx = r<=1; rd9e \%A  
    %       z = nan(size(X)); %@.v2 cT  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Y8o)FVcyNy  
    %       figure .Yf:[`Q6g  
    %       pcolor(x,x,z), shading interp B5X(ykaX~  
    %       axis square, colorbar Ed_N[ I   
    %       title('Zernike function Z_5^1(r,\theta)') )rekY;  
    % r7b1-  
    %   Example 2: qWODs  
    % B)qWtMZx  
    %       % Display the first 10 Zernike functions _NMm/]mN /  
    %       x = -1:0.01:1; <Dwar>}  
    %       [X,Y] = meshgrid(x,x); B oC5E#;G  
    %       [theta,r] = cart2pol(X,Y); @ Wd9I;hWv  
    %       idx = r<=1; !t gi  
    %       z = nan(size(X)); UazP6^{L  
    %       n = [0  1  1  2  2  2  3  3  3  3]; . koYHq  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; MBqt&_?K  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; C!fMW+C@  
    %       y = zernfun(n,m,r(idx),theta(idx)); ^-,xE>3o  
    %       figure('Units','normalized') Bs O+NP  
    %       for k = 1:10 6f\Lf?vF  
    %           z(idx) = y(:,k); wS%Q<uK  
    %           subplot(4,7,Nplot(k)) ;xzUE`uUfJ  
    %           pcolor(x,x,z), shading interp f' 3q(a<p  
    %           set(gca,'XTick',[],'YTick',[]) A1.7 O  
    %           axis square w-Da~[J  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) !*oi!ysU;O  
    %       end v 8$>rwB  
    % 4`!Z$kt  
    %   See also ZERNPOL, ZERNFUN2. Sgp;@4`M  
    k3) dEH1z  
    %   Paul Fricker 11/13/2006 WJ4li@T7V  
    qI~xlW  
    x "^Xj]-  
    % Check and prepare the inputs: 0V'nK V"|  
    % ----------------------------- {TX]\ufG  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) vTlwRG=5  
        error('zernfun:NMvectors','N and M must be vectors.') K95p>E`9e  
    end  (Q.waI  
    ^yyC [Mz  
    if length(n)~=length(m) cm&I* 0\  
        error('zernfun:NMlength','N and M must be the same length.') YKO){f5  
    end fjs [f'L  
    =8; {\  
    n = n(:); UrYZ` J  
    m = m(:); :=wT vz  
    if any(mod(n-m,2)) b\-&sM(W"  
        error('zernfun:NMmultiplesof2', ... wnM9('\  
              'All N and M must differ by multiples of 2 (including 0).') DDPxmuNG  
    end rdJ d#S  
    5[* qi?w=  
    if any(m>n) ,PWgH$+  
        error('zernfun:MlessthanN', ... l zYnw)Pv  
              'Each M must be less than or equal to its corresponding N.') :9$F'd\  
    end 1@QZnF5[  
    /4` 0?/V  
    if any( r>1 | r<0 ) P DrZY.-  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ^OstR`U3  
    end ReM=eS  
    (UU(:/  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) rld67'KcE  
        error('zernfun:RTHvector','R and THETA must be vectors.') ]8 f ms(  
    end 5ZMR,SZhC  
    2ioQb`=  
    r = r(:); {`K m_<Te!  
    theta = theta(:); BPdfYu ,il  
    length_r = length(r); ~ ; -! n;  
    if length_r~=length(theta) YEj8S5"Su\  
        error('zernfun:RTHlength', ... }RwSp!}C  
              'The number of R- and THETA-values must be equal.') V??dYB(  
    end Kd=%tNp  
    { Fawt:  
    % Check normalization: uoXAQ6k  
    % -------------------- rfNm&!K  
    if nargin==5 && ischar(nflag) IuNiEtKx  
        isnorm = strcmpi(nflag,'norm'); UmQ?rS8d  
        if ~isnorm )e a:Q?  
            error('zernfun:normalization','Unrecognized normalization flag.') {3.r6ZwCn  
        end xv&Q+HD  
    else %oq[,h <X  
        isnorm = false; 8AnP7}n;?'  
    end ~fT_8z  
    Zxbo^W[[  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% R +WP0&d'  
    % Compute the Zernike Polynomials wyQzM6:,yX  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% gMaN)ESqd4  
    p\JfFfC  
    % Determine the required powers of r: T)Y=zIQ1]7  
    % ----------------------------------- 2EfF=Fm>  
    m_abs = abs(m); !kE-_dY6)  
    rpowers = []; /yZQ\{=  
    for j = 1:length(n) JXu$ew>q  
        rpowers = [rpowers m_abs(j):2:n(j)]; US%^#D q  
    end -*m+(7G\  
    rpowers = unique(rpowers); .]sf0S!  
    8`fjF/  
    % Pre-compute the values of r raised to the required powers, Ygl%eP%Z  
    % and compile them in a matrix: l?Fb ='#  
    % ----------------------------- `/~8}Y{  
    if rpowers(1)==0 QCX8IIHG  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ;d'Z|H;  
        rpowern = cat(2,rpowern{:}); 1$81E.  
        rpowern = [ones(length_r,1) rpowern]; i}o[- S4  
    else <]b7ZF]  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Vgyew9>E  
        rpowern = cat(2,rpowern{:}); NsJ(`zk:  
    end <F.Tx$s  
    e`v`XSA[p  
    % Compute the values of the polynomials: ?HV`| Cw  
    % -------------------------------------- Hx\H $Y  
    y = zeros(length_r,length(n)); ~I799Xi  
    for j = 1:length(n) e&qh9mlE  
        s = 0:(n(j)-m_abs(j))/2; ,i,q!M{-  
        pows = n(j):-2:m_abs(j); &ZX{R#[L  
        for k = length(s):-1:1 rn=m\Gv e  
            p = (1-2*mod(s(k),2))* ... '8T=~R6  
                       prod(2:(n(j)-s(k)))/              ... gW1b~( fD  
                       prod(2:s(k))/                     ... LJ(1RK GCz  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... hweaGL t0  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); '^FGc  
            idx = (pows(k)==rpowers); _Jt 2YZdA  
            y(:,j) = y(:,j) + p*rpowern(:,idx); NU*fg`w  
        end p$x{yz3  
         S:x?6IDPC^  
        if isnorm NM6Teu_  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); Q]w&N30  
        end y T#{UA^  
    end v !FMs<  
    % END: Compute the Zernike Polynomials = pzn u+,  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% S9>0t0  
    m~D&gGFt  
    % Compute the Zernike functions: {|yob4N  
    % ------------------------------ ryc& n5  
    idx_pos = m>0; pOrWg@<\L  
    idx_neg = m<0; ^-a8V'  
    n9\]S7] 52  
    z = y; H=\!2XS  
    if any(idx_pos) Q26qNn bK  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ZZ.m(A TR  
    end @j4U^"_QB  
    if any(idx_neg) =07]z@s  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); XbZ*&  
    end k~|-gf FP  
    Izv+i*(dl  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) `W-&0|%Ta  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 3J=Y9 }  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated V&|!RxWK  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive q,3;m[cA  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, S i nl  
    %   and THETA is a vector of angles.  R and THETA must have the same F>X-w+b4r  
    %   length.  The output Z is a matrix with one column for every P-value,  N<L`c/  
    %   and one row for every (R,THETA) pair. x+@&(NMP5  
    % Fbp{,V@F2  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike >2?aZ`r+  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) C P3<1~  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) i#%a-I:M  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 & ``d  
    %   for all p. x#N-&baS  
    % t nS+5F  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 WpLZQ6wH  
    %   Zernike functions (order N<=7).  In some disciplines it is c=6Q%S  
    %   traditional to label the first 36 functions using a single mode 3<?XTv-  
    %   number P instead of separate numbers for the order N and azimuthal =U. b% uC  
    %   frequency M. Z h/Uu6  
    % 0gn@h/F2%  
    %   Example: ((rv]f{  
    % NA.1QQ ;e  
    %       % Display the first 16 Zernike functions =ORf%f5"'  
    %       x = -1:0.01:1; PjIeZ&p  
    %       [X,Y] = meshgrid(x,x); Ce'pis   
    %       [theta,r] = cart2pol(X,Y); %ObD2)s6:^  
    %       idx = r<=1; I=Oy-  
    %       p = 0:15; K$ v"Uk  
    %       z = nan(size(X)); Ft@Wyo`^  
    %       y = zernfun2(p,r(idx),theta(idx)); +} mk>e/  
    %       figure('Units','normalized') m4[g6pNx~  
    %       for k = 1:length(p) 60Z]M+8y8  
    %           z(idx) = y(:,k); M/*NM= -a  
    %           subplot(4,4,k) pX=,iOF[I  
    %           pcolor(x,x,z), shading interp SjdZyJa  
    %           set(gca,'XTick',[],'YTick',[]) Y&2aO1  
    %           axis square &l}?v@@+_  
    %           title(['Z_{' num2str(p(k)) '}']) ? &zQa xD  
    %       end XW L^  
    % 'ho{eR@d  
    %   See also ZERNPOL, ZERNFUN. M"_FrIO  
    YGsS4ia*4i  
    %   Paul Fricker 11/13/2006 r Db>&s3  
    jvzBh-!  
    zEw >SP1,  
    % Check and prepare the inputs: {?{U,&  
    % ----------------------------- PzY)"]g  
    if min(size(p))~=1 n$2RCQ  
        error('zernfun2:Pvector','Input P must be vector.') w.N,)]h  
    end #yc L'T`X%  
    $gMCR b,  
    if any(p)>35 \Z/k;=Sla  
        error('zernfun2:P36', ... M@p"y q  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... !~lW3  
               '(P = 0 to 35).']) e(1k0W4B  
    end ?G? gy2  
    m h;X~.98  
    % Get the order and frequency corresonding to the function number: >m_v5K  
    % ---------------------------------------------------------------- D{'#er  
    p = p(:); ^^(<c,NX#M  
    n = ceil((-3+sqrt(9+8*p))/2); *(cU]NUH_  
    m = 2*p - n.*(n+2); eFTX6XB:i  
    V)D-pV V  
    % Pass the inputs to the function ZERNFUN: K%}}fw2RMN  
    % ---------------------------------------- oJ78jGTnb  
    switch nargin H:a|x#"  
        case 3 'Zk<l#"}  
            z = zernfun(n,m,r,theta); CsSp=(  
        case 4 R#4 ^s  
            z = zernfun(n,m,r,theta,nflag); AV@\ +0  
        otherwise 30FykNh  
            error('zernfun2:nargin','Incorrect number of inputs.') ,2WH/"  
    end SvK1.NUa  
    +zWrLf_Rc  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) L(WOet('  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. ,VD6s !(  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of A|<;  
    %   order N and frequency M, evaluated at R.  N is a vector of xaXV ^ZM3  
    %   positive integers (including 0), and M is a vector with the "@/ba!L+  
    %   same number of elements as N.  Each element k of M must be a PW_`qP:  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) _1JmjIH)M  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is &]nd!N  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix a'[)9:  
    %   with one column for every (N,M) pair, and one row for every J0Four#MD  
    %   element in R. \; bW h  
    % B- Y+F  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- \7E`QY4  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ~eo^`4O{{  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to |vy]8?Ak  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 *1;23BiH-  
    %   for all [n,m]. `=!p$hg($  
    % rrQ0qg  
    %   The radial Zernike polynomials are the radial portion of the `I> ], J/  
    %   Zernike functions, which are an orthogonal basis on the unit \ j]~>9  
    %   circle.  The series representation of the radial Zernike w67x l  
    %   polynomials is *4#on>  
    % 3%NE/lw1  
    %          (n-m)/2 onzA7Gre  
    %            __ >5i?JUZ  
    %    m      \       s                                          n-2s v:P!(`sF  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r =mJ F_Ri  
    %    n      s=0 3@X|Gs'_S  
    % p#b{xK  
    %   The following table shows the first 12 polynomials. k E_ky)  
    % r"]Oe$[#  
    %       n    m    Zernike polynomial    Normalization -q(:%;  
    %       --------------------------------------------- luF#OPC  
    %       0    0    1                        sqrt(2) s<{GpWT8  
    %       1    1    r                           2 gY\mXM*^  
    %       2    0    2*r^2 - 1                sqrt(6) &V;x 4  
    %       2    2    r^2                      sqrt(6) A}eOR=E  
    %       3    1    3*r^3 - 2*r              sqrt(8) >PH< N  
    %       3    3    r^3                      sqrt(8) |Y4q+sDW  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) J_/05( 48  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ")\ *2d  
    %       4    4    r^4                      sqrt(10) S%V%!803!  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) 0(vdkC4\A  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) 7+S44)w}~  
    %       5    5    r^5                      sqrt(12) o@@w^##  
    %       --------------------------------------------- ZW2s[p r  
    % ! ZA}b[  
    %   Example: #,Bj!'Q'-  
    % Z>HNe9pr  
    %       % Display three example Zernike radial polynomials J]]\&MtaO  
    %       r = 0:0.01:1; ypT9 8  
    %       n = [3 2 5]; 67 O<*M  
    %       m = [1 2 1]; 2 _Jb9:/X  
    %       z = zernpol(n,m,r); #[(0tc/  
    %       figure jrdtd6b}  
    %       plot(r,z) i\Q":4  
    %       grid on o(nHB g  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') G%`cJdM  
    % c8tP+O9  
    %   See also ZERNFUN, ZERNFUN2. T@>6 3  
    dff#{  
    % A note on the algorithm. 7\ZL  
    % ------------------------ _6 /Qp`s  
    % The radial Zernike polynomials are computed using the series tQCj)Ms'X  
    % representation shown in the Help section above. For many special p|;o5j{  
    % functions, direct evaluation using the series representation can gTyW#verh$  
    % produce poor numerical results (floating point errors), because }(rzH}X@  
    % the summation often involves computing small differences between {!tOI  
    % large successive terms in the series. (In such cases, the functions ]N_140N~  
    % are often evaluated using alternative methods such as recurrence 95% :AQLV  
    % relations: see the Legendre functions, for example). For the Zernike ILIRI[7 (  
    % polynomials, however, this problem does not arise, because the 2PI #ie4  
    % polynomials are evaluated over the finite domain r = (0,1), and {8W |W2o$!  
    % because the coefficients for a given polynomial are generally all R3cG<MjmK  
    % of similar magnitude. R =QM;  
    % 34]%d<;A  
    % ZERNPOL has been written using a vectorized implementation: multiple ?/^VOj4&  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] @nW'(x(  
    % values can be passed as inputs) for a vector of points R.  To achieve fVv$K&  
    % this vectorization most efficiently, the algorithm in ZERNPOL ar=hx+  
    % involves pre-determining all the powers p of R that are required to OC`QD5  
    % compute the outputs, and then compiling the {R^p} into a single ; S{ZC5  
    % matrix.  This avoids any redundant computation of the R^p, and hkL w&;WJr  
    % minimizes the sizes of certain intermediate variables. mURX I'JkX  
    % :nTkg[49pJ  
    %   Paul Fricker 11/13/2006 *Y^5M"AB_  
    CVi<~7Am\  
    MEDskvBG  
    % Check and prepare the inputs: CcbWW4 )  
    % ----------------------------- Yr Preuh  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) p$&_fzb  
        error('zernpol:NMvectors','N and M must be vectors.') x%ZiE5#  
    end mfUKHX5  
    >E{#HPpBi  
    if length(n)~=length(m) V}p*HB@:  
        error('zernpol:NMlength','N and M must be the same length.') <`^>bv9  
    end ]eORw $f  
    \"{/yjO|4  
    n = n(:); !Q\X)C  
    m = m(:); 1Q3%!~<\s  
    length_n = length(n); 48W:4B'l9  
    %_cg|yy  
    if any(mod(n-m,2)) NN?Bi=&9  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') -{.h\  
    end V:$[~)k8  
    a^(S!I  
    if any(m<0) b'i%B9yU:%  
        error('zernpol:Mpositive','All M must be positive.') z2$F Yn Q  
    end H 7 o$O  
    !hpTyO+%  
    if any(m>n) qM+!f2t  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 9p!dQx  
    end *NKC \aV`0  
    a .B\=3xn  
    if any( r>1 | r<0 ) N$L&|4r  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 9QO!vx  
    end j>0SE  
    'bd=,QW  
    if ~any(size(r)==1) ZfF`kD\  
        error('zernpol:Rvector','R must be a vector.') V1AEjh  
    end xX[{E x   
    u&Ie%@:h9R  
    r = r(:); 4?* `:  
    length_r = length(r); 9.]Cy8  
    ?3e!A9x  
    if nargin==4 cJ1{2R  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); \ltErd-  
        if ~isnorm Qt)7mf  
            error('zernpol:normalization','Unrecognized normalization flag.') 4 g/<).1<b  
        end =iPd@f"$  
    else u/K)y:ZZ  
        isnorm = false; ^[SbV^DOL  
    end ,L8I7O}A;  
    cPa 0n4  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% vs)HbQ  
    % Compute the Zernike Polynomials g@N=N  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% j/; @P  
    ;nHo%`Zt  
    % Determine the required powers of r: X.W#=$;$:  
    % ----------------------------------- ph5xW<VNP  
    rpowers = []; {&Gk.ODI7  
    for j = 1:length(n) WL*W=(  
        rpowers = [rpowers m(j):2:n(j)]; 6='_+{   
    end z.\[Va$@l  
    rpowers = unique(rpowers); Z{|.xgsY  
     K{7S  
    % Pre-compute the values of r raised to the required powers, Jh/M}%@|  
    % and compile them in a matrix: Vtc)/OH  
    % ----------------------------- cC(ubUR  
    if rpowers(1)==0 Q?I"J$]&L  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); "|~B};|MFF  
        rpowern = cat(2,rpowern{:}); U_=wL  
        rpowern = [ones(length_r,1) rpowern]; FcbA)7dD  
    else ~,3v<A[5Vi  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); cWy*K4O  
        rpowern = cat(2,rpowern{:}); %i JU)N!  
    end IU;pkgBj0Y  
    ,nuDoc  
    % Compute the values of the polynomials: 'AlSq:gZ  
    % -------------------------------------- PSrt/y!  
    z = zeros(length_r,length_n); 4<K ,w{I  
    for j = 1:length_n Wy0a2Ve  
        s = 0:(n(j)-m(j))/2; MX< ($M  
        pows = n(j):-2:m(j); k%4A::=  
        for k = length(s):-1:1 }Rf :DmPE  
            p = (1-2*mod(s(k),2))* ... $dWl A<u  
                       prod(2:(n(j)-s(k)))/          ... sou$qKoG01  
                       prod(2:s(k))/                 ... * y"GgI  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... W:N"O\`{m  
                       prod(2:((n(j)+m(j))/2-s(k))); Rc m(Y7  
            idx = (pows(k)==rpowers); S0o,)`ZB  
            z(:,j) = z(:,j) + p*rpowern(:,idx); `peJ s~V  
        end y^+[eT&  
         XC8z|A-@  
        if isnorm ?p/kuv{\o#  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); yP=isi#dDY  
        end _bV=G#qKK  
    end (nP*  
    rF j)5~  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ;.a)r  
    b4PK  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 NU*6iLIq|F  
    ;BvWU\!  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)