非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 4V)kx[j
function z = zernfun(n,m,r,theta,nflag) .SU8)T
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. K0|FY=#2y
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N "*e$aTZB\
% and angular frequency M, evaluated at positions (R,THETA) on the kTOzSiq
% unit circle. N is a vector of positive integers (including 0), and YYBDRR"
% M is a vector with the same number of elements as N. Each element I-]?"Q7Jz
% k of M must be a positive integer, with possible values M(k) = -N(k) dO!
kk"qn
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, s+$ Q}|?u
% and THETA is a vector of angles. R and THETA must have the same 6]WAUK%h
% length. The output Z is a matrix with one column for every (N,M) Q{>+ft U
% pair, and one row for every (R,THETA) pair. KQ!8ks]
% y.mda:$~=
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike [}E='m}u9+
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), U]H#MiC!
% with delta(m,0) the Kronecker delta, is chosen so that the integral hF~n)oQ
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, FXG]LoP
% and theta=0 to theta=2*pi) is unity. For the non-normalized H)kwQRfu
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Fo5FNNiID
% &[?\k>
% The Zernike functions are an orthogonal basis on the unit circle. 823Y\x~>
% They are used in disciplines such as astronomy, optics, and O:;w3u7;u
% optometry to describe functions on a circular domain. ;u_X)
% J?"B%B5c
% The following table lists the first 15 Zernike functions. )l C)@H}
% %S960
% n m Zernike function Normalization ohGJ1
% -------------------------------------------------- 6_GhO@lOG
% 0 0 1 1 >
PRFWO
% 1 1 r * cos(theta) 2 V1N3iI
% 1 -1 r * sin(theta) 2 vxBgGl
% 2 -2 r^2 * cos(2*theta) sqrt(6) Q%`@0#"]Sv
% 2 0 (2*r^2 - 1) sqrt(3) @e.C"@G
% 2 2 r^2 * sin(2*theta) sqrt(6) _YhES-Ff
% 3 -3 r^3 * cos(3*theta) sqrt(8) we//|fA<
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ].w4$OJ?
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) y@S$^jk.
% 3 3 r^3 * sin(3*theta) sqrt(8) %D{6[8
% 4 -4 r^4 * cos(4*theta) sqrt(10) 'x#~'v*
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) yW=::=
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) zZPO&akB"
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) UmP/h@8
% 4 4 r^4 * sin(4*theta) sqrt(10) %v
M-mbX
% -------------------------------------------------- 5uGq%(24
% ?=sDM& '
% Example 1: S6DKREO
% L\J;J%fz.
% % Display the Zernike function Z(n=5,m=1) iHM%iUV
% x = -1:0.01:1; D0-3eV-
% [X,Y] = meshgrid(x,x); zFfr.g;L
% [theta,r] = cart2pol(X,Y); AlaW=leTe
% idx = r<=1; ]m3HF&
% z = nan(size(X)); oWT3apGO
% z(idx) = zernfun(5,1,r(idx),theta(idx)); IVY]Ek EG~
% figure Qz1E 2yJ
% pcolor(x,x,z), shading interp q
'yva
% axis square, colorbar WaRw05r
% title('Zernike function Z_5^1(r,\theta)') Vx u0F]%
% 6Pl<'3&
% Example 2: B6DYZ+7A
% W:2( .?
% % Display the first 10 Zernike functions 6@5+m
0`u3
% x = -1:0.01:1; `Y$4 H,8L
% [X,Y] = meshgrid(x,x); *Hn8)x}E
% [theta,r] = cart2pol(X,Y); & '`g#N
% idx = r<=1; b{&)6M)zo
% z = nan(size(X)); p?OoC
% n = [0 1 1 2 2 2 3 3 3 3]; By!o3}~g
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; -`h)$&,
% Nplot = [4 10 12 16 18 20 22 24 26 28]; jvL[
JI,b
% y = zernfun(n,m,r(idx),theta(idx)); Ax7[;|2
% figure('Units','normalized') <)H9V-5aZ
% for k = 1:10 v@L;x [Q
% z(idx) = y(:,k); p8O2Z?\
% subplot(4,7,Nplot(k)) \!ZTL1b8t
% pcolor(x,x,z), shading interp QZ
% set(gca,'XTick',[],'YTick',[]) ! n@KU!&k
% axis square 83_h J
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) E{`fF8]K
% end AQvudx)@"
% ]h+j)J}[A
% See also ZERNPOL, ZERNFUN2. +I|vzz`ZVr
O<?R)NH-P
% Paul Fricker 11/13/2006 R&k<AZ
cdT7
@
YjKxb 9
% Check and prepare the inputs: ;N0XFjdR
% ----------------------------- ^hM4j{|&M
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 7R\<inCQ
error('zernfun:NMvectors','N and M must be vectors.') $%#!bV
end fIU#M]Xx
aX'*pK/-
if length(n)~=length(m) uy$e?{Jf
error('zernfun:NMlength','N and M must be the same length.') p_%Rt"!
end e*NnVys
?CPahU
n = n(:); }19\.z&J
m = m(:); iqWQ!r^
if any(mod(n-m,2)) ]N?kG`[
error('zernfun:NMmultiplesof2', ... ?Z/V~,
'All N and M must differ by multiples of 2 (including 0).') hz@bW2S.
end !Wnb|=j
vA8nvoi
if any(m>n) 8<Av@9 *}
error('zernfun:MlessthanN', ... j A%u 5V
'Each M must be less than or equal to its corresponding N.') 2c*GuF9(0
end E:nF$#<'N
s.C_Zf~3
if any( r>1 | r<0 ) X
l5 A
'h
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 8{sGNCvU
end u^ ~W+
EaN6^S=
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 83#mB:^R
error('zernfun:RTHvector','R and THETA must be vectors.') 4H&+dRI"
end ?6WY:Zec@
[{,1=AB
r = r(:); ~Mxvq9vaD
theta = theta(:); wbl&
length_r = length(r); $ddCTS^
if length_r~=length(theta) *$g-:ILRuZ
error('zernfun:RTHlength', ... Y$@?.)tY
'The number of R- and THETA-values must be equal.') "4{r6[dn
end S"H2 7
<RL]
% Check normalization: Q*Pq{]0K
% -------------------- ]c'A%:f<
if nargin==5 && ischar(nflag) 4Fr
isnorm = strcmpi(nflag,'norm'); /j.9$H'y
if ~isnorm Q^")jPd
error('zernfun:normalization','Unrecognized normalization flag.') S)@j6(HC4
end |yPu!pfl
else SvF<p3
isnorm = false; jmZI7?<z
end a\*yZlXKs
=T7.~W
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }N52$L0[
% Compute the Zernike Polynomials =rdV ]{Wc
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .7X^YKR
X"%gQ.1|{j
% Determine the required powers of r: DN6Mo<H
% ----------------------------------- {+>-7
9b
m_abs = abs(m); f3y=Wxk[
rpowers = []; N"ST@/j.A
for j = 1:length(n) TB31-
()
rpowers = [rpowers m_abs(j):2:n(j)]; }0y"F
end do'GlU oMC
rpowers = unique(rpowers); $[ *w"iQ
7b+6%fV
% Pre-compute the values of r raised to the required powers, O;3>sLgc
% and compile them in a matrix: k+*u/neh
% ----------------------------- a d\ot#V
if rpowers(1)==0 cFX p
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); xskz)kk
rpowern = cat(2,rpowern{:}); MF'JeM;H
rpowern = [ones(length_r,1) rpowern]; 5[0?g@aO
else v`T
c}c '
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); E2-\]?\F(
rpowern = cat(2,rpowern{:}); &UFZS94@r
end CWKm(@"5
M"L=L5OH-
% Compute the values of the polynomials: !5!<C,U
% -------------------------------------- |Y.?_lC
y = zeros(length_r,length(n)); ;n;p@Uu[
b
for j = 1:length(n) );YDtGip J
s = 0:(n(j)-m_abs(j))/2; 0> \sQ,T
pows = n(j):-2:m_abs(j); yB!dp;gM{
for k = length(s):-1:1 ^<6[.)
p = (1-2*mod(s(k),2))* ... m]&SN z=
prod(2:(n(j)-s(k)))/ ... 3XNCAb2
prod(2:s(k))/ ... N2o7%gJw
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... #\ErY3k 6&
prod(2:((n(j)+m_abs(j))/2-s(k))); nJ;.Td
idx = (pows(k)==rpowers); @ Nm@]q
y(:,j) = y(:,j) + p*rpowern(:,idx); # f\rt
end lEBLZ}}\
NHE18_v5
if isnorm _#8MkW#]~
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); J .<F"r>
end B)UZ`?>c
end \b>]8Un"
% END: Compute the Zernike Polynomials !
dgNtI@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% CvdN"k
L"aeG
% Compute the Zernike functions: Ho]su?
% ------------------------------ Zwx%7l;C
idx_pos = m>0; B-mowmJ3dg
idx_neg = m<0; (;,sc$H]
@(lh%@hO
z = y; .RL=xb|[
if any(idx_pos) G+m }MOQP7
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 2KZneS`
end nr3==21Om4
if any(idx_neg) moE2G?R
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); GtHivC
end lLIAw$
A=>u
1h69
% EOF zernfun