非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 .<0|V
function z = zernfun(n,m,r,theta,nflag) v6Vie o=
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. Sz_bjh yT}
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N q]%eLfC(
% and angular frequency M, evaluated at positions (R,THETA) on the VRuY8<E
% unit circle. N is a vector of positive integers (including 0), and T bMW?Su
% M is a vector with the same number of elements as N. Each element ET t7?,x@
% k of M must be a positive integer, with possible values M(k) = -N(k) ;VhilWaF-
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, dQX<X}
% and THETA is a vector of angles. R and THETA must have the same ZY_aE
% length. The output Z is a matrix with one column for every (N,M) %gK@R3p
% pair, and one row for every (R,THETA) pair. <gvuCydsh
% `/W6,]
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike :<t%Sf
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), <>=A6
% with delta(m,0) the Kronecker delta, is chosen so that the integral
G@Ha
t
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 0;Lt
% and theta=0 to theta=2*pi) is unity. For the non-normalized ZDMv8BP7
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. =ttvC"4?
% _ELuQ>zM]+
% The Zernike functions are an orthogonal basis on the unit circle. iLQFce7d|&
% They are used in disciplines such as astronomy, optics, and 6j*L]Sc
% optometry to describe functions on a circular domain. YJBlF2uD
% <OX_6d *@
% The following table lists the first 15 Zernike functions. ZGILV
% (T290a9y>
% n m Zernike function Normalization I},]Y~Y3
% -------------------------------------------------- WJ%4IaT
% 0 0 1 1 .b.pyVk
% 1 1 r * cos(theta) 2 +<l6!r2Z
% 1 -1 r * sin(theta) 2 +JyD W%a:L
% 2 -2 r^2 * cos(2*theta) sqrt(6) %pikt7,Z~
% 2 0 (2*r^2 - 1) sqrt(3) QCm93YZs6E
% 2 2 r^2 * sin(2*theta) sqrt(6) K1S:P( S
% 3 -3 r^3 * cos(3*theta) sqrt(8) Z2Q'9C},m
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) F0.Rv):
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) b-)m'B}`
% 3 3 r^3 * sin(3*theta) sqrt(8) j ^Tb=
% 4 -4 r^4 * cos(4*theta) sqrt(10) y7f,]<%e_
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) kGz0`8URu
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) @fI1|v=eF
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) BM~>=emc
% 4 4 r^4 * sin(4*theta) sqrt(10)
a ~
% -------------------------------------------------- w^{qut.
% [h5~1N
% Example 1: n(}cK@
% yj:<3_-C*
% % Display the Zernike function Z(n=5,m=1) B=?m_4\$m
% x = -1:0.01:1; D^_]x51>
% [X,Y] = meshgrid(x,x); g2Hz[C(
% [theta,r] = cart2pol(X,Y); L<7KmN4VX
% idx = r<=1; `;`fA|F^
% z = nan(size(X)); k?!CJ@5$
% z(idx) = zernfun(5,1,r(idx),theta(idx)); J Wh5gOXd
% figure "b~-`ni
% pcolor(x,x,z), shading interp U4$}8~o4
% axis square, colorbar `G@(Z:]f,t
% title('Zernike function Z_5^1(r,\theta)') `6No6.\J
% Kia34 ~W
% Example 2: "dkDT7
% %qycxEVP
% % Display the first 10 Zernike functions *#n#J[
% x = -1:0.01:1; EPd9'9S
% [X,Y] = meshgrid(x,x); O:%,.??<%
% [theta,r] = cart2pol(X,Y); =<BPoGs5
% idx = r<=1; E;o
"^[we
% z = nan(size(X)); zfsGf'U
% n = [0 1 1 2 2 2 3 3 3 3]; ydZS^BqG
% m = [0 -1 1 -2 0 2 -3 -1 1 3];
~ERA
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 4MFdhJoN
% y = zernfun(n,m,r(idx),theta(idx)); |8{c|Qz
% figure('Units','normalized') 3+<f7
% for k = 1:10 'K!u}py
% z(idx) = y(:,k); p2=+cS"HC
% subplot(4,7,Nplot(k)) |//D|-2
% pcolor(x,x,z), shading interp Il4R R
% set(gca,'XTick',[],'YTick',[]) ku3(cb!2
% axis square e{Y8m Xu
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) vY"i^a`f
% end
+|w%}/N
% "<N2TDF5
% See also ZERNPOL, ZERNFUN2. Qi;62M
JS!`eO/8
% Paul Fricker 11/13/2006 #5%\~f
n40&4n
n:8<Ijrh
% Check and prepare the inputs: *SmR|Qy
% ----------------------------- ,hVDGif
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) _O$7*k
error('zernfun:NMvectors','N and M must be vectors.') Hob n{E
end d69synEw>k
Zl\$9Q_
if length(n)~=length(m) ?*/1J~<(@
error('zernfun:NMlength','N and M must be the same length.') /)J]m
end 2:jWO_V@
L;
o$vI~U,
n = n(:); 2v\<MrL
m = m(:); NY3/mS3w
if any(mod(n-m,2)) VprrklZ
error('zernfun:NMmultiplesof2', ... khb/"VYd
'All N and M must differ by multiples of 2 (including 0).') =K;M\_k%y
end @c-| Sl
eJy}W /
if any(m>n) 3EA+tG4KnO
error('zernfun:MlessthanN', ... {3qlx1w
'Each M must be less than or equal to its corresponding N.') 4>NmJrh
end C@P*:L_
}8Yu"P${Y
if any( r>1 | r<0 ) Kt`/+k)m
error('zernfun:Rlessthan1','All R must be between 0 and 1.') :\"V5
end #JYH5:*
vo"?a~kY7
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) {%BPP{OFk
error('zernfun:RTHvector','R and THETA must be vectors.') ,382O$C
end v/GZByco>
18WJ*q7:
r = r(:); DEQ7u`6
theta = theta(:); V$fn$=
length_r = length(r); hkDew0k
if length_r~=length(theta) ?BnX<dbi&
error('zernfun:RTHlength', ... oC~+K@S
'The number of R- and THETA-values must be equal.') 43s8a
end K#kMz#B+i
yfZYGhPN(
% Check normalization: y4N2gBTKu
% -------------------- nU,~*Us
if nargin==5 && ischar(nflag) l&_PsnU
isnorm = strcmpi(nflag,'norm'); D$fWeG{f
if ~isnorm :I(d-,C
error('zernfun:normalization','Unrecognized normalization flag.') ho%G
end Zo#c[9IaC
else (2(y9r*1
isnorm = false; (b"kN(
end ld[BiP`B2V
9P&{Xhs7
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 5BS !6o;P'
% Compute the Zernike Polynomials 7qLB 9r
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )ml#2XP!f
j_0xE;g"]
% Determine the required powers of r: XaH;
% ----------------------------------- giHqc7-PaX
m_abs = abs(m); UgTgva>?
rpowers = []; f>[{1M]n\
for j = 1:length(n) eL1)_M;{
rpowers = [rpowers m_abs(j):2:n(j)]; 5"&=BD~D
end |e91KmiqJ
rpowers = unique(rpowers); ke19(r Ch
@e2P3K gg
% Pre-compute the values of r raised to the required powers, d Z}|G-:
% and compile them in a matrix: U"535<mR
% ----------------------------- 'x u!t'l&
if rpowers(1)==0 qoSZ+ khS$
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); I_is3y0
rpowern = cat(2,rpowern{:}); "eIE5h
rpowern = [ones(length_r,1) rpowern]; v,jB(B^|Z
else )W>9{*4m
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); B=HEi\55K
rpowern = cat(2,rpowern{:}); """pe+Y
end g(l:>=g]?
S\sy] 1*?$
% Compute the values of the polynomials: ut^6UdJ+`
% -------------------------------------- ;v5Jps2^]
y = zeros(length_r,length(n)); [tkP2%1
for j = 1:length(n) d0YQLh
s = 0:(n(j)-m_abs(j))/2; '[p0+5*x
pows = n(j):-2:m_abs(j);
rw#?NI:
for k = length(s):-1:1 2Yg\<PsN
p = (1-2*mod(s(k),2))* ... `8kL=%(h
prod(2:(n(j)-s(k)))/ ... -/R?D1kOq
prod(2:s(k))/ ... N~%~Q
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... >/'/^h
prod(2:((n(j)+m_abs(j))/2-s(k))); $9ys!
<g
idx = (pows(k)==rpowers); ok{
F=z
y(:,j) = y(:,j) + p*rpowern(:,idx); ?:3rVfO
end 87rHW@\](
<f;Xs(
if isnorm 2+|U!X
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); w01u~"E
end n 9Ktn}
end #kp+e)F
% END: Compute the Zernike Polynomials YJ>P+e\o9
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% vk<4P;A(G
KMXd
% Compute the Zernike functions: FSb4RuD9
% ------------------------------ wu3p2#-Z
idx_pos = m>0; OE2r2ad
idx_neg = m<0; 8aI^vP"7`=
-H$C3V3]
z = y; toel!+
if any(idx_pos) ~8Ez K_c
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); P9M. J^<
end Ph17(APt,Q
if any(idx_neg) 9-EdT4=r,
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 5>>JQ2'W
end c3J12+~;
]JlM/
% EOF zernfun