切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11539阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 &^4E)F  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! (]l}QR%Bxu  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 C/w!Y)nB=  
    function z = zernfun(n,m,r,theta,nflag) `f9I#B  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. @+3@Z?!SZ  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N LS=HX~5C  
    %   and angular frequency M, evaluated at positions (R,THETA) on the 3'H 1T  
    %   unit circle.  N is a vector of positive integers (including 0), and '<35XjW  
    %   M is a vector with the same number of elements as N.  Each element UaQR0,#0y  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) -m.SN>V  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Gg3cY{7  
    %   and THETA is a vector of angles.  R and THETA must have the same AIR\>.~"i*  
    %   length.  The output Z is a matrix with one column for every (N,M) l$_Yl&!q$  
    %   pair, and one row for every (R,THETA) pair. <opBOZ d  
    % g`}+K U  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike _FET$$>z N  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), ;&N;6V"}  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral MU; L7^  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ) DzbJ}  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ?>_[hZ  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. O<1qU M  
    % Zljj  
    %   The Zernike functions are an orthogonal basis on the unit circle. ].j;d2xT\  
    %   They are used in disciplines such as astronomy, optics, and F .(zS(q  
    %   optometry to describe functions on a circular domain. XkWO-L  
    % O+Zt*jN;  
    %   The following table lists the first 15 Zernike functions. 1%?J l~M  
    % J1?)z+t9~  
    %       n    m    Zernike function           Normalization >^8=_i !  
    %       -------------------------------------------------- /GK1}h  
    %       0    0    1                                 1 5 ,0fL  
    %       1    1    r * cos(theta)                    2 Z>)(yi9+  
    %       1   -1    r * sin(theta)                    2 Hvn{aLa.  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) zF6]2Y?k%  
    %       2    0    (2*r^2 - 1)                    sqrt(3) >&|C E2'  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) O;u&>BMk  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) q&h&GZ  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ZE())W"  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) OIuEC7XM^C  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) E6{|zF/3'  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) [f'V pId8  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ^MyuD?va  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) qeK_w '  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ohHKZZ  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) J!$q"0G'WT  
    %       -------------------------------------------------- >Jl(9)e  
    % =AhXEu^  
    %   Example 1: t,*hxzD"  
    % ay\e# )  
    %       % Display the Zernike function Z(n=5,m=1) Ylc[ghx  
    %       x = -1:0.01:1; nMK,g>wp  
    %       [X,Y] = meshgrid(x,x);  [>IAS>  
    %       [theta,r] = cart2pol(X,Y); akuV9S  
    %       idx = r<=1; 1 rr\l`  
    %       z = nan(size(X)); @O7hY8",  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); =tJ}itcJ'  
    %       figure Jl-Lz03YG  
    %       pcolor(x,x,z), shading interp w&eX)!  
    %       axis square, colorbar cr{;gP  
    %       title('Zernike function Z_5^1(r,\theta)') zFy0Sz F  
    % ZSKSMI%D  
    %   Example 2: 3|=9aM^x^  
    % e12.suv  
    %       % Display the first 10 Zernike functions Oy :;v7  
    %       x = -1:0.01:1; x \.q zi  
    %       [X,Y] = meshgrid(x,x); ]ov>VF,<  
    %       [theta,r] = cart2pol(X,Y);  a=<l}`*  
    %       idx = r<=1; }u=-Y'!#]  
    %       z = nan(size(X)); ,k*g `OTW  
    %       n = [0  1  1  2  2  2  3  3  3  3]; ""GeO%J8  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; }uJH!@j  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; RR u1/nam  
    %       y = zernfun(n,m,r(idx),theta(idx)); 5]/i[T_  
    %       figure('Units','normalized') VP|ga }(  
    %       for k = 1:10 %!5[3b'h  
    %           z(idx) = y(:,k); B|Y6;4?  
    %           subplot(4,7,Nplot(k)) "XWrd [Df  
    %           pcolor(x,x,z), shading interp ?U~9d"2=  
    %           set(gca,'XTick',[],'YTick',[]) `K.2&6xc  
    %           axis square "~y@rqIba  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) |[ymNG  
    %       end tta\.ic  
    % 29(s^#e8A  
    %   See also ZERNPOL, ZERNFUN2. [FHSFr E,5  
    ~_SoP  
    %   Paul Fricker 11/13/2006 K5O8G  
    $"z|^ze  
    :wn9bCom?M  
    % Check and prepare the inputs: :Ogt{t  
    % ----------------------------- VKW9Rn9Qg  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) l6^IX0&p  
        error('zernfun:NMvectors','N and M must be vectors.') C]ev"Am_)  
    end G j6(ycaS  
    Sm6hyZFy  
    if length(n)~=length(m) K !&{k94  
        error('zernfun:NMlength','N and M must be the same length.') [89qg+z  
    end *Uvh;d{  
    :"Vfn:Q  
    n = n(:); ;A ~efC^<  
    m = m(:); |{ E\ 2U  
    if any(mod(n-m,2)) M_wqb'=  
        error('zernfun:NMmultiplesof2', ... dg9 DBn#  
              'All N and M must differ by multiples of 2 (including 0).') E1(2wJ-3"  
    end bL: !3|M  
    F dR!jt  
    if any(m>n) >7yOu!l  
        error('zernfun:MlessthanN', ... |D `r o  
              'Each M must be less than or equal to its corresponding N.') vs3px1Xe#  
    end v%_5!SR  
    =D<{uovQB  
    if any( r>1 | r<0 ) 8`e75%f:2  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') Q{hXP*5  
    end a2l\B~n  
    7,.Hj&'B  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 2b|$z"97jj  
        error('zernfun:RTHvector','R and THETA must be vectors.') .VFa,&5;3  
    end os|Y=a  
    6#egy|("nF  
    r = r(:); )<w`E{q  
    theta = theta(:); aJ[K'5|  
    length_r = length(r); /s91[n(d  
    if length_r~=length(theta) %y( oY  
        error('zernfun:RTHlength', ... q9GSUkb  
              'The number of R- and THETA-values must be equal.') pkd#SY  
    end 9,h'cf`F  
    yH\z+A|  
    % Check normalization: OGgP~hd  
    % -------------------- !+qy~h  
    if nargin==5 && ischar(nflag) ?LP&VU1  
        isnorm = strcmpi(nflag,'norm'); 1 J3h_z6/  
        if ~isnorm p~ `f.q$'  
            error('zernfun:normalization','Unrecognized normalization flag.') >EQd;Af  
        end qA4w*{JN  
    else U%2[,c_  
        isnorm = false; 9EryHV|  
    end Ne^md  
    +9S_H(  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% O gQE1{C  
    % Compute the Zernike Polynomials qPJU}(9#B  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% qT( 3M9!  
    {-28%  
    % Determine the required powers of r: JGS4r+   
    % ----------------------------------- i3T]<&+j5  
    m_abs = abs(m); yqdh LX|Mk  
    rpowers = []; 4~<  :Pj  
    for j = 1:length(n) F8(6P1}E  
        rpowers = [rpowers m_abs(j):2:n(j)]; Ol8ma`}Nq3  
    end .Rq|F  
    rpowers = unique(rpowers); [cSoo+Mlx  
    2Z3c`/k  
    % Pre-compute the values of r raised to the required powers, X{SD3j=G#  
    % and compile them in a matrix: Isa]5>  
    % ----------------------------- DL&\iR  
    if rpowers(1)==0 (+' *_   
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); [[{y?-U  
        rpowern = cat(2,rpowern{:}); K1S)S8.EZ8  
        rpowern = [ones(length_r,1) rpowern]; dpHK~n j\_  
    else - V Rby  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 1b)^5U ;  
        rpowern = cat(2,rpowern{:}); Z-(Vfp4  
    end 7r=BGoA2E  
    92}UP=RW!  
    % Compute the values of the polynomials: 1-.UkdZ}  
    % -------------------------------------- !oTF2Q+C  
    y = zeros(length_r,length(n)); \IZfp=On  
    for j = 1:length(n) :G#>):  
        s = 0:(n(j)-m_abs(j))/2; Y|bCbaF  
        pows = n(j):-2:m_abs(j); cwK 6$Ax  
        for k = length(s):-1:1 B2UQO4[w  
            p = (1-2*mod(s(k),2))* ... Q_<CG[,6D1  
                       prod(2:(n(j)-s(k)))/              ... n GE3O#fv  
                       prod(2:s(k))/                     ... ;M '?k8L  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... r"s <;  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); K * Tj;  
            idx = (pows(k)==rpowers); u_.`I8qa  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ]-O/{FIv  
        end RC5b'+E&#  
         FuEgI8+b  
        if isnorm w{$t:l)2,  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ;IX3w:Aw  
        end +R}(t{b#  
    end _1w?nN'  
    % END: Compute the Zernike Polynomials jBexEdH  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% " $5J7  
    +'qzk>B  
    % Compute the Zernike functions: m09 Bds  
    % ------------------------------ f]F]wg\_f  
    idx_pos = m>0; <5*cc8  
    idx_neg = m<0; "g7`Ytln  
    E]PHO\f-m}  
    z = y; yw'b^D/  
    if any(idx_pos) v%t "N  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); }0Isi G  
    end  S5RQ  
    if any(idx_neg) E7E>w#T5  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); "y@B|  
    end \& 6  
    XjpFJ#T*$A  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) o@[yF<  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. (JS1}T  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated WlnmW(uahW  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive pv%UsbY  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, b;#Z/phix  
    %   and THETA is a vector of angles.  R and THETA must have the same ?[Xv(60]  
    %   length.  The output Z is a matrix with one column for every P-value, \gferWm  
    %   and one row for every (R,THETA) pair. -E1b5i;f  
    % !K;\{/8  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike %<%ef+*  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) j`1% a]Bwc  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) xMI4*4y(  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 @ ]u nqCO  
    %   for all p. qn}w]yGW  
    % p(/PG+  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 X $LX;Lv  
    %   Zernike functions (order N<=7).  In some disciplines it is 8:c[_3w  
    %   traditional to label the first 36 functions using a single mode -AcLh0pc  
    %   number P instead of separate numbers for the order N and azimuthal ?<c)r~9]  
    %   frequency M. fvKb0cIx]  
    % k4te[6)  
    %   Example:  6jFc'  
    % (i4=}Kn2  
    %       % Display the first 16 Zernike functions g+h)s!$sB  
    %       x = -1:0.01:1; 3# G;uWN-  
    %       [X,Y] = meshgrid(x,x); ML?%s`   
    %       [theta,r] = cart2pol(X,Y); Wi_5.=  
    %       idx = r<=1; q h;ahX~  
    %       p = 0:15; {Lu-!}\NP  
    %       z = nan(size(X)); :JW!$?s8H  
    %       y = zernfun2(p,r(idx),theta(idx)); n@[&SgZq  
    %       figure('Units','normalized') ,w%cX{  
    %       for k = 1:length(p) 4;@|tC|u  
    %           z(idx) = y(:,k); 86!"b  
    %           subplot(4,4,k) CHp`4  
    %           pcolor(x,x,z), shading interp G v(bD6Rz  
    %           set(gca,'XTick',[],'YTick',[]) t_1a.Jv  
    %           axis square Z3E957}  
    %           title(['Z_{' num2str(p(k)) '}']) !\wdX7%  
    %       end Dpp 3]en.  
    % a=bP   
    %   See also ZERNPOL, ZERNFUN. ;=piJ%k  
    ]O2ku^yM  
    %   Paul Fricker 11/13/2006 B,?Fjot#m  
    jH26-b<  
    ^LgaMmz  
    % Check and prepare the inputs: =)}m4,LA  
    % ----------------------------- "/6<k0.D&  
    if min(size(p))~=1 p?S:J`q  
        error('zernfun2:Pvector','Input P must be vector.') >&V?1!N"  
    end g'G%BX  
    hXr`S4aJ  
    if any(p)>35 rJi;"xF8  
        error('zernfun2:P36', ... AA&398F  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... i1RU5IRy|j  
               '(P = 0 to 35).']) VXEA.Mko  
    end ;4<CnC**  
    gAt[kW< n  
    % Get the order and frequency corresonding to the function number: /rp.H'hC  
    % ---------------------------------------------------------------- uJVu:E.#1  
    p = p(:); v%c r   
    n = ceil((-3+sqrt(9+8*p))/2); yyZ}qnbx]  
    m = 2*p - n.*(n+2); No8~~  
    6FPGQ0q  
    % Pass the inputs to the function ZERNFUN: V*P3C5 l  
    % ---------------------------------------- \q#s/&b   
    switch nargin :<Z*WoEmt  
        case 3 ud xLHs  
            z = zernfun(n,m,r,theta); 9!sx  
        case 4 ]Cd 1&  
            z = zernfun(n,m,r,theta,nflag); f&=y\uP]  
        otherwise sXm8KV  
            error('zernfun2:nargin','Incorrect number of inputs.') (,$ H!qKy  
    end D )z'FOaI  
    J5Rr7=:*S  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) `[\*1GpAo  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. P1DYjm[+D  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of w :2@@)pr  
    %   order N and frequency M, evaluated at R.  N is a vector of Y; =y-D  
    %   positive integers (including 0), and M is a vector with the <V)T_  
    %   same number of elements as N.  Each element k of M must be a 1GB$;0 W),  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) Q`ERI5b6  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is 3XY;g{`=q  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix +T:F :X`  
    %   with one column for every (N,M) pair, and one row for every m#Rgelhk.  
    %   element in R. `btw*{.[  
    % -E~pCN(E  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- [G:wPp.y  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is K~**. NF-n  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to )f]E<*k'E  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 *IWO ,!  
    %   for all [n,m]. 3Gi#WV4$  
    % prE~GO7Z  
    %   The radial Zernike polynomials are the radial portion of the V D+TJ` r  
    %   Zernike functions, which are an orthogonal basis on the unit [.;$6C/?  
    %   circle.  The series representation of the radial Zernike N'_,VB  
    %   polynomials is xsS/)R?  
    % g(xuA^~J  
    %          (n-m)/2 aW hhq@  
    %            __ A `\2]t$z  
    %    m      \       s                                          n-2s }R5>ja0  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r b0PqP<{t  
    %    n      s=0 LY}%|w  
    % "3CQ0  
    %   The following table shows the first 12 polynomials. kQ4-W9u  
    % 3~H_UGw  
    %       n    m    Zernike polynomial    Normalization K~"uZa^s  
    %       --------------------------------------------- H%NP4pK  
    %       0    0    1                        sqrt(2) HV'xDy[)  
    %       1    1    r                           2 9?<WRM3a>  
    %       2    0    2*r^2 - 1                sqrt(6) wN/d J  
    %       2    2    r^2                      sqrt(6) v-2_#  
    %       3    1    3*r^3 - 2*r              sqrt(8) TR3_!0  
    %       3    3    r^3                      sqrt(8) +')\,m "z  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) V 9Bi2\s*  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) 2Jo'!|]  
    %       4    4    r^4                      sqrt(10) $ ;cZq  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) >mRA|0$  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) ^qXc%hjg  
    %       5    5    r^5                      sqrt(12) B3[;}8u>  
    %       --------------------------------------------- *BzqAi0  
    % >?K@zsv}  
    %   Example: d5&avL\  
    % ` MIZqHM @  
    %       % Display three example Zernike radial polynomials A&_H%]{<:  
    %       r = 0:0.01:1; o= VzVg  
    %       n = [3 2 5]; 9`kxyh</  
    %       m = [1 2 1]; +{Yd\{9  
    %       z = zernpol(n,m,r); ]kUF>Wp  
    %       figure c!l=09a~a+  
    %       plot(r,z) JK:i-  
    %       grid on !4zSE,1  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') SwHrHj  
    % s0,c4y  
    %   See also ZERNFUN, ZERNFUN2. M.|O+K z  
    ^g/    
    % A note on the algorithm. 0~{jgN~  
    % ------------------------ p^PAbCP'|3  
    % The radial Zernike polynomials are computed using the series b4%sOn,  
    % representation shown in the Help section above. For many special )P    
    % functions, direct evaluation using the series representation can M3- bFIt  
    % produce poor numerical results (floating point errors), because e1a8>>bcI  
    % the summation often involves computing small differences between "HI&dC  
    % large successive terms in the series. (In such cases, the functions TZ8:3ti  
    % are often evaluated using alternative methods such as recurrence m'D_zb9+  
    % relations: see the Legendre functions, for example). For the Zernike Dizc#!IGU  
    % polynomials, however, this problem does not arise, because the ST'M<G%4E  
    % polynomials are evaluated over the finite domain r = (0,1), and %D|p7&  
    % because the coefficients for a given polynomial are generally all e= $p(  
    % of similar magnitude. ?v8.3EE1\o  
    % Z_vIGH|1  
    % ZERNPOL has been written using a vectorized implementation: multiple ktX\{g!U  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] e<wA["^  
    % values can be passed as inputs) for a vector of points R.  To achieve H4DM,.04  
    % this vectorization most efficiently, the algorithm in ZERNPOL ?K9&ye_rgw  
    % involves pre-determining all the powers p of R that are required to 07pASZ;~  
    % compute the outputs, and then compiling the {R^p} into a single B3 fKb#T  
    % matrix.  This avoids any redundant computation of the R^p, and ,z A9*  
    % minimizes the sizes of certain intermediate variables. ._2#89V  
    % v eP)ElX  
    %   Paul Fricker 11/13/2006 UYJMW S=  
    .f)&;Af^  
    t"[ xx_i  
    % Check and prepare the inputs: rN0G|  
    % ----------------------------- nT.i|(xd.  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) LLp/ SWe  
        error('zernpol:NMvectors','N and M must be vectors.') GZY8%.1{"a  
    end cm`Jr#kl{  
    epw*Px  
    if length(n)~=length(m) o@SL0H-6|  
        error('zernpol:NMlength','N and M must be the same length.') N<&"_jzm  
    end -|s w\Q  
    f;os\8JdM  
    n = n(:); 3$x[{\ {  
    m = m(:); PuyJ:#a  
    length_n = length(n); 7wKN  
    )S41N^j.  
    if any(mod(n-m,2)) oSd TQ$U!D  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') kw,eTB<;R  
    end _:(RkS!x  
    @)[Q6w`x  
    if any(m<0) x"/DCcZ  
        error('zernpol:Mpositive','All M must be positive.') \VQv "wid  
    end *4]u?R  
    gumT"x .^  
    if any(m>n) 4yOYw*X  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') \YXzq<7  
    end !4"(>Rnw  
    q [}<LU  
    if any( r>1 | r<0 ) |"}F cS y  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 'OrGt_U  
    end S87E$k  
    '0\,waEu  
    if ~any(size(r)==1) ky2n%<0]  
        error('zernpol:Rvector','R must be a vector.') $7J9Yzp?L  
    end G;RFY!o  
    =rL%P~0wq  
    r = r(:); <Wd#HKIG>l  
    length_r = length(r); 8PKUg "p  
    1f 3c3PJ  
    if nargin==4 c5 ^CWk K  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ^/'zU,  
        if ~isnorm hJ~Na\?w  
            error('zernpol:normalization','Unrecognized normalization flag.') %5g(|Y]  
        end a^{"E8j  
    else > nHaMj  
        isnorm = false; TH[xSg  
    end Jcy{ ~>@7  
    7'IcgTWDZy  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% h7 r *5E  
    % Compute the Zernike Polynomials P8& BtA  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :mYVHLmea  
    g:dtfa/]  
    % Determine the required powers of r: KM-d8^\:  
    % ----------------------------------- io&FW!J.  
    rpowers = []; }Gvu!a#R  
    for j = 1:length(n) L0lqm0h  
        rpowers = [rpowers m(j):2:n(j)]; + *xi&|%  
    end .ei5+?V<i  
    rpowers = unique(rpowers); u; ]4 ydp  
    ` x|=vu-  
    % Pre-compute the values of r raised to the required powers, zf4\V F  
    % and compile them in a matrix: 1]&FB{l  
    % -----------------------------  a,ff8Qm  
    if rpowers(1)==0 7.mYzl-F(  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); =Ch^;Wyt  
        rpowern = cat(2,rpowern{:}); 2gasH11M  
        rpowern = [ones(length_r,1) rpowern]; ID_#a9N  
    else `erKHZ]S  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); +nAbcBJAl  
        rpowern = cat(2,rpowern{:}); f (Su  
    end @ajt D-_2  
    VY#nSF`  
    % Compute the values of the polynomials: ;2y4^  
    % -------------------------------------- luWr.<1  
    z = zeros(length_r,length_n); 7oy}<9  
    for j = 1:length_n TSKT6_IJw  
        s = 0:(n(j)-m(j))/2; {D$5M/$  
        pows = n(j):-2:m(j); @sdHB ./  
        for k = length(s):-1:1 e,K.bgi  
            p = (1-2*mod(s(k),2))* ... mu*RXLai  
                       prod(2:(n(j)-s(k)))/          ... j LM}hwJ8  
                       prod(2:s(k))/                 ... btR~LJb  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... Q "vhl2RX  
                       prod(2:((n(j)+m(j))/2-s(k))); 8a8CY,n{  
            idx = (pows(k)==rpowers); 4{lrtNd~K  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 8wEUly  
        end Nsf>b8O  
         xNd p]u  
        if isnorm gyz_$T@x  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); }vX iqT  
        end H~NK:qRzK  
    end oQiRjDLx  
    }?)U`zF)7}  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  "[rz*[o8I  
    H )>3c1  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 E#3tkFF0Z[  
    Q3Z?Z;2aR  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)