切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11559阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 "8RSvT<W^5  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! q@qsp&0/  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 *R"/|Ka  
    function z = zernfun(n,m,r,theta,nflag) lFk R=!?=  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. .VqhV  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N \^LFkp  
    %   and angular frequency M, evaluated at positions (R,THETA) on the +_`7G^U?%  
    %   unit circle.  N is a vector of positive integers (including 0), and 5^cCY'I  
    %   M is a vector with the same number of elements as N.  Each element #z(]xI)"  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) . me;.,$#  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, "&] -2(  
    %   and THETA is a vector of angles.  R and THETA must have the same Kq!3wb;  
    %   length.  The output Z is a matrix with one column for every (N,M) t:S+%u U  
    %   pair, and one row for every (R,THETA) pair. g7|@  
    % ta0|^KAA  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike  k'YTpO  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), E$e5^G9  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Smh,zCc>s  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, N#] ypl  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized F{wzB  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. yu|>t4#GT  
    % JT?h1v<H]  
    %   The Zernike functions are an orthogonal basis on the unit circle. eE Kf|I  
    %   They are used in disciplines such as astronomy, optics, and :3PH8TL  
    %   optometry to describe functions on a circular domain. 46x'I(  
    % AX INThJ  
    %   The following table lists the first 15 Zernike functions. cNrg#Asen&  
    % /1 dT+>  
    %       n    m    Zernike function           Normalization xk5 ]^yDp  
    %       -------------------------------------------------- h;Kx!5)y  
    %       0    0    1                                 1 }vuARZ>  
    %       1    1    r * cos(theta)                    2 Y2TtY;  
    %       1   -1    r * sin(theta)                    2 !Cs_F&l"j  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) sA~]$A;DM!  
    %       2    0    (2*r^2 - 1)                    sqrt(3) b>W %t  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) sKWfX Cd  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) s~>}a  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) B~mj 8l4  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) wzA$'+Mb  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) +|v90ed  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) zA 3_Lx!  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 1 zZlC#V  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) 9$t( &z=  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) hgmCRC  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Xvv6~  
    %       -------------------------------------------------- -=="<0c  
    % K9[UB  
    %   Example 1: 1oS/`)  
    % M:8R -c#![  
    %       % Display the Zernike function Z(n=5,m=1) {ax:RUQxy  
    %       x = -1:0.01:1; Z;i:](  
    %       [X,Y] = meshgrid(x,x); ^~dWU>  
    %       [theta,r] = cart2pol(X,Y); :/#rZPPF  
    %       idx = r<=1; 4 5e~6",  
    %       z = nan(size(X)); QZs!{sZ  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ig!+2g  
    %       figure  g-A-kqo9  
    %       pcolor(x,x,z), shading interp _w{Qtj~s|  
    %       axis square, colorbar .H|-_~Yx|  
    %       title('Zernike function Z_5^1(r,\theta)') *hx  
    % .8R@2c`}Cs  
    %   Example 2: "[k3kAm  
    % ]lbuy7xj63  
    %       % Display the first 10 Zernike functions b-DvW4B  
    %       x = -1:0.01:1; 8m MQ[#0:}  
    %       [X,Y] = meshgrid(x,x); f 2.HF@  
    %       [theta,r] = cart2pol(X,Y); &&+H+{_Q  
    %       idx = r<=1; j^'go&p  
    %       z = nan(size(X)); pkzaNY/q  
    %       n = [0  1  1  2  2  2  3  3  3  3]; zdYjF|  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; :]KAkhFkbb  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; }pYqWTG  
    %       y = zernfun(n,m,r(idx),theta(idx)); +R&gqja  
    %       figure('Units','normalized') s#11FfF`  
    %       for k = 1:10 ]`K2 N  
    %           z(idx) = y(:,k); 2 nCA<&  
    %           subplot(4,7,Nplot(k)) 6t$8M[0-U  
    %           pcolor(x,x,z), shading interp rH-23S  
    %           set(gca,'XTick',[],'YTick',[]) \85i+q:LuA  
    %           axis square  )2.Si#  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) WE?5ehEme  
    %       end tA;}h7/Lc~  
    % WJ#[LF!e  
    %   See also ZERNPOL, ZERNFUN2. Tbq;h ?D  
    Upe%rC(  
    %   Paul Fricker 11/13/2006 KPF1cJ2N  
    !zo{tI19  
    2ESo2  
    % Check and prepare the inputs: %v|B *  
    % ----------------------------- ";F'~}bDA  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) aOp\91  
        error('zernfun:NMvectors','N and M must be vectors.') G[=c Ss,  
    end t0S 1QC+  
    _b 0& !l<  
    if length(n)~=length(m) C]6O!Pb0  
        error('zernfun:NMlength','N and M must be the same length.') Vk suu@cch  
    end Da|z"I x  
    AH^/V}9H  
    n = n(:); KoT\pY^7\  
    m = m(:); ^!d3=}:0  
    if any(mod(n-m,2)) V`- 9m$  
        error('zernfun:NMmultiplesof2', ... `3pW]&  
              'All N and M must differ by multiples of 2 (including 0).') d=(mw_-?  
    end *w&e\i|7  
    ax`o>_)  
    if any(m>n) R_C)  
        error('zernfun:MlessthanN', ... OXA7w.^  
              'Each M must be less than or equal to its corresponding N.') HN"Z]/ 5j  
    end F5<H m_\:  
    N7"W{"3D  
    if any( r>1 | r<0 ) KO [Yi  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') l#o ~W`  
    end 1Mzmg[L8  
    ll^#JpT[S  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) {c'lhUB  
        error('zernfun:RTHvector','R and THETA must be vectors.')  ?9/G[[(  
    end c{|p.hd  
    %J(:ADu]  
    r = r(:); 9{l}bu/u  
    theta = theta(:); G{}VPcrbC  
    length_r = length(r); RZLq]8pM  
    if length_r~=length(theta) o/E >f_k[  
        error('zernfun:RTHlength', ... M3\AY30L  
              'The number of R- and THETA-values must be equal.') ?s01@f#  
    end afVT~Sf{  
    ';CNGv -  
    % Check normalization: QRUz`|U  
    % -------------------- L!92P{K  
    if nargin==5 && ischar(nflag) SUiOJ[5,  
        isnorm = strcmpi(nflag,'norm'); D*jM1w_`  
        if ~isnorm )9g2D`a4  
            error('zernfun:normalization','Unrecognized normalization flag.') X ?O[r3<  
        end Wr 4,YQM  
    else /uc>@!F  
        isnorm = false; I7onX,U+  
    end (PL UFT  
    aE8VZ8tvq  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% y29m/i:  
    % Compute the Zernike Polynomials #a#F,ZT  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% w )f#V s  
    Jy)/%p~  
    % Determine the required powers of r: sJZ iI}Xc  
    % ----------------------------------- 6nn *]|7  
    m_abs = abs(m); 3";q[&F9y  
    rpowers = []; Rcuz(yS8  
    for j = 1:length(n) rq{$,/6.  
        rpowers = [rpowers m_abs(j):2:n(j)]; [Xkx_B  
    end 6ujW Nf  
    rpowers = unique(rpowers); X|dlt{Gf   
    pa+hL,w{6  
    % Pre-compute the values of r raised to the required powers, 2 ?C)&  
    % and compile them in a matrix: 203 s^K 61  
    % ----------------------------- 0GwR~Z}Z  
    if rpowers(1)==0 8*X4\3:*N  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); $ nb[GV  
        rpowern = cat(2,rpowern{:}); 0GLM(JmK  
        rpowern = [ones(length_r,1) rpowern]; +{]j]OP  
    else iZmcI;?u  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); >P(.:_ ^p  
        rpowern = cat(2,rpowern{:}); mFeP9MfJ  
    end y_)FA"IkE  
    kJU2C=m@e2  
    % Compute the values of the polynomials: %#+Hl0,Tt  
    % -------------------------------------- +`4A$#$+y  
    y = zeros(length_r,length(n)); sO Y:e/_F  
    for j = 1:length(n) Iu{V,U  
        s = 0:(n(j)-m_abs(j))/2; 9r9NxKuAO  
        pows = n(j):-2:m_abs(j); (7Qo  
        for k = length(s):-1:1 DU^loB+  
            p = (1-2*mod(s(k),2))* ... ceA9) {  
                       prod(2:(n(j)-s(k)))/              ... SbZ6t$"  
                       prod(2:s(k))/                     ... y_,bu^+*  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... MV"=19]  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); +ZYn? #IQ  
            idx = (pows(k)==rpowers); )oZ dj`  
            y(:,j) = y(:,j) + p*rpowern(:,idx); =4!mAo}  
        end KvS G;  
         HW|IILFB  
        if isnorm jPeYmv]  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); x-c"%Z|  
        end M|-)GvR$J  
    end Kw}'W 8`c  
    % END: Compute the Zernike Polynomials ~&O%N  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% rqq1TRg  
    (H]AR8%W  
    % Compute the Zernike functions: k)u[0}   
    % ------------------------------ L];b< *d  
    idx_pos = m>0; hZ3bVi)L\  
    idx_neg = m<0; ysN3  
    $]1=\ I  
    z = y; G3]4A&h9v~  
    if any(idx_pos) 0(I j%Wi,  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 6@o*xK7L  
    end w!CNRtM:~  
    if any(idx_neg) GILfbNcd  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 4Hg9N}  
    end /?!u{(h}  
    C~[,z.FvO  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) &zhAh1m  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. Bt#N4m[X*|  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated zX~MC?,W1  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive S'14hk<  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, "KlwA.7/  
    %   and THETA is a vector of angles.  R and THETA must have the same v:p}B$  
    %   length.  The output Z is a matrix with one column for every P-value, /=h` L ,  
    %   and one row for every (R,THETA) pair. ^.G$Q#y,  
    % zzz3Bq~  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike F?cK- .  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) +#By*;BJ  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) -/k 3a*$/  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 F/Pep?'  
    %   for all p. :EH=_"  
    % "ta x?  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 fh{`Mz,o  
    %   Zernike functions (order N<=7).  In some disciplines it is C?Ucu]cW  
    %   traditional to label the first 36 functions using a single mode H-%v3d>3  
    %   number P instead of separate numbers for the order N and azimuthal KG@8RtHsQ  
    %   frequency M. F"< v aqT2  
    % <Qq*p  
    %   Example: oE~RyS X  
    % {t!!Uz 7  
    %       % Display the first 16 Zernike functions *kVV+H<X|b  
    %       x = -1:0.01:1; AEuG v}#  
    %       [X,Y] = meshgrid(x,x); iUwzs&frd  
    %       [theta,r] = cart2pol(X,Y); dd["dBIZ '  
    %       idx = r<=1; [2koe.?(  
    %       p = 0:15; fLVAKn  
    %       z = nan(size(X)); DJ%PWlK5  
    %       y = zernfun2(p,r(idx),theta(idx)); {U1m.30n  
    %       figure('Units','normalized') HqTjl4ai  
    %       for k = 1:length(p) W`&hp6Jq  
    %           z(idx) = y(:,k); TKjFp%  
    %           subplot(4,4,k) BC]?0 U  
    %           pcolor(x,x,z), shading interp m3ff;,  
    %           set(gca,'XTick',[],'YTick',[]) CNIsZ v@Q  
    %           axis square iOdpM{~*  
    %           title(['Z_{' num2str(p(k)) '}']) ?}7p"3j'z  
    %       end 0Qd:`HF[  
    % _FEF x  
    %   See also ZERNPOL, ZERNFUN. SzRmF1<  
    875od  
    %   Paul Fricker 11/13/2006 1sCR4L:+  
    y?0nI<}}HK  
    b[7 ]F  
    % Check and prepare the inputs: 8X0z~ &  
    % ----------------------------- >j`qh:^  
    if min(size(p))~=1  XlJZhc  
        error('zernfun2:Pvector','Input P must be vector.') {e5= &A  
    end KYP!Rs/j.  
    T)}) pt!V  
    if any(p)>35 y==CT Y@  
        error('zernfun2:P36', ... fzA9'i`  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... j7c3(*Pl  
               '(P = 0 to 35).']) i  LAscb  
    end qCO/?kW  
    d[35d J7F  
    % Get the order and frequency corresonding to the function number: ;6 wA"  
    % ---------------------------------------------------------------- 3,=6@U  
    p = p(:); ?s _5&j7  
    n = ceil((-3+sqrt(9+8*p))/2); o]:9')5^  
    m = 2*p - n.*(n+2); v}x&?fU `  
    '{`$#@a.  
    % Pass the inputs to the function ZERNFUN: eY\y E"3  
    % ---------------------------------------- Y<rU#Z#T  
    switch nargin ]7mt[2 Cd  
        case 3 QIgNsz  
            z = zernfun(n,m,r,theta); ]tDDq=+v  
        case 4 h} EPnC}  
            z = zernfun(n,m,r,theta,nflag); Lk$B{2^n  
        otherwise +{U cspqM  
            error('zernfun2:nargin','Incorrect number of inputs.') {_Gs*<.  
    end hzRYec(  
    7= DdrG<  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 9k~8  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. )tpL#J  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of A={UL  
    %   order N and frequency M, evaluated at R.  N is a vector of O<e{  
    %   positive integers (including 0), and M is a vector with the S[T8T|_  
    %   same number of elements as N.  Each element k of M must be a TW>WHCAm  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) yH}s<@y;7  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is M:6"H%h,W  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix ilva,WFa^  
    %   with one column for every (N,M) pair, and one row for every `V3Fx{  
    %   element in R. +t:0SRSt  
    % 5P$4 =z91  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- pXK^Y'2C!  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 0<B$#8  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ~3S~\0&|  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 ,'iE;o{Tu  
    %   for all [n,m]. R^e.s -  
    % OaZQ7BGq  
    %   The radial Zernike polynomials are the radial portion of the Cs ifKHI  
    %   Zernike functions, which are an orthogonal basis on the unit A_#DJJMm  
    %   circle.  The series representation of the radial Zernike F.v{-8GV  
    %   polynomials is P A OJ\U  
    %  50C   
    %          (n-m)/2 UEVG0qF  
    %            __ .K<Q&  
    %    m      \       s                                          n-2s wg]LVW}  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r I15{)o(8$  
    %    n      s=0 f0aKlhEC  
    % Vl!6W@g  
    %   The following table shows the first 12 polynomials. 4X(H ;  
    % U!Z,xx[]  
    %       n    m    Zernike polynomial    Normalization ^Js9 s8?$  
    %       --------------------------------------------- '!a'ZjYyi  
    %       0    0    1                        sqrt(2) ~**.|%Kc  
    %       1    1    r                           2 9pxc~=  
    %       2    0    2*r^2 - 1                sqrt(6) mS~kJy_-  
    %       2    2    r^2                      sqrt(6) mju>>\9  
    %       3    1    3*r^3 - 2*r              sqrt(8) &q|K!5[k  
    %       3    3    r^3                      sqrt(8) H1(Uw:V8  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) q=qcm`ce  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) Q'mM3pq4r  
    %       4    4    r^4                      sqrt(10) v2;`f+  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) CoAv Sw  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) ;?g6QIN9  
    %       5    5    r^5                      sqrt(12) ; p{[1  
    %       --------------------------------------------- q,U+qt  
    % e2W".+B1  
    %   Example: 3J438M.ka  
    % 6;qy#\}2  
    %       % Display three example Zernike radial polynomials {LQ#y/H?  
    %       r = 0:0.01:1; v+=BCyT  
    %       n = [3 2 5]; Uwx E<=z  
    %       m = [1 2 1]; {Z5nGG  
    %       z = zernpol(n,m,r); \K]0JH  
    %       figure [o5Hl^  
    %       plot(r,z) ~B(4qK1G  
    %       grid on %O;bAC_M  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') df#$ 9 -  
    % -701j'q{  
    %   See also ZERNFUN, ZERNFUN2. o"BoZsMk  
    {9aE5kR  
    % A note on the algorithm. Y6L ~K?  
    % ------------------------ <)-Sj,  
    % The radial Zernike polynomials are computed using the series (%W&4a1di  
    % representation shown in the Help section above. For many special 8rS:5:Hi  
    % functions, direct evaluation using the series representation can U,-39mr  
    % produce poor numerical results (floating point errors), because ?r2` Q  
    % the summation often involves computing small differences between pKrN:ExB"\  
    % large successive terms in the series. (In such cases, the functions s)Cjc.Qs  
    % are often evaluated using alternative methods such as recurrence TNh1hhJ$b  
    % relations: see the Legendre functions, for example). For the Zernike )Z?Ym.0/  
    % polynomials, however, this problem does not arise, because the 6}Y#=}  
    % polynomials are evaluated over the finite domain r = (0,1), and r|PB*`  
    % because the coefficients for a given polynomial are generally all -rli(RR)|  
    % of similar magnitude. !|S43i&p  
    % j578)!aJ  
    % ZERNPOL has been written using a vectorized implementation: multiple >!1.  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] %vhnl'  
    % values can be passed as inputs) for a vector of points R.  To achieve &,CiM0  
    % this vectorization most efficiently, the algorithm in ZERNPOL rOOT8nkR#  
    % involves pre-determining all the powers p of R that are required to aL&7 1^R,  
    % compute the outputs, and then compiling the {R^p} into a single &_|#.  
    % matrix.  This avoids any redundant computation of the R^p, and -Z Ugx$  
    % minimizes the sizes of certain intermediate variables. hUMf"=q+  
    % ]cMqahaY  
    %   Paul Fricker 11/13/2006 2!J&+r  
    hPePB=  
    \\dM y9M-  
    % Check and prepare the inputs: i,4>0o?  
    % ----------------------------- 04l!:Tp,  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 9!}8UALD  
        error('zernpol:NMvectors','N and M must be vectors.') {|:;]T"y  
    end D(RTVef  
    474SMx$  
    if length(n)~=length(m) XkF%.hWo  
        error('zernpol:NMlength','N and M must be the same length.') H>B&|BO_[  
    end YLv'43PL  
    |O9 O )o  
    n = n(:); j<@lX^  
    m = m(:); '*w00  
    length_n = length(n); EYEnN  
    ~W+kiTsD?  
    if any(mod(n-m,2)) /%TI??PGu  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') FZ,#0ZYJGP  
    end W=vP]x >J  
    ;he"ph=>  
    if any(m<0) QpA/SmJ  
        error('zernpol:Mpositive','All M must be positive.') 0rDh}<upjk  
    end \BZhf?9U  
    Y>G@0r BG  
    if any(m>n) \$e)*9)  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ]? g@jRs  
    end z>Hgkp8D"  
    iIa'2+  
    if any( r>1 | r<0 ) _5# y06Q  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') -~30)J=e`  
    end `A^"% @j  
    r )~ T@'y  
    if ~any(size(r)==1) V7P&%oz{C  
        error('zernpol:Rvector','R must be a vector.') =L:4i\4  
    end fM63+9I)\  
    !&/{E [  
    r = r(:); Q[pV!CH  
    length_r = length(r); ps%q9}J  
    X+S9{X#Cm  
    if nargin==4 _:C9{aEZb  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); DV-;4AxxRq  
        if ~isnorm lfz2~Si5A  
            error('zernpol:normalization','Unrecognized normalization flag.') -[!P!d=  
        end O 8u j`G 9  
    else PuT@}tw  
        isnorm = false; 80/F7q'tn  
    end cmg ^J  
    r{ef.^&:  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +W\f(/q0  
    % Compute the Zernike Polynomials &[/w_| b  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "a"]o  
    pDcjwlA%  
    % Determine the required powers of r: 9Hu/u=vB<  
    % ----------------------------------- * %M3PTY\  
    rpowers = []; i2(1ki/|O  
    for j = 1:length(n) }mdAM6  
        rpowers = [rpowers m(j):2:n(j)]; mfo1+owT  
    end ^[XYFQTL  
    rpowers = unique(rpowers); hn=[1<#^(  
    _D_LgH;}  
    % Pre-compute the values of r raised to the required powers, ;u(<h?%e  
    % and compile them in a matrix: J<maQ6p  
    % ----------------------------- 0[*qY@m:Z  
    if rpowers(1)==0 [4C:r!  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ( %xwl  
        rpowern = cat(2,rpowern{:}); T{Uc:Z  
        rpowern = [ones(length_r,1) rpowern]; MP 2~;T}~  
    else /)(#{i*  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Jesjtcy<*  
        rpowern = cat(2,rpowern{:}); rT5Ycm@  
    end %V{7DA&C  
    Qj6/[mUr~  
    % Compute the values of the polynomials: mB9r3[  
    % -------------------------------------- EC8b=B<DE  
    z = zeros(length_r,length_n); y2vUthRwo  
    for j = 1:length_n 4NG?_D5&  
        s = 0:(n(j)-m(j))/2; Ii_ojQP-z  
        pows = n(j):-2:m(j); fasgmi}  
        for k = length(s):-1:1 `poE6\  
            p = (1-2*mod(s(k),2))* ... ?Poq2  
                       prod(2:(n(j)-s(k)))/          ... #ap9Yoyk\  
                       prod(2:s(k))/                 ... /&{$ pM|?  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... aj,T)oDbt6  
                       prod(2:((n(j)+m(j))/2-s(k))); k]HEhY  
            idx = (pows(k)==rpowers); p4i]7o@  
            z(:,j) = z(:,j) + p*rpowern(:,idx); ez!C?  
        end Bw64  
         z0*_^MH  
        if isnorm e=;AfK  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); {=-\|(Bx  
        end =xJKIu  
    end OP|8Sk6 r  
    )}'U`'q  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5479
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  w h$jr{  
    Kt.~aaG_  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 K$REZe  
    0D(cXzQP  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)