非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 S?<hs,
function z = zernfun(n,m,r,theta,nflag) #bwGDF
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 9>T5~C'*
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N .)Zs:50l
% and angular frequency M, evaluated at positions (R,THETA) on the z=yE- I{
% unit circle. N is a vector of positive integers (including 0), and kcG_ n
% M is a vector with the same number of elements as N. Each element L6Io u
% k of M must be a positive integer, with possible values M(k) = -N(k) @RXkj-,eC#
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ;DXg
% and THETA is a vector of angles. R and THETA must have the same ]8/g[Ii
% length. The output Z is a matrix with one column for every (N,M) 6<mlx'
% pair, and one row for every (R,THETA) pair. 7(l>Ck3B#
% TX).*%f[r
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike }*?,&9/_)
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), X+kgx!u'y
% with delta(m,0) the Kronecker delta, is chosen so that the integral \-8S"
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, >PK 6CR
% and theta=0 to theta=2*pi) is unity. For the non-normalized %00cC~}4
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. wDDNB1_E
% W5,&*mo
% The Zernike functions are an orthogonal basis on the unit circle. 5
BLAa1
% They are used in disciplines such as astronomy, optics, and =z[$o9
% optometry to describe functions on a circular domain. &a.A8v)
% M@+Pq/f:
% The following table lists the first 15 Zernike functions. l1vI
% 6{!Cx9V
% n m Zernike function Normalization {"c`k4R
% -------------------------------------------------- qL4s@<|~
% 0 0 1 1 FxmHy{JG
% 1 1 r * cos(theta) 2 j]C}S*`"
% 1 -1 r * sin(theta) 2 ==AmL]*
% 2 -2 r^2 * cos(2*theta) sqrt(6) nh*6`5yj
% 2 0 (2*r^2 - 1) sqrt(3) #Q'#/\5
% 2 2 r^2 * sin(2*theta) sqrt(6) xVk5%
% 3 -3 r^3 * cos(3*theta) sqrt(8) 3,?LpdTS
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 0*E_D
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) XK&G `cJ[
% 3 3 r^3 * sin(3*theta) sqrt(8) )H(i)$I
% 4 -4 r^4 * cos(4*theta) sqrt(10) 055C1RV%
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) .$fSWlM;
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) {2 k]$|
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) X0Wx\xDg[
% 4 4 r^4 * sin(4*theta) sqrt(10) Zc'^iDAY
% -------------------------------------------------- /@B2-.w
% Qk >9o
% Example 1: C8x9 Jrc
%
z69u@
% % Display the Zernike function Z(n=5,m=1) /cT6X]o8
% x = -1:0.01:1; ?dPr HSy
% [X,Y] = meshgrid(x,x); Xdf4%/Op
% [theta,r] = cart2pol(X,Y); -^3uQa<zN^
% idx = r<=1; !jvl"+_FV
% z = nan(size(X)); IhRdn1&
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 6-z(34&N
% figure )-0+O=v
% pcolor(x,x,z), shading interp 0SQrz$y
% axis square, colorbar udXzsY9Ng
% title('Zernike function Z_5^1(r,\theta)') '{-Ic?F<P
% <4n"LJ9
% Example 2: {Fqwr>e
% >qs/o$+t}
% % Display the first 10 Zernike functions H+Aidsn
% x = -1:0.01:1; &u~Pp=kv
% [X,Y] = meshgrid(x,x); 4/%Y@Z5
% [theta,r] = cart2pol(X,Y); AGm=0Om
% idx = r<=1; uW
[yNwM
% z = nan(size(X)); zU0SlRFu
% n = [0 1 1 2 2 2 3 3 3 3]; #m17cDL
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ]&N>F8.L+
% Nplot = [4 10 12 16 18 20 22 24 26 28]; F2Y!aR
% y = zernfun(n,m,r(idx),theta(idx)); KY}H-
% figure('Units','normalized') ik#Wlz`4
% for k = 1:10 F]t=5
-O<
% z(idx) = y(:,k); xZ6x`BET-
% subplot(4,7,Nplot(k)) ~sZ$`t
% pcolor(x,x,z), shading interp wqi0%Cu*
% set(gca,'XTick',[],'YTick',[]) 7377g'jL
% axis square ?J,,RK.
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) e"_kH_7sv
% end ANNVE},
% I$MlIz$l v
% See also ZERNPOL, ZERNFUN2. _-3n'i8
.cHkh^EDY
% Paul Fricker 11/13/2006 ^/6P~iK'
YWs?2I
bkc*it
% Check and prepare the inputs: 6ypLE@Mk
% ----------------------------- K7([Gc9
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ;b:'i&r
error('zernfun:NMvectors','N and M must be vectors.') D6H?*4f]
end R7U%v"F>`
9K#3JyW*
if length(n)~=length(m) -cijLlz%+
error('zernfun:NMlength','N and M must be the same length.') reNf?7G+m
end V[uSo$k+>
vS)>g4
n = n(:); L~^5Ez6U
m = m(:); Dk>6PBl
if any(mod(n-m,2)) "l9aBBiu
error('zernfun:NMmultiplesof2', ... +wJ!zab`
'All N and M must differ by multiples of 2 (including 0).') JSi0-S[Y{
end N'WC!K.e
vg5_@7
if any(m>n) RgA"`p7{
error('zernfun:MlessthanN', ... [61*/=gWe
'Each M must be less than or equal to its corresponding N.') "TJ*mN.i{}
end hxK;f
fBctG~CJH
if any( r>1 | r<0 ) n=bdV(?4
error('zernfun:Rlessthan1','All R must be between 0 and 1.') r uGeN
end R"9wVM;*c
huS*1xl
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) jS~Pdz
error('zernfun:RTHvector','R and THETA must be vectors.') PkI+z_
end p7@R+F\.};
Y*PfU+y~
r = r(:); QxdC[t$Lp
theta = theta(:); ($kw*H{Ah^
length_r = length(r); ?h&?`WO(
if length_r~=length(theta) )S(Ly.
error('zernfun:RTHlength', ... "I)zi]vk
'The number of R- and THETA-values must be equal.') 8\!E )M|4
end Y}v3J(l
<JH,B91
% Check normalization: z-606g
% -------------------- bY=[ USgps
if nargin==5 && ischar(nflag) )?UoF&c/
isnorm = strcmpi(nflag,'norm'); 3_Xu3hNH!
if ~isnorm O"+0 b|
error('zernfun:normalization','Unrecognized normalization flag.') $q)YC.5$
end UJSIbb5
else -]HZ?@
isnorm = false; sHc-xnd
end Lr D@QBT
jt on \9
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {V2"Pym?
% Compute the Zernike Polynomials 5C9b*]-#
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% =I546($
kuy?n-1g
% Determine the required powers of r: B(++*#T!^m
% ----------------------------------- ZQ_6I}i")
m_abs = abs(m); T5."3i
rpowers = []; Ly+UY.v"
for j = 1:length(n) JRo/ HY+
rpowers = [rpowers m_abs(j):2:n(j)]; ^0}ma*gi~
end +h4W<YnW
rpowers = unique(rpowers); BZ?C k[E]Z
#mw!_]
% Pre-compute the values of r raised to the required powers, oNyYx6q:Q
% and compile them in a matrix: hOUH1m.
% ----------------------------- eMC^ORdY
if rpowers(1)==0 31a,i2Q4
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); "mW'tm1+
rpowern = cat(2,rpowern{:}); p35=CX`T.
rpowern = [ones(length_r,1) rpowern]; <.QaOLD
else hr
fF1
>A
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); %- 540V{q
rpowern = cat(2,rpowern{:}); #f2k*8"eAF
end !%,7*F(
bTc>-e,
% Compute the values of the polynomials: B2ln8NF#Q
% -------------------------------------- u^tQ2&?O!P
y = zeros(length_r,length(n)); /{i~-DVME
for j = 1:length(n) Nrr})
g
s = 0:(n(j)-m_abs(j))/2; sv%X8
pows = n(j):-2:m_abs(j); 7Ed0BJTa
for k = length(s):-1:1 xo_STLAw
p = (1-2*mod(s(k),2))* ... {Ya$Q#l
prod(2:(n(j)-s(k)))/ ... +Y sGH~jX
prod(2:s(k))/ ... 9j>2C
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... &-yRa45?
prod(2:((n(j)+m_abs(j))/2-s(k))); J[ Gpd
idx = (pows(k)==rpowers); ;\mX=S|a
y(:,j) = y(:,j) + p*rpowern(:,idx); mrP48#Y+l
end _Sr7b#)o
X3:z=X&Zd
if isnorm 1_]X
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 9&eY<'MgP
end [<RhaZz
end L1SKOM$
% END: Compute the Zernike Polynomials N>H@vt~
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% STW?0B'Jr
[Km{6L&
% Compute the Zernike functions: L7C ;l,ot
% ------------------------------ 2<EV
iP9
idx_pos = m>0; :2?g_
idx_neg = m<0; Vke<; k-
*/;7Uv7
z = y; ttsR`R1.k
if any(idx_pos) `q*[fd1u.
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); k<< x}=
end !cyrt<
if any(idx_neg) ##rkyd
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); S;% &X
end gZ,h95'
ccag8LC
% EOF zernfun