非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 .zvvk
function z = zernfun(n,m,r,theta,nflag) *N%)+-
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. [m9=e-KS$Q
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N JUTlJyx8
% and angular frequency M, evaluated at positions (R,THETA) on the ^*WO*f>y
% unit circle. N is a vector of positive integers (including 0), and gX/?
% M is a vector with the same number of elements as N. Each element 0t)5K O
% k of M must be a positive integer, with possible values M(k) = -N(k) (YHK,aC>u
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, KZ|p_{0&
% and THETA is a vector of angles. R and THETA must have the same }XRRM:B|)(
% length. The output Z is a matrix with one column for every (N,M) QX+&[G!DZH
% pair, and one row for every (R,THETA) pair. [`bA,)y"
% CA,2&v"
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ^fti<Lw5
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), c1g'l.XL
3
% with delta(m,0) the Kronecker delta, is chosen so that the integral p?x]|`M
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, x^y&<tA
% and theta=0 to theta=2*pi) is unity. For the non-normalized 6#kK
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. __ G=xf
% ]{= qdgJ
% The Zernike functions are an orthogonal basis on the unit circle. #6nuiSF
% They are used in disciplines such as astronomy, optics, and TGI`}#
% optometry to describe functions on a circular domain. sb</-']a
% 0#/Pc`zC
% The following table lists the first 15 Zernike functions. *TYOsD**9
% l!%V&HJV
% n m Zernike function Normalization =_`cY^ib+
% -------------------------------------------------- -@/!u9l
% 0 0 1 1 b%e7rY2
% 1 1 r * cos(theta) 2 8%^W<.Y
% 1 -1 r * sin(theta) 2 Lg+cHaA
% 2 -2 r^2 * cos(2*theta) sqrt(6) (sEZNo5 n
% 2 0 (2*r^2 - 1) sqrt(3) 5hp)Z7
% 2 2 r^2 * sin(2*theta) sqrt(6) +$B#] ,
% 3 -3 r^3 * cos(3*theta) sqrt(8) ~uEI}z
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) +aRHMH
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) r[AqA
% 3 3 r^3 * sin(3*theta) sqrt(8) i{k v$ir!
% 4 -4 r^4 * cos(4*theta) sqrt(10) nLnzl
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ShMP_?]P
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Z8WBOf*~e
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) iL3k8:x
% 4 4 r^4 * sin(4*theta) sqrt(10) 49dN ~k=
% -------------------------------------------------- [)nU?l
% {e83 A/{
% Example 1: kj'
% q #X[oVq
% % Display the Zernike function Z(n=5,m=1)
8V+
% x = -1:0.01:1; k]yv#Pa
% [X,Y] = meshgrid(x,x); tDNo; f
% [theta,r] = cart2pol(X,Y); )!d_Td\-
% idx = r<=1; /UiB1-*b
% z = nan(size(X)); (h%xqXs
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 910N1E
% figure RzqU`<//
% pcolor(x,x,z), shading interp #\MkbZc d
% axis square, colorbar wW0m}L
% title('Zernike function Z_5^1(r,\theta)') n$3w=9EX*
% vf['$um
% Example 2: PpR
eqmo
% sW!MV v
% % Display the first 10 Zernike functions A|BN>?.t
% x = -1:0.01:1; 5!7vD|6
% [X,Y] = meshgrid(x,x); (:|1h@K/R
% [theta,r] = cart2pol(X,Y);
fG|+!
% idx = r<=1; LH>h]OTQF
% z = nan(size(X)); *|)O
% n = [0 1 1 2 2 2 3 3 3 3]; bs_rw+
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; }r:8w*47
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ph@2[rUp
% y = zernfun(n,m,r(idx),theta(idx)); UymhBh
% figure('Units','normalized') Cj#?Z7}z
% for k = 1:10 #L xfE<^
% z(idx) = y(:,k); q4ej7T8
% subplot(4,7,Nplot(k)) qgsw8O&
% pcolor(x,x,z), shading interp s:Z1
ZAxv
% set(gca,'XTick',[],'YTick',[]) <`*v/D7\02
% axis square i-Ri;E
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) No(S#,vJ;
% end 7dXh,sD
% /G#W/Q
% See also ZERNPOL, ZERNFUN2. G>W:3y
pOIfKd
% Paul Fricker 11/13/2006 73(5.'F
6>-Gi
=N{-lyr)
% Check and prepare the inputs: X$ 76#x
% ----------------------------- Vvk\$'
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) t:qPW<wc
error('zernfun:NMvectors','N and M must be vectors.') $q$\
end *mfPq"/
szD
BfGd%j
if length(n)~=length(m) 4mF=A$Q_/
error('zernfun:NMlength','N and M must be the same length.')
`;#I_R_K
end K<7 Db4H
DP4l
%2m0
n = n(:); 8^"P'XQ
m = m(:); !6{b)P
if any(mod(n-m,2)) 3Tr}t.mt
error('zernfun:NMmultiplesof2', ... 0vdnM8N2
'All N and M must differ by multiples of 2 (including 0).') gj1l9>f>]a
end u3_AZ2-;
cUM#|K#6
if any(m>n) F`
]s
error('zernfun:MlessthanN', ... ?iNihE
'Each M must be less than or equal to its corresponding N.') _c6 zzGtH
end C~:!WRCz
k0!D9tk
if any( r>1 | r<0 ) ru1FJ{n
error('zernfun:Rlessthan1','All R must be between 0 and 1.') DwH=ln=
end ,Y2){8#l
-xc'P,`
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 407;M%?'A
error('zernfun:RTHvector','R and THETA must be vectors.') ' $X}' u
end J`{HMv
K9f7,/
r = r(:); "Kt[jV;6
theta = theta(:); p&,2@(Q
length_r = length(r); <