切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11440阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 Xtp"QY p  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! =li|  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 om]4BRe  
    function z = zernfun(n,m,r,theta,nflag) Y_]De3:V0B  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. T}4/0yR2  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N A0fFv+RN3  
    %   and angular frequency M, evaluated at positions (R,THETA) on the JqMDqPIQ  
    %   unit circle.  N is a vector of positive integers (including 0), and D`xHD#j h  
    %   M is a vector with the same number of elements as N.  Each element cKn`/\.H  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) ]ix!tb.Q  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, me'd6!O9-  
    %   and THETA is a vector of angles.  R and THETA must have the same zcva-ze:;  
    %   length.  The output Z is a matrix with one column for every (N,M) g7&9"  
    %   pair, and one row for every (R,THETA) pair. YSj+\Z$(  
    % 8X I?  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike &m[Qn!>i6  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 3;8!rNN  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Dc+'<"  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 9 JWa$iBH@  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized )x]3Zq  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 8Th` ]tI  
    % tqy@iEz+  
    %   The Zernike functions are an orthogonal basis on the unit circle. in(U:04  
    %   They are used in disciplines such as astronomy, optics, and EZYBeqv  
    %   optometry to describe functions on a circular domain. Q6XRsFc  
    % bcAvM;  
    %   The following table lists the first 15 Zernike functions. !xwG% {_  
    % .cR -V`  
    %       n    m    Zernike function           Normalization ki{3IEOr}  
    %       -------------------------------------------------- JKX_q&bUw  
    %       0    0    1                                 1 /[9t`  
    %       1    1    r * cos(theta)                    2 %eJGt e-  
    %       1   -1    r * sin(theta)                    2 0jzbG]pc:E  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) Raw)9tUt  
    %       2    0    (2*r^2 - 1)                    sqrt(3) -_<}$9lz  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) vA X|hwn;  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 9W8]8sUeG  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) &E M\CjKv"  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 7c;9$j  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ,&d@O>$E:  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) [y0O{,lI  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ~l$3uN[g  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) XTd3|Pm  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) @G:V  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) h1(j2S`:  
    %       -------------------------------------------------- (708H_  
    % DaH?@Q  
    %   Example 1: NWd<+-pC6  
    % XUF\r]B,9  
    %       % Display the Zernike function Z(n=5,m=1) 0[F:'_  
    %       x = -1:0.01:1; @A+RVg*=  
    %       [X,Y] = meshgrid(x,x); KE1ao9H8wR  
    %       [theta,r] = cart2pol(X,Y); } %'bullT  
    %       idx = r<=1; )I\=BPo|B  
    %       z = nan(size(X)); vm'5s]kdh  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); m{7^EF  
    %       figure qClHP)<  
    %       pcolor(x,x,z), shading interp unJ R=~E  
    %       axis square, colorbar S2>c#BQ  
    %       title('Zernike function Z_5^1(r,\theta)') @VN&t:/l  
    % L.T?}o  
    %   Example 2: 4G@nZn  
    % ?DH"V7bs  
    %       % Display the first 10 Zernike functions O}[PJfvBHo  
    %       x = -1:0.01:1; w0ZLcND{  
    %       [X,Y] = meshgrid(x,x); b7/AnSR~Jt  
    %       [theta,r] = cart2pol(X,Y); xBFJ} v  
    %       idx = r<=1; p7ir*r/2  
    %       z = nan(size(X)); m'-|{c  
    %       n = [0  1  1  2  2  2  3  3  3  3]; F3oQ^;xB  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; @R m-CWa  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; \*\R1_+  
    %       y = zernfun(n,m,r(idx),theta(idx)); -B$~`2-  
    %       figure('Units','normalized') @h?shW=^  
    %       for k = 1:10 3M0+"l(X  
    %           z(idx) = y(:,k); ~Z ~v  
    %           subplot(4,7,Nplot(k)) j$da8] !  
    %           pcolor(x,x,z), shading interp rtQHWRUn  
    %           set(gca,'XTick',[],'YTick',[]) gq"k<C0  
    %           axis square nJ?^?M'F%  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) dJ:MjQG`W  
    %       end N 4K8 u'f^  
    % WS2os Bc  
    %   See also ZERNPOL, ZERNFUN2. 7B3w\  
    NA$zd(  
    %   Paul Fricker 11/13/2006 ,uz ]V1  
    }<jb vCeK  
    "&Qctk`<P  
    % Check and prepare the inputs: @mt0kV9  
    % ----------------------------- ZAuWx@}  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) )U:2z-X&e  
        error('zernfun:NMvectors','N and M must be vectors.') K~RoUE<3[  
    end }]UB;id'  
    L?Yoh<  
    if length(n)~=length(m) Q>qFM9Z  
        error('zernfun:NMlength','N and M must be the same length.') _)$PKOzbb  
    end 1\L[i];L8  
    pWE`x|J  
    n = n(:); |DF9cd^  
    m = m(:); -V % gVI[  
    if any(mod(n-m,2)) z5Qs @dG  
        error('zernfun:NMmultiplesof2', ... R)Mt(gFZT_  
              'All N and M must differ by multiples of 2 (including 0).') Oq(VvS/  
    end O)R(==P26P  
    wyxGe<1  
    if any(m>n) ;oH ,~|K  
        error('zernfun:MlessthanN', ... iO1nwl !#  
              'Each M must be less than or equal to its corresponding N.') i;PL\Er:tX  
    end 4y}"Hy  
    MVCl.o  
    if any( r>1 | r<0 ) $mA5@O~C5\  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') %ICglF R  
    end 3UUGblg`~  
    7@%'wy&A  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) /"qcl7F  
        error('zernfun:RTHvector','R and THETA must be vectors.') $t rAC@3O@  
    end |4Ck;gg!j  
    io4A>>W==/  
    r = r(:); o=fgin/E\  
    theta = theta(:); ~:sE:9$z  
    length_r = length(r); >x:EJV   
    if length_r~=length(theta) ^b?2N/m@  
        error('zernfun:RTHlength', ... +UWU|:  
              'The number of R- and THETA-values must be equal.') )wzV $(~  
    end &217l2X /  
    -dTLunv  
    % Check normalization: 9vGs;  
    % -------------------- 3mt%!}S  
    if nargin==5 && ischar(nflag) VFD%h }  
        isnorm = strcmpi(nflag,'norm'); 10sK]XI  
        if ~isnorm \ SCy$,m  
            error('zernfun:normalization','Unrecognized normalization flag.') ~bA,GfSn0  
        end 0WxCSL$#I  
    else e5v`;(^M  
        isnorm = false; ek-!b!iI  
    end ^gro=Bp(  
    Ln#a<Rx.E7  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% GSVdb/+  
    % Compute the Zernike Polynomials rE!1wc>L  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% msTB'0  
    9|:^k.  
    % Determine the required powers of r: [!*xO?yCJ  
    % ----------------------------------- M7y|EB))  
    m_abs = abs(m); {0jIY  
    rpowers = []; !DjT<dxf  
    for j = 1:length(n) cHvF*A  
        rpowers = [rpowers m_abs(j):2:n(j)]; \ a-CN>  
    end ddpl Pzm#  
    rpowers = unique(rpowers); Ns~&sE:  
    +QqH}= M  
    % Pre-compute the values of r raised to the required powers, e 3@x*XI  
    % and compile them in a matrix: ]YD(`42x  
    % ----------------------------- jD< pIHau  
    if rpowers(1)==0 E)'8U  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); wgd<3 X  
        rpowern = cat(2,rpowern{:}); }~enEZ  
        rpowern = [ones(length_r,1) rpowern]; x6yW:tUG5  
    else R ZcH+?7  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); $-pbw@7  
        rpowern = cat(2,rpowern{:}); 0g(6r-2)7  
    end =&NOHT>  
    H*U`  
    % Compute the values of the polynomials: [QEwK|!L  
    % -------------------------------------- d?Y-;-|8Qh  
    y = zeros(length_r,length(n)); Sni=gZK  
    for j = 1:length(n) {/UhUG  
        s = 0:(n(j)-m_abs(j))/2; ,w\ wQn>]K  
        pows = n(j):-2:m_abs(j); 03E3cp"  
        for k = length(s):-1:1 wL eHQ]  
            p = (1-2*mod(s(k),2))* ... N~#D\X^t.  
                       prod(2:(n(j)-s(k)))/              ... u(vw|nj`  
                       prod(2:s(k))/                     ... kV^?p  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... W8/(;K`/  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); lCFU1 GHH  
            idx = (pows(k)==rpowers); APHPN:v  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Y1r ,2k  
        end 4]BJ0+|mT  
         l BiovT  
        if isnorm cF.mb*$K  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 8W{~wg`  
        end %h*5xB]Tt  
    end EzP#Mnz^  
    % END: Compute the Zernike Polynomials NNX% Bq  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ER<eX4oU  
    5#u.pu  
    % Compute the Zernike functions: >(tO QeN  
    % ------------------------------ {E~l>Z88  
    idx_pos = m>0; u5E/m  
    idx_neg = m<0; h DtK nF  
    3}4#I_<$F@  
    z = y; 1o#vhk/ "+  
    if any(idx_pos) V4?Oc2mS  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); (5(fd.m+_  
    end C={mi#G[/  
    if any(idx_neg) C"No5r'K3  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Y(z }[`2  
    end zlMlMyG4  
    MgnE-6_c  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) \)GR\~z0h  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. =BW9/fG  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 7<4xtK`+b  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive M\jB)@)  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, $P_x v  
    %   and THETA is a vector of angles.  R and THETA must have the same s<#N]mp'   
    %   length.  The output Z is a matrix with one column for every P-value, 1w) fu  
    %   and one row for every (R,THETA) pair. O 'Am RJ  
    % uf?b%:A  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike NCxn^$/+>9  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) S ]b xQa+  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) VK$zq5D  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 kpWzMd &RK  
    %   for all p. +yIL[D  
    %  L,%Z9  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 2moIgJ   
    %   Zernike functions (order N<=7).  In some disciplines it is $ %;jk  
    %   traditional to label the first 36 functions using a single mode mQnL<0_<f  
    %   number P instead of separate numbers for the order N and azimuthal W%H]Uyt  
    %   frequency M. 1::LN(`<  
    % VB's  
    %   Example: :OX$LCi  
    % ,aYU$~o#  
    %       % Display the first 16 Zernike functions Fi/jR0]e2  
    %       x = -1:0.01:1; ?AT(S  
    %       [X,Y] = meshgrid(x,x); 6,3}/hgWJ$  
    %       [theta,r] = cart2pol(X,Y); @Z"?^2  
    %       idx = r<=1; Bf+^O)Ns^  
    %       p = 0:15; ,=x RoXYB}  
    %       z = nan(size(X)); K~$35c3M  
    %       y = zernfun2(p,r(idx),theta(idx)); LAos0bc)w\  
    %       figure('Units','normalized') cPm~` Zd  
    %       for k = 1:length(p) 0ovZ&l  
    %           z(idx) = y(:,k); KDX$.$#  
    %           subplot(4,4,k) IF^[^^v+H  
    %           pcolor(x,x,z), shading interp q:Wq8  
    %           set(gca,'XTick',[],'YTick',[]) %-k(&T3&  
    %           axis square QWQ!Ak  
    %           title(['Z_{' num2str(p(k)) '}']) ^YqbjL  
    %       end +!G4tA$g  
    % `{%-*f^  
    %   See also ZERNPOL, ZERNFUN. 3 ^pYC K%  
    (A2U~j?Ry}  
    %   Paul Fricker 11/13/2006 6G$/NW=L  
    vD_u[j]  
    M;V&KG Z  
    % Check and prepare the inputs: QW,cn7  
    % ----------------------------- _J` |<}?t;  
    if min(size(p))~=1 SC]6F*  
        error('zernfun2:Pvector','Input P must be vector.') ?${V{=)*X'  
    end 4YBf ~Pp  
    iq,ah"L  
    if any(p)>35 aQxe)  
        error('zernfun2:P36', ... <Ak:8&$O  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... &bn*p.=G  
               '(P = 0 to 35).']) zv`zsqDJ  
    end FzA{U O  
    V;P1nL4L  
    % Get the order and frequency corresonding to the function number: W3"vTZJF  
    % ---------------------------------------------------------------- PVZEB  
    p = p(:); >J9IRAm}sc  
    n = ceil((-3+sqrt(9+8*p))/2); j`{fB}  
    m = 2*p - n.*(n+2); s87 a %  
    6|%^pjX5  
    % Pass the inputs to the function ZERNFUN: Vn@A]Jx^  
    % ---------------------------------------- +yt6.L  
    switch nargin  {`tHJ|8  
        case 3 5 Xk~,%-C  
            z = zernfun(n,m,r,theta); 1V#0\1sj  
        case 4 PkjT&e)  
            z = zernfun(n,m,r,theta,nflag); :fl*w""V@  
        otherwise r$94J'_  
            error('zernfun2:nargin','Incorrect number of inputs.') )~1.<((<  
    end q$ bHO  
    :O5Tr03z  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 'SsPx&)l  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. e{c._zr,  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of n P0Ziu'{  
    %   order N and frequency M, evaluated at R.  N is a vector of jI@bTS o  
    %   positive integers (including 0), and M is a vector with the  ]H@v  
    %   same number of elements as N.  Each element k of M must be a F! |TW6)gv  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) U@1#!ZZ6  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is %iHyt,0v2  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix Tb>IHoil  
    %   with one column for every (N,M) pair, and one row for every ,e}mR>i=e  
    %   element in R. J R 8 Z6  
    % " 8~f  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 8 /:X& &  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 3Yn:fsy  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to }dV9%0s!  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 AJJ%gxqGq  
    %   for all [n,m]. 'XC&BWJ  
    % 6)tB{:h&~0  
    %   The radial Zernike polynomials are the radial portion of the &!3VqHQ`  
    %   Zernike functions, which are an orthogonal basis on the unit Gnuo-8lb  
    %   circle.  The series representation of the radial Zernike eH"qI2A  
    %   polynomials is g_-?h&W  
    % #n6FQ$l8m  
    %          (n-m)/2 RPa?Nv?e  
    %            __ CDwFVR'_Af  
    %    m      \       s                                          n-2s X^?|Sz<^E  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ,"v)vTt  
    %    n      s=0 KT]J,b  
    % '@3a,pl  
    %   The following table shows the first 12 polynomials. '#pMEVP  
    % C[Y%=\6'0  
    %       n    m    Zernike polynomial    Normalization ^Yg|P&e(;  
    %       --------------------------------------------- 8AC. 2 v?_  
    %       0    0    1                        sqrt(2) _E x*%Qf.  
    %       1    1    r                           2 v e6N  
    %       2    0    2*r^2 - 1                sqrt(6) lEVQA*u[  
    %       2    2    r^2                      sqrt(6) dA_V:HP  
    %       3    1    3*r^3 - 2*r              sqrt(8) P!>{>r4  
    %       3    3    r^3                      sqrt(8) R &1mo  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) R-2FNl  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) [F BCz>  
    %       4    4    r^4                      sqrt(10) E)rOlh7  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) W>t&N  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) S4aHce5PXA  
    %       5    5    r^5                      sqrt(12) Bsih<`KF^  
    %       --------------------------------------------- c:`` Y:  
    % 6x (L&>F  
    %   Example: Cnc\sMDJ\B  
    % b}}1TnS)  
    %       % Display three example Zernike radial polynomials [EW$7 se~  
    %       r = 0:0.01:1; Tvksf!ba  
    %       n = [3 2 5]; 1b %T_a  
    %       m = [1 2 1]; |R &3/bEr  
    %       z = zernpol(n,m,r); 9FIe W[  
    %       figure %FR^[H]  
    %       plot(r,z) #sm_.?P  
    %       grid on I!soV0V U]  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 3_j C sX  
    % ,:dEEL+>c  
    %   See also ZERNFUN, ZERNFUN2. cA (e "N  
    [Q.4]K2  
    % A note on the algorithm. 3Q!J9t5dc  
    % ------------------------ q|]0on~ ]  
    % The radial Zernike polynomials are computed using the series +{=_|3(  
    % representation shown in the Help section above. For many special 7S~9E2N  
    % functions, direct evaluation using the series representation can DS,FVh".|  
    % produce poor numerical results (floating point errors), because EZwdx  
    % the summation often involves computing small differences between -'p@ lk  
    % large successive terms in the series. (In such cases, the functions 5sh u76  
    % are often evaluated using alternative methods such as recurrence A 4W  
    % relations: see the Legendre functions, for example). For the Zernike ~QEXB*X-g'  
    % polynomials, however, this problem does not arise, because the nTlv'_Y(  
    % polynomials are evaluated over the finite domain r = (0,1), and z kX-"}$8  
    % because the coefficients for a given polynomial are generally all 'Kso@St`o  
    % of similar magnitude. &Lt$a_y>  
    % U<,Kw6K  
    % ZERNPOL has been written using a vectorized implementation: multiple k1$2a8 ja  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] tM PX vE  
    % values can be passed as inputs) for a vector of points R.  To achieve ~b6<uRnM.  
    % this vectorization most efficiently, the algorithm in ZERNPOL 7)(`  
    % involves pre-determining all the powers p of R that are required to :C:N]6_{SZ  
    % compute the outputs, and then compiling the {R^p} into a single $ DZQdhv  
    % matrix.  This avoids any redundant computation of the R^p, and 1J{z}yPHc  
    % minimizes the sizes of certain intermediate variables. F#}1{$)% /  
    % eEri v@v  
    %   Paul Fricker 11/13/2006 %[\Ft  
    Wru  Fp  
    V.gY1   
    % Check and prepare the inputs: &6^W% r  
    % ----------------------------- Dy{`">a  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Uh|__DUkh  
        error('zernpol:NMvectors','N and M must be vectors.') kFIB lPV  
    end vb"dX0)<  
    va/4q+1GfH  
    if length(n)~=length(m) I\uB"Z{9  
        error('zernpol:NMlength','N and M must be the same length.') ,<P[CUD&&  
    end 9M7(_E;)B  
    rX>y>{w~  
    n = n(:); 72`/xryY  
    m = m(:); 3P^gP32  
    length_n = length(n); -ynLuq#1A  
    `TlUJ]d)  
    if any(mod(n-m,2)) R,5$ 0_]|+  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') o? O,nD 6  
    end mv%:[+!  
    >5@vY?QXO  
    if any(m<0) QH' [ (  
        error('zernpol:Mpositive','All M must be positive.') 6[h$r/GXh"  
    end ,fG_'3wb  
    cV_IG}LJ  
    if any(m>n) dK;\`>8  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ]z q_gV8k  
    end vsz^B :j  
    FqUt uN  
    if any( r>1 | r<0 ) ;7n*PBUJJ  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') dbUZGn~  
    end FeeWZe0i  
    v{{2<,l  
    if ~any(size(r)==1) "`3 ^M vC  
        error('zernpol:Rvector','R must be a vector.') s^?sJUj  
    end .q9|XDqQc  
    q>:&xR"ra  
    r = r(:); %FWfiFV|<  
    length_r = length(r); fYQi#0drn  
    <&0*5|rR  
    if nargin==4 Y7V&zF{  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); Y$$?8xr ~  
        if ~isnorm BvW gH.OX  
            error('zernpol:normalization','Unrecognized normalization flag.') 8(/f!~  
        end #M^Yh?~%w  
    else *;yMD-=  
        isnorm = false; ODvpMt:+  
    end $~@096`QL<  
    e, 0I~:  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% xOyL2   
    % Compute the Zernike Polynomials 6ym)F!t8l  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $F()`L{Tj  
    *n_4Rr  
    % Determine the required powers of r: 8U:dgXz  
    % ----------------------------------- tMBy ^@p  
    rpowers = []; g7LW?Ewr  
    for j = 1:length(n) .d!*<`S|  
        rpowers = [rpowers m(j):2:n(j)]; g?AqC  
    end j"sO<Q{6%  
    rpowers = unique(rpowers); u&_U CJCf  
    [gdPHXs  
    % Pre-compute the values of r raised to the required powers, })SdaZ  
    % and compile them in a matrix: L.:QI<n  
    % ----------------------------- \ J:T]  
    if rpowers(1)==0 gI5nWEM0{  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); / lM~K:  
        rpowern = cat(2,rpowern{:}); Ib8{+j  
        rpowern = [ones(length_r,1) rpowern]; "jc)N46  
    else sK/"  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); D=sc41]  
        rpowern = cat(2,rpowern{:}); _";pk  _  
    end }~'Wz*Gm  
     de47O  
    % Compute the values of the polynomials: *>$)#?t  
    % -------------------------------------- 4^ 6L])y  
    z = zeros(length_r,length_n); fToI,FA  
    for j = 1:length_n _1c_TMh}9  
        s = 0:(n(j)-m(j))/2; 6jo&i  
        pows = n(j):-2:m(j); 6MNA.{Jdd  
        for k = length(s):-1:1 *9(1:N;#  
            p = (1-2*mod(s(k),2))* ... 9ufs6 z  
                       prod(2:(n(j)-s(k)))/          ... Z2jb>%  
                       prod(2:s(k))/                 ... [gp:nxyfQm  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... YY~=h5$  
                       prod(2:((n(j)+m(j))/2-s(k))); U?j>28  
            idx = (pows(k)==rpowers); yZ0ZP  
            z(:,j) = z(:,j) + p*rpowern(:,idx); emPm^M5/K  
        end Fh $&puF2  
         NT/B4'_@  
        if isnorm 0%NI- Zyo  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); m e{SVG{  
        end O9)}:++T  
    end aBi:S3 qk  
    AV3,4u  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  qv6]YPP  
    mLE`IKgd]  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 Q*: Ow]  
    7[L C*nrr  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)