非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 z|Hc=AU8y
function z = zernfun(n,m,r,theta,nflag) Q}J'S5%
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 5pBQ~m3
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N gDw:Z/1X`
% and angular frequency M, evaluated at positions (R,THETA) on the s_=/p5\
% unit circle. N is a vector of positive integers (including 0), and _l&`*
2d
% M is a vector with the same number of elements as N. Each element |EJ&s393&
% k of M must be a positive integer, with possible values M(k) = -N(k) S^GB\uJ
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, >A$J5B>d
% and THETA is a vector of angles. R and THETA must have the same IeqJ>t:
% length. The output Z is a matrix with one column for every (N,M) ]U]22I'+$2
% pair, and one row for every (R,THETA) pair. 3gW4\2|T
% ({ 7tp!@
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike FQR{w
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), y@;4F n/
% with delta(m,0) the Kronecker delta, is chosen so that the integral 8 oHyNo
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, JD^&d~n_
% and theta=0 to theta=2*pi) is unity. For the non-normalized G\\zk
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 62B` Z5j#
% a2dlz@)J
% The Zernike functions are an orthogonal basis on the unit circle. IED7v
% They are used in disciplines such as astronomy, optics, and `eIX*R
% optometry to describe functions on a circular domain. ZDZPJp,
% 3z[yKua\
% The following table lists the first 15 Zernike functions. ~RVx~hh
% APT'2-I_
% n m Zernike function Normalization V|> u,
% -------------------------------------------------- `0rEV_$
% 0 0 1 1 G
1{F_
% 1 1 r * cos(theta) 2 {4Q4aL(
% 1 -1 r * sin(theta) 2 }N_9&I
% 2 -2 r^2 * cos(2*theta) sqrt(6) '|0Dt|$
% 2 0 (2*r^2 - 1) sqrt(3) vgzNT4o
% 2 2 r^2 * sin(2*theta) sqrt(6) H1uNlPT
% 3 -3 r^3 * cos(3*theta) sqrt(8) IKM=Q.
7j
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) (lhbH]I
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) (9h{7<wD`
% 3 3 r^3 * sin(3*theta) sqrt(8) C#X0Cn0ln
% 4 -4 r^4 * cos(4*theta) sqrt(10) K1Tq7/N
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ?aInn:FE
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) ,Cg uY/y
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) =5E G}@
% 4 4 r^4 * sin(4*theta) sqrt(10) cLH|;
% -------------------------------------------------- :K&
% J{=by]-rD,
% Example 1: 3LZ0EYVL
% fbSl$jn.
% % Display the Zernike function Z(n=5,m=1) U S+PI`
% x = -1:0.01:1; 93%U;0w[Nw
% [X,Y] = meshgrid(x,x); NYD#I{h
% [theta,r] = cart2pol(X,Y); w\pD'1e
% idx = r<=1; ,MwwA@,9-
% z = nan(size(X)); $|!VP'VI
% z(idx) = zernfun(5,1,r(idx),theta(idx)); y &\ J
% figure wobTT1!|
% pcolor(x,x,z), shading interp M'D;2qo
% axis square, colorbar h"KN)xi$
% title('Zernike function Z_5^1(r,\theta)') R|h9ilc
% 3ug{1M3
% Example 2: $kJvPwRO
% E.?|L-fy
% % Display the first 10 Zernike functions CD(2A,u)/
% x = -1:0.01:1; E7+y
W
% [X,Y] = meshgrid(x,x); xaWd\]UF
% [theta,r] = cart2pol(X,Y); 7t\W{y
% idx = r<=1; pYJv|`+
% z = nan(size(X)); 8^ ;[c
% n = [0 1 1 2 2 2 3 3 3 3]; %FGPsHH
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; v\:>}
<gc
% Nplot = [4 10 12 16 18 20 22 24 26 28]; _s!(9
% y = zernfun(n,m,r(idx),theta(idx)); @*L^Jgn
% figure('Units','normalized') 0@1AH<
% for k = 1:10 w-[WJ:2.
% z(idx) = y(:,k); ?gjM]Ki%:
% subplot(4,7,Nplot(k)) Wx~0_P
% pcolor(x,x,z), shading interp w:Fes
% set(gca,'XTick',[],'YTick',[]) {m F:m5e
% axis square a3
wUB
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 5xP\6Nx6&5
% end z>NRvx0
% GAbX.9[V
% See also ZERNPOL, ZERNFUN2. Os9xZ
zl46E~"]x
% Paul Fricker 11/13/2006 [g/Hf(&
V@<tIui$
t/HMJ
% Check and prepare the inputs: q~.\NKc
% ----------------------------- A\lnH5A
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) +Tde#T&[
error('zernfun:NMvectors','N and M must be vectors.') L.lmbxn
end ;PI=jp
|h(!CFR
if length(n)~=length(m) #ldNWwvRGj
error('zernfun:NMlength','N and M must be the same length.') w``t"v4
end Zse3e
Bm"jf]
n = n(:); 'Wl))lB
m = m(:); ( }5k"9Z
if any(mod(n-m,2)) n NZq`M
error('zernfun:NMmultiplesof2', ... aB-*l
%x
'All N and M must differ by multiples of 2 (including 0).') }m/aigA[1
end iN5~@8jAzz
e`'O!
if any(m>n) jE2k\\<a
error('zernfun:MlessthanN', ... e2UbeP
'Each M must be less than or equal to its corresponding N.') 9mwL\j
end \TkBV?W
wx
BQ#OE
if any( r>1 | r<0 ) YMad]_XOP
error('zernfun:Rlessthan1','All R must be between 0 and 1.') { ;);E
end UL$^zR3%d
"m0>u,HmI
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) @~'c(+<3
error('zernfun:RTHvector','R and THETA must be vectors.') rPkV=9ull,
end #JeZA0r5
KWCA9.w4q
r = r(:); AnG/A!G
theta = theta(:); CT3wd?)z`
length_r = length(r); "T?%4^:g
if length_r~=length(theta) (A\qZtnyl
error('zernfun:RTHlength', ... fyYT #r
'The number of R- and THETA-values must be equal.') W@AZ<(RI:
end !0`44Gbq
5W>i'6*
% Check normalization: nsij;C
% -------------------- 2!cP[Ck
if nargin==5 && ischar(nflag) 9
Bz~3
isnorm = strcmpi(nflag,'norm'); ^4x(a&
if ~isnorm oOBN
error('zernfun:normalization','Unrecognized normalization flag.') k4'rDJfB
end }7+G'=XI/
else 0vQ@n7
isnorm = false; ;n00kel$
end ?o$6w(]''
'h%)@q)J)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !FZb3U@
% Compute the Zernike Polynomials -uqJ~g D
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C^K?"800
:g}WN
% Determine the required powers of r: $d{{><
% ----------------------------------- sKB])mf]
m_abs = abs(m); }I}Rq D:`
rpowers = []; 52q@&')D4M
for j = 1:length(n) iE':ur<`
rpowers = [rpowers m_abs(j):2:n(j)]; {[61LQ6V9
end ' ]l,
rpowers = unique(rpowers); XWo:~\
WM*[+8h
% Pre-compute the values of r raised to the required powers, ?lnX."eAdB
% and compile them in a matrix: FcdbL,}=<
% ----------------------------- Q*ZqY
if rpowers(1)==0 2Y\,[ $z
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); M-,vX15S
rpowern = cat(2,rpowern{:}); F4M<5Yi
rpowern = [ones(length_r,1) rpowern]; BOrfKtG\
else QB'-`GwL
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Pan^@B=Q
rpowern = cat(2,rpowern{:}); L:IaJ?+?
end 5Z]`n
pi q%b]
% Compute the values of the polynomials: _' Xt
% -------------------------------------- 4gG&u33RrE
y = zeros(length_r,length(n)); }N#jA yp!
for j = 1:length(n) NYM$0v`0YK
s = 0:(n(j)-m_abs(j))/2; iSUn}%YFz!
pows = n(j):-2:m_abs(j); qtnLQl"M
for k = length(s):-1:1 ah>;wW!6/
p = (1-2*mod(s(k),2))* ... id\0yRBt
prod(2:(n(j)-s(k)))/ ... )3=oS1p
prod(2:s(k))/ ... 8&qCH>Cf
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... U`ey7
prod(2:((n(j)+m_abs(j))/2-s(k))); rOm)s'
idx = (pows(k)==rpowers); S)C =Q~&
y(:,j) = y(:,j) + p*rpowern(:,idx); MIub^ $<C
end
k]u0US9/
dz5a! e
[
if isnorm Os?G_ziIB
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); <,(6*b
end v:PNt#Ta
end ,v4Z[ (
% END: Compute the Zernike Polynomials 282
m^
2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Dp8YzWL2^
!sfOde)$
% Compute the Zernike functions: Fx~=mYU
% ------------------------------ yd]W',c
idx_pos = m>0; 4Smno%jq
idx_neg = m<0; 6k%N\!_TUW
lRi-?I|~9
z = y; 30-XFl
if any(idx_pos) j/TsHJ=
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); RnPJ,Z5s&&
end )7<JGzBZ1
if any(idx_neg) 5JK{dis]k
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); Wo&MHMP
end 1y$Bz?4
/0s1q
% EOF zernfun