切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11162阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 PJnC  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! BxY t*b%  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 2FcL-?  
    function z = zernfun(n,m,r,theta,nflag) >hKsj{=R7  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. y48]|%73  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Nk~}aj  
    %   and angular frequency M, evaluated at positions (R,THETA) on the J5@08 bZm  
    %   unit circle.  N is a vector of positive integers (including 0), and )W@u g,y  
    %   M is a vector with the same number of elements as N.  Each element \j)Evjw  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) J )1   
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, :,BAw ,  
    %   and THETA is a vector of angles.  R and THETA must have the same D6SUzI1+H  
    %   length.  The output Z is a matrix with one column for every (N,M)  CB7dr&>  
    %   pair, and one row for every (R,THETA) pair. k(Yz2  
    % | %_C$s%  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike {N(qS'N  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), :\T Mm>%q  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral n `j._G  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ;w{<1NH2+.  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 3F9V,zWtTi  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. D?|D)"?qb  
    % ~G@NWF?7  
    %   The Zernike functions are an orthogonal basis on the unit circle. pP\Cwo #,  
    %   They are used in disciplines such as astronomy, optics, and {1GJ,['qL  
    %   optometry to describe functions on a circular domain. $Dg-;I  
    % r}U6LE?>  
    %   The following table lists the first 15 Zernike functions. %wD#[<BGn>  
    % D(cD8fn,J  
    %       n    m    Zernike function           Normalization ?y>N&\pt2  
    %       -------------------------------------------------- HKN|pO3v  
    %       0    0    1                                 1 _S!^=9bJ  
    %       1    1    r * cos(theta)                    2 }"Y<<e<z:  
    %       1   -1    r * sin(theta)                    2 _h%Jf{nu  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) .X g.,kW  
    %       2    0    (2*r^2 - 1)                    sqrt(3) HC0juT OiO  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) (qcFGM22U  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) zI88IM7/  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) J_s`G  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) UG1<Xfu|  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) aRd~T6I  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) bC&A@.g{  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) b[%@3}E  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) T2{e 1 =Z7  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) FT).$h~+4  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) x0 7 =  
    %       -------------------------------------------------- M-WSdG[AJ  
    % O7.V>7Y9H  
    %   Example 1: Z'o0::k  
    % g 2Fg  
    %       % Display the Zernike function Z(n=5,m=1) $-_" SWG.  
    %       x = -1:0.01:1; )1<0c@g=  
    %       [X,Y] = meshgrid(x,x); )! [B(  
    %       [theta,r] = cart2pol(X,Y); goM;Pf "<  
    %       idx = r<=1; B<W}:>3  
    %       z = nan(size(X)); hzD)yf  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); L K&c~ Uy  
    %       figure N=mvr&arP  
    %       pcolor(x,x,z), shading interp q 4BXrEOw  
    %       axis square, colorbar \F _1 C=  
    %       title('Zernike function Z_5^1(r,\theta)') cGot0' mB  
    % z/Lb1ND8  
    %   Example 2: 4^(x)r &(?  
    % jAQ{H  
    %       % Display the first 10 Zernike functions g4W$MI  
    %       x = -1:0.01:1; (lsG4&\0F  
    %       [X,Y] = meshgrid(x,x); K^{j$  
    %       [theta,r] = cart2pol(X,Y); U$:^^Zt`B  
    %       idx = r<=1; %Z;RY5  
    %       z = nan(size(X)); 1N/4W6  
    %       n = [0  1  1  2  2  2  3  3  3  3]; C&O8fNB_  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; %Tp9G Gt  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; v]JET9hY  
    %       y = zernfun(n,m,r(idx),theta(idx)); >^8O:.  
    %       figure('Units','normalized') Rsx6vF8]5  
    %       for k = 1:10 mF gqM:  
    %           z(idx) = y(:,k); $.,PteYK  
    %           subplot(4,7,Nplot(k)) )\U:e:Zae  
    %           pcolor(x,x,z), shading interp =B&|\2`{)  
    %           set(gca,'XTick',[],'YTick',[]) YB*)&@yx  
    %           axis square 6O4 *OR<&  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Y XhZWo{B  
    %       end 6Dd>ex!-A  
    % gD$&OkH  
    %   See also ZERNPOL, ZERNFUN2. b~;:[ #  
    ;5X6`GlS#5  
    %   Paul Fricker 11/13/2006 ZfM]A)  
    &zn|),  
    pI@71~|R  
    % Check and prepare the inputs: Yjg$o:M  
    % ----------------------------- besc7!S  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) n'rq  
        error('zernfun:NMvectors','N and M must be vectors.') yf{\^^ i(  
    end U=v>gNba  
    lU 9o"2  
    if length(n)~=length(m) hC-uz _/3  
        error('zernfun:NMlength','N and M must be the same length.')  hyxv+m[  
    end 4lo7yx  
    1P]J3o  
    n = n(:); R0M>'V?e  
    m = m(:); x. t< @y~  
    if any(mod(n-m,2)) lB}?ey   
        error('zernfun:NMmultiplesof2', ... =K@LEZZ'/<  
              'All N and M must differ by multiples of 2 (including 0).') E2Sj IR}  
    end tFcQ.1  
    :b9#e g  
    if any(m>n) <v ub Q4  
        error('zernfun:MlessthanN', ... [,bJKz)a  
              'Each M must be less than or equal to its corresponding N.') azZ|T{S  
    end _9oKW;7f7  
    k r$)nf  
    if any( r>1 | r<0 ) J rK{MhO  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ,):aU  
    end 2NFk#_9e~  
    b$w66q8  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 28JVW3&)  
        error('zernfun:RTHvector','R and THETA must be vectors.') *wAX&+);  
    end +sJ{9#6  
    tE>FL  
    r = r(:);  -raK  
    theta = theta(:); oD%n}  
    length_r = length(r); NO/$} vw  
    if length_r~=length(theta) C,,T7(: k  
        error('zernfun:RTHlength', ... ?Gf'G{^}  
              'The number of R- and THETA-values must be equal.') :qS~"@?<  
    end bLTX_ R  
    +:m)BLA4l  
    % Check normalization: \;%D;3Au  
    % -------------------- '>[ZfT  
    if nargin==5 && ischar(nflag) E.yFCaL  
        isnorm = strcmpi(nflag,'norm'); tL&_@PD)3  
        if ~isnorm U>Is mF>m  
            error('zernfun:normalization','Unrecognized normalization flag.') #WA7}tHb  
        end 0gyvRM@ x[  
    else ,!SbH  
        isnorm = false; kFJ]F |^7  
    end };2Lrz9<  
    va~:Ivl-)  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% e?\Od}Hbw  
    % Compute the Zernike Polynomials DvN_}h^nX  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% jHMP"(]  
    AsS~TLG9p  
    % Determine the required powers of r: :z?T /9,C  
    % ----------------------------------- 0$XrtnM  
    m_abs = abs(m); Ev#, }l+  
    rpowers = []; * *A JFc  
    for j = 1:length(n) n n[idw  
        rpowers = [rpowers m_abs(j):2:n(j)]; (3 ,7  
    end $sL+k 'dY  
    rpowers = unique(rpowers); `U?S 9m  
    aorL,l  
    % Pre-compute the values of r raised to the required powers, c5CxR#O  
    % and compile them in a matrix: <q MX,h2  
    % ----------------------------- cLp9|y0r  
    if rpowers(1)==0 GNG.N)q#C  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Q2|6WE  
        rpowern = cat(2,rpowern{:}); ?h7[^sxJ  
        rpowern = [ones(length_r,1) rpowern]; )W@  
    else z:n JN%Qb  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); (^=kV?<  
        rpowern = cat(2,rpowern{:}); PzjIM!>  
    end J_ h\tM  
    ?#5)TAW  
    % Compute the values of the polynomials: $ z+ =lF  
    % -------------------------------------- G4F~V't  
    y = zeros(length_r,length(n)); }WQ:Rmi  
    for j = 1:length(n) qztL M?iV  
        s = 0:(n(j)-m_abs(j))/2; d76C ]R5L  
        pows = n(j):-2:m_abs(j); "| oW6@  
        for k = length(s):-1:1 BZQJ@lk5  
            p = (1-2*mod(s(k),2))* ... OOsd*nX/  
                       prod(2:(n(j)-s(k)))/              ... ?s0")R&  
                       prod(2:s(k))/                     ... "Q23s"  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... d[(%5pw~zL  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); wS2N,X/Y  
            idx = (pows(k)==rpowers); +w?1<Z  
            y(:,j) = y(:,j) + p*rpowern(:,idx); L'BzefU;04  
        end |qk%UN<  
         |?fc]dl1]  
        if isnorm k/xNqN(  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 6Hpj&Qm  
        end w68VOymD/  
    end @0:mP  
    % END: Compute the Zernike Polynomials x(zW<J5X"  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% la !rg#)-X  
    I8hmn@ce  
    % Compute the Zernike functions: :;x#qtv~Iz  
    % ------------------------------ aG1[85:,\i  
    idx_pos = m>0; E<_+Tc  
    idx_neg = m<0; \?\q0o<V$  
    LD5E  
    z = y; !91<K{#A{  
    if any(idx_pos) %hzNkyD)Y  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Z Q9's  
    end XN' X&J  
    if any(idx_neg) |B*`%7{+  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); =7("xz %  
    end QeAkuqT'[  
    =HvLuVc  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) .!t' &eV  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ?G-a:'1!6  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated hMx/}Tw wt  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive <BN)>NqM  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 'W j Q  
    %   and THETA is a vector of angles.  R and THETA must have the same ,Gd8 <  
    %   length.  The output Z is a matrix with one column for every P-value, p>p=nLK  
    %   and one row for every (R,THETA) pair. f&>Q 6 {*]  
    % = %7:[#n  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 3'6>zp  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) ',* 6vbII  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) {4{ACp  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 \*w*Q(&3  
    %   for all p. f;%4O'  
    % N1!|nS3w  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 Hw/1~O$T  
    %   Zernike functions (order N<=7).  In some disciplines it is Hca)5$yL  
    %   traditional to label the first 36 functions using a single mode /T*]RO4%>]  
    %   number P instead of separate numbers for the order N and azimuthal j:,*Liz  
    %   frequency M. m5LP~Gb  
    % _hLM\L  
    %   Example: ni]gS0/  
    % .Isg1qrC  
    %       % Display the first 16 Zernike functions ZA ii"F  
    %       x = -1:0.01:1; L+QEFQ:r5  
    %       [X,Y] = meshgrid(x,x); Da8qR+*x  
    %       [theta,r] = cart2pol(X,Y); [w~1e)D  
    %       idx = r<=1; Nr7MSFiL  
    %       p = 0:15; bLoYg^T/  
    %       z = nan(size(X)); rC<m6  
    %       y = zernfun2(p,r(idx),theta(idx)); rq6(^I  
    %       figure('Units','normalized') (N43?iv(  
    %       for k = 1:length(p) v1zJr6ra9  
    %           z(idx) = y(:,k); ]0dp^%  
    %           subplot(4,4,k) ?P`]^#  
    %           pcolor(x,x,z), shading interp ZWVcCa 3  
    %           set(gca,'XTick',[],'YTick',[]) bd<zn*H Z*  
    %           axis square -]PW\}w1  
    %           title(['Z_{' num2str(p(k)) '}']) G0//P .#  
    %       end 2Sb~tTGz79  
    % D x Vt  
    %   See also ZERNPOL, ZERNFUN. 'F[QE9]*  
    &ze'V , :  
    %   Paul Fricker 11/13/2006 Z!|nc.  
    w];t]q|  
    L1"X`Pz[}  
    % Check and prepare the inputs: D9c8#k9Y.  
    % ----------------------------- WohK,<Or  
    if min(size(p))~=1 )WEyB~'o  
        error('zernfun2:Pvector','Input P must be vector.') JCaT^KLz  
    end S3j/(BG  
    XUUS N  
    if any(p)>35 Q.6pmaXrb  
        error('zernfun2:P36', ... f+$/gz  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... oChcEx%  
               '(P = 0 to 35).']) .f&,~$e4  
    end 4y21v|(9  
    Vv=d*  
    % Get the order and frequency corresonding to the function number: 1/w['d4l!  
    % ---------------------------------------------------------------- Cg21-G .  
    p = p(:); >&U]j*'4  
    n = ceil((-3+sqrt(9+8*p))/2); 'n.eCd j  
    m = 2*p - n.*(n+2); -_pI:K[  
    l= !KZaH  
    % Pass the inputs to the function ZERNFUN: w},k~5U^s  
    % ---------------------------------------- UwdcU^xt9  
    switch nargin uu=e~K  
        case 3 +69sG9BA  
            z = zernfun(n,m,r,theta); %t%+;(M9  
        case 4 G*Z4~-E4*  
            z = zernfun(n,m,r,theta,nflag); {n%F^ky+7  
        otherwise ]rHdG^0uss  
            error('zernfun2:nargin','Incorrect number of inputs.') cKK 1$x  
    end HHoh//(\  
    R[Kyq|UyVr  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) i>q]U:U  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. `2d,=.X  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of @y)-!MHN(8  
    %   order N and frequency M, evaluated at R.  N is a vector of kUn55 l  
    %   positive integers (including 0), and M is a vector with the -~v;'zOO  
    %   same number of elements as N.  Each element k of M must be a ;l5F il,3  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) +vBq,'k`  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is +`_%U7p(  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix =f{V<i~q  
    %   with one column for every (N,M) pair, and one row for every =R?NOWrDY  
    %   element in R. )5)S8~Oc  
    % &d9tR\}  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- Nm:nSqc  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is pvP|.sw5G  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to x(5>f9bb  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 W9{6?,]  
    %   for all [n,m]. ^ ,U9N  
    % )DfmO  
    %   The radial Zernike polynomials are the radial portion of the a` 95eL}  
    %   Zernike functions, which are an orthogonal basis on the unit EM;]dLh  
    %   circle.  The series representation of the radial Zernike =?0o5|u]  
    %   polynomials is -`FTWH  
    % !ZD[ $lt+  
    %          (n-m)/2 #: w/vk  
    %            __ GmPNzHDb  
    %    m      \       s                                          n-2s FSIV\ u  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r *" >e k k  
    %    n      s=0 I(bH.{1n7  
    % [^P25K  
    %   The following table shows the first 12 polynomials. Fla,#uB  
    % }*hY#jo1  
    %       n    m    Zernike polynomial    Normalization 2YdMsu~  
    %       --------------------------------------------- Y)g7 E"  
    %       0    0    1                        sqrt(2) {Z3B#,V(g  
    %       1    1    r                           2 2 Do^N5y  
    %       2    0    2*r^2 - 1                sqrt(6) iO,0Sb <y  
    %       2    2    r^2                      sqrt(6) =sPY+~<o  
    %       3    1    3*r^3 - 2*r              sqrt(8) }.$oZo9J  
    %       3    3    r^3                      sqrt(8) qeb:n$  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) oXK`=.\  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) A+69_?B TH  
    %       4    4    r^4                      sqrt(10) /J<?2T9G  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) (SfP3  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) e 9U\48  
    %       5    5    r^5                      sqrt(12) 1K"``EvNB  
    %       --------------------------------------------- [58xT>5`m  
    % n1a;vE{!  
    %   Example: W> s@fN9  
    % DAj@wn3K?  
    %       % Display three example Zernike radial polynomials /KO!s,Nk  
    %       r = 0:0.01:1; iXqc$!lTH  
    %       n = [3 2 5]; 6,7Fl=<  
    %       m = [1 2 1]; -:Nowb  
    %       z = zernpol(n,m,r); 8G?'F${`  
    %       figure PnJr  
    %       plot(r,z) @AvXBMq|  
    %       grid on z%Op_Ddp  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') zT6ng#  
    % BBm.;=8@ ^  
    %   See also ZERNFUN, ZERNFUN2. -P]J:7*0?\  
    E tWpBg  
    % A note on the algorithm. DzkE*vR  
    % ------------------------ vHcB ^Z  
    % The radial Zernike polynomials are computed using the series muwXzN(KX  
    % representation shown in the Help section above. For many special WOZf4X`[  
    % functions, direct evaluation using the series representation can cYF R.~p  
    % produce poor numerical results (floating point errors), because l[.*X  
    % the summation often involves computing small differences between ;<1O86!  
    % large successive terms in the series. (In such cases, the functions i44UqEb  
    % are often evaluated using alternative methods such as recurrence 9TjAEeU  
    % relations: see the Legendre functions, for example). For the Zernike .taJCE  
    % polynomials, however, this problem does not arise, because the ?g&6l0 n`  
    % polynomials are evaluated over the finite domain r = (0,1), and z1aApS  
    % because the coefficients for a given polynomial are generally all zU:zzT}|TZ  
    % of similar magnitude. 3Wrl_V  
    % HWxk>F0  
    % ZERNPOL has been written using a vectorized implementation: multiple "Q`{+|'=E  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] iNZ'qMH22  
    % values can be passed as inputs) for a vector of points R.  To achieve ;_R;P;<  
    % this vectorization most efficiently, the algorithm in ZERNPOL KFor~A# D  
    % involves pre-determining all the powers p of R that are required to iOm~  
    % compute the outputs, and then compiling the {R^p} into a single r*C:)z .}  
    % matrix.  This avoids any redundant computation of the R^p, and 8)&H=#E  
    % minimizes the sizes of certain intermediate variables. xG 7;Ps4L  
    % hun L V8z  
    %   Paul Fricker 11/13/2006 c|x:]W'ij  
    E1_FK1*V;  
    *,-)4)7d  
    % Check and prepare the inputs: (pm]U7  
    % ----------------------------- dGAthbWJ  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) N+rLbK*  
        error('zernpol:NMvectors','N and M must be vectors.') S])YU?e  
    end xojy[c#  
    u|<Z};a  
    if length(n)~=length(m) udX4SBq-pC  
        error('zernpol:NMlength','N and M must be the same length.') ={ c=8G8T  
    end l"p%]\tZ  
    O66\s q  
    n = n(:); 9aD6mp  
    m = m(:); d~tG#<^`  
    length_n = length(n); Z%\9y]zs  
    -wtavv,J  
    if any(mod(n-m,2)) "Nj(0&  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') pOS:/~I3  
    end PQ.xmg2  
    >^ 0JlL`XG  
    if any(m<0) "tBdz V  
        error('zernpol:Mpositive','All M must be positive.') 9-eYCg7C|  
    end zNuiB LxDs  
    HuBG?4Qd  
    if any(m>n) us\@n"  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 6* cm  
    end 8s-RNA>7^  
    k$y(H;XA  
    if any( r>1 | r<0 ) Wznz  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') x~!B.4gT2  
    end S&}7jRH1  
    8N4W}YBs  
    if ~any(size(r)==1) C_dsYuQ5R  
        error('zernpol:Rvector','R must be a vector.') @=h%;"  
    end Yr-a8aSTE5  
    [bUM x  
    r = r(:); "zc@(OA[z  
    length_r = length(r); >Bq;Z}EV  
    e]!Vxn3  
    if nargin==4 L7_(KCh  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); q<o*rcwf ^  
        if ~isnorm Z^`&Z3s  
            error('zernpol:normalization','Unrecognized normalization flag.') @/l{  
        end (l{+ T#  
    else F#7ZR*ZB1  
        isnorm = false; V^QKn+/  
    end J5)e 7  
    )|@b GEk  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %/>\`d?  
    % Compute the Zernike Polynomials LO[1xE9  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Qh%/{6(u  
    7Gnslp?[U  
    % Determine the required powers of r: 9vWKyzMi  
    % ----------------------------------- !;{@O`j?b  
    rpowers = []; 5u T 9ssC  
    for j = 1:length(n) m(q6Xe:Vc  
        rpowers = [rpowers m(j):2:n(j)]; \NhCu$'  
    end [&|Le;h  
    rpowers = unique(rpowers); BF<7.<,  
    v]F q}I"  
    % Pre-compute the values of r raised to the required powers, .3?'+KZ,  
    % and compile them in a matrix: >F8&wh'BjY  
    % ----------------------------- k(C?6Gfj  
    if rpowers(1)==0 *=ftg&  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); zwR@^ 5^6  
        rpowern = cat(2,rpowern{:}); >hoIJZP,  
        rpowern = [ones(length_r,1) rpowern]; ;38W41d{  
    else %1gJOV  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 2FD[D `n]f  
        rpowern = cat(2,rpowern{:}); pP68jL  
    end @ v/%^  
    m?'5*\(ST  
    % Compute the values of the polynomials: ehtiu!Vk  
    % -------------------------------------- ogs9obbZ!  
    z = zeros(length_r,length_n); [6V'UI6  
    for j = 1:length_n (9';zw   
        s = 0:(n(j)-m(j))/2; E}lU?U5i  
        pows = n(j):-2:m(j); \hdR&f5q  
        for k = length(s):-1:1 r/HKxXT  
            p = (1-2*mod(s(k),2))* ... cE 8vSQ%  
                       prod(2:(n(j)-s(k)))/          ... Y:&1;`FBZ  
                       prod(2:s(k))/                 ... aQCbRS6  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... &UP@Sr0D7  
                       prod(2:((n(j)+m(j))/2-s(k))); B3O^(M5W  
            idx = (pows(k)==rpowers); qnW5I_]  
            z(:,j) = z(:,j) + p*rpowern(:,idx); HB {-^9{E  
        end E87/B%R  
         6T< ~mn  
        if isnorm |.=Ee+HZ  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); -?e~dLu  
        end [T"oqO4%]  
    end Xx:0Nt]  
    d%1S6eYa'  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ~0/=5 dC  
    `awk@  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 _9L2JN$R6  
    o"[qPZd>  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)