切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10971阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 aw\0\'}  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! 8el\M/u{  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Qq{>]5<  
    function z = zernfun(n,m,r,theta,nflag) t3 rQ5m  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. CzfGb4  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N *Sw1b7l  
    %   and angular frequency M, evaluated at positions (R,THETA) on the vPce6 Cl*  
    %   unit circle.  N is a vector of positive integers (including 0), and _O;2.M%@  
    %   M is a vector with the same number of elements as N.  Each element c( 8>|^M  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) :~wU/dEEiz  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, EQ%,IK/  
    %   and THETA is a vector of angles.  R and THETA must have the same lS96sjJp@  
    %   length.  The output Z is a matrix with one column for every (N,M) |kc#=b@l  
    %   pair, and one row for every (R,THETA) pair. iOrpr,@  
    % YwaWhBCIF  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike hM "6-60  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi),  3PUyua'  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral I6vy:5d  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ,LodP%%UV  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 4apaUP=Jp  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 0^9%E61YR  
    % 0K'^g0G  
    %   The Zernike functions are an orthogonal basis on the unit circle. .8dlf7* ,  
    %   They are used in disciplines such as astronomy, optics, and ; S~  
    %   optometry to describe functions on a circular domain. PD $' ~2  
    % QzilivJf  
    %   The following table lists the first 15 Zernike functions. }8eu 9~   
    % EPiZe-  
    %       n    m    Zernike function           Normalization N 9cCfB\`  
    %       -------------------------------------------------- |))O3]-  
    %       0    0    1                                 1 _ K Ix7  
    %       1    1    r * cos(theta)                    2 cH48)  
    %       1   -1    r * sin(theta)                    2 0BrAgv"3a_  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) py }`thx  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 3L^]J}|  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) jz$ ]"\G#  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ?aWMU?S  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Wy.^1M/n>~  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) DIBoIWSuR  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) "ph<V,lg  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ;ZoEqMv  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) LTw.w:"J  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) <`?V:};Q  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) &w%--!T  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) o2rL&  
    %       -------------------------------------------------- p;Nq(=] \  
    % SIZZFihcYh  
    %   Example 1: (sqI:a  
    % 2Y~nU(  
    %       % Display the Zernike function Z(n=5,m=1) hxZL/_n'  
    %       x = -1:0.01:1; X" Upml  
    %       [X,Y] = meshgrid(x,x); v2jpao<K  
    %       [theta,r] = cart2pol(X,Y); N4)ZPLV  
    %       idx = r<=1; @hwe  
    %       z = nan(size(X)); 7m4*dBTr  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Vrn+"2pdJ  
    %       figure p(6KJK\  
    %       pcolor(x,x,z), shading interp VT [TE  
    %       axis square, colorbar DHQs_8Df  
    %       title('Zernike function Z_5^1(r,\theta)') 7g|EqJ7  
    % W<u,S  
    %   Example 2: xG WA5[YV  
    % A)_HSIVi  
    %       % Display the first 10 Zernike functions 8Z!Mad  
    %       x = -1:0.01:1;  &4{!5r  
    %       [X,Y] = meshgrid(x,x); *f o>  
    %       [theta,r] = cart2pol(X,Y); B}+li1k  
    %       idx = r<=1; "A]#KTP  
    %       z = nan(size(X)); } 89-U  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 1ne3CA=  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; hQ (84u  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; .'PS L  
    %       y = zernfun(n,m,r(idx),theta(idx)); s63!]LDr  
    %       figure('Units','normalized') GK=b  
    %       for k = 1:10 2( U;{;\n*  
    %           z(idx) = y(:,k); d_ 7hh  
    %           subplot(4,7,Nplot(k)) xF6byTi  
    %           pcolor(x,x,z), shading interp s#H_ QOE  
    %           set(gca,'XTick',[],'YTick',[]) an2Yluc;  
    %           axis square )&j@={0  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) }<^QW't_Y  
    %       end $`[TIyA9!  
    % x c]#8K  
    %   See also ZERNPOL, ZERNFUN2. {zalfw{+  
    8a3 EVc  
    %   Paul Fricker 11/13/2006 MML=J~1  
    3 sD|R{  
    *yv@B!r  
    % Check and prepare the inputs: 66-tNy  
    % ----------------------------- ?I$-im  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ERy=lP~gV  
        error('zernfun:NMvectors','N and M must be vectors.') F*T$n"^  
    end _2TL>1KZt  
    erh ez  
    if length(n)~=length(m) wC?$P  
        error('zernfun:NMlength','N and M must be the same length.') qrf90F)  
    end x\oSD1t,  
    zpjE_|  
    n = n(:); ?a-5^{{  
    m = m(:); V8#NXU g<!  
    if any(mod(n-m,2)) 6AdC  
        error('zernfun:NMmultiplesof2', ... G6dUm_iB  
              'All N and M must differ by multiples of 2 (including 0).') U C_$5~8p  
    end [ eb k u_  
     OA^6l#  
    if any(m>n) 2 w6iqLr?  
        error('zernfun:MlessthanN', ... ( k,?)  
              'Each M must be less than or equal to its corresponding N.') )<lQJ#L86a  
    end ]T6pH7~  
    }3_ >  
    if any( r>1 | r<0 ) _u]%K-_  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') O?O=]s u  
    end 4fL`.n1^  
    v-BQ>-&s  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) yfal'DqKF  
        error('zernfun:RTHvector','R and THETA must be vectors.') 9s1^hW2%Q  
    end jweX"G54R  
    [X91nUz#  
    r = r(:); txvo7?Y*4  
    theta = theta(:); hI 9q);g  
    length_r = length(r); 5YneoM]Q  
    if length_r~=length(theta) q}!h(-y}5n  
        error('zernfun:RTHlength', ... AvPPsN0  
              'The number of R- and THETA-values must be equal.') !6x7^E;c  
    end '/)qI.  
    MT7B'hd  
    % Check normalization: yO}5.  
    % -------------------- K:^0*5Y-k  
    if nargin==5 && ischar(nflag) RD46@Q`  
        isnorm = strcmpi(nflag,'norm'); Q'qX`K+@`  
        if ~isnorm lh[?`+A  
            error('zernfun:normalization','Unrecognized normalization flag.') KK6n"&TVa  
        end 3)OQgeKU  
    else <uxLG;R  
        isnorm = false; r?IBmatK/  
    end YRo,wsj  
    xK_oV+  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $ nHD,h  
    % Compute the Zernike Polynomials v`{N0R  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #wo *2 (  
    tJybR"NQ  
    % Determine the required powers of r: RWGf]V]6  
    % ----------------------------------- Nk<^ Qv  
    m_abs = abs(m); OQ- Hn -H  
    rpowers = []; !LzA  
    for j = 1:length(n) !=A;?Kdq  
        rpowers = [rpowers m_abs(j):2:n(j)]; 2:_6nWl  
    end 6i2%EC9  
    rpowers = unique(rpowers); U2l3E*O  
    9Msy=qvYG  
    % Pre-compute the values of r raised to the required powers, :W5W @8Y  
    % and compile them in a matrix: Z %Ozzp/  
    % ----------------------------- uKd4+Km  
    if rpowers(1)==0 eZaSV>27  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); tc<uS%XT4^  
        rpowern = cat(2,rpowern{:}); [:FiA?O]  
        rpowern = [ones(length_r,1) rpowern]; o8Gygi5  
    else Xl$, f`f~  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); tAF?. \x"g  
        rpowern = cat(2,rpowern{:}); nYFrp)DLK  
    end 5nUJ9sqA  
    pF4Z4?W  
    % Compute the values of the polynomials: :n QlS  
    % -------------------------------------- i'7+ ?YL  
    y = zeros(length_r,length(n)); Qr9;CVW  
    for j = 1:length(n) t* =[RS*  
        s = 0:(n(j)-m_abs(j))/2; BBRL _6  
        pows = n(j):-2:m_abs(j); Z*q9vX  
        for k = length(s):-1:1 TI8r/P? ]V  
            p = (1-2*mod(s(k),2))* ... ]S%(l,  
                       prod(2:(n(j)-s(k)))/              ... #<S*MGp!=  
                       prod(2:s(k))/                     ... % /"n(?$ W  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ...  }:Gs ,  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); pK@=]K~l0  
            idx = (pows(k)==rpowers); b7Jxv7$e  
            y(:,j) = y(:,j) + p*rpowern(:,idx); v6s,lC5qR  
        end !R"W2Z4h  
         _ i}W1i  
        if isnorm pYx,*kG:HW  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ,VHqZ'6  
        end 1|(Q|  
    end t/\   
    % END: Compute the Zernike Polynomials H*'1bLzq  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \3$!)z  
    eHuJFM  
    % Compute the Zernike functions: MQQm3VaKS  
    % ------------------------------ U}RBgPX!  
    idx_pos = m>0; ;^5k_\  
    idx_neg = m<0; {aUnOyX_  
    + cfEyiub  
    z = y; `8ac;b  
    if any(idx_pos) N)H "'#-  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); G aV&y  
    end gvA}s/   
    if any(idx_neg) e@Lxduq  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); IT1YF.i  
    end x,!Dd  
    n^Ca?|} ,  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) :V(LBH0  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. fQJ`&9m*BF  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ^#Ha H  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive >fH0>W+!  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, >R+-mP!nj  
    %   and THETA is a vector of angles.  R and THETA must have the same j uA@"SG  
    %   length.  The output Z is a matrix with one column for every P-value, ~U0%}Bbh  
    %   and one row for every (R,THETA) pair. EtKq.<SJ  
    % n#lbfN 4  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike X 0G,tl  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) }a7d(7  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) #ibwD:{  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 BNfj0e5b  
    %   for all p. m,k 0 h%  
    % T/_u;My;  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ppyy0E^M  
    %   Zernike functions (order N<=7).  In some disciplines it is 42NfD/"g+s  
    %   traditional to label the first 36 functions using a single mode  }QFL  
    %   number P instead of separate numbers for the order N and azimuthal x>yqEdR=o  
    %   frequency M. (?jK|_  
    % h>/teHy /  
    %   Example: q Gk.7wf%  
    % FDMQ Lxf  
    %       % Display the first 16 Zernike functions V<QpC5  
    %       x = -1:0.01:1; :_8K8Sa  
    %       [X,Y] = meshgrid(x,x); &C9IR,&  
    %       [theta,r] = cart2pol(X,Y); B\J[O5},  
    %       idx = r<=1; Kh]es,$D  
    %       p = 0:15; v$y\X3)mB  
    %       z = nan(size(X)); @t%da^-HS"  
    %       y = zernfun2(p,r(idx),theta(idx)); -9b=-K.y  
    %       figure('Units','normalized') _3`G ZeGV  
    %       for k = 1:length(p) M|(VM=~  
    %           z(idx) = y(:,k); dn(!wC]  
    %           subplot(4,4,k) Kxsd@^E  
    %           pcolor(x,x,z), shading interp gP% <<yl  
    %           set(gca,'XTick',[],'YTick',[]) :zHSy&i`  
    %           axis square _Xf1FzF+a  
    %           title(['Z_{' num2str(p(k)) '}']) `<YMkp[  
    %       end [vi =^  
    % @]Jq28  
    %   See also ZERNPOL, ZERNFUN. imM!Me 0TE  
    ht -'O"d:  
    %   Paul Fricker 11/13/2006 xWxHi6U(  
    opfnIkCe  
    56Wh<i3  
    % Check and prepare the inputs: f(Xin3#'  
    % ----------------------------- bpY*;o$~  
    if min(size(p))~=1 PaTOlHr  
        error('zernfun2:Pvector','Input P must be vector.') 0~nX7  
    end Zux L2W  
    V^s, 3C  
    if any(p)>35 rEa(1(I  
        error('zernfun2:P36', ... MXA?rjd0  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... gq('8*S  
               '(P = 0 to 35).']) XRPJPwes]  
    end JI@iT6.%IX  
    i+`8$uz  
    % Get the order and frequency corresonding to the function number: [J2evi?  
    % ---------------------------------------------------------------- ]xS%E r  
    p = p(:); [vu;B4^"  
    n = ceil((-3+sqrt(9+8*p))/2); AF:_&gF  
    m = 2*p - n.*(n+2); 7J9<B5U  
    E2zL-ft.  
    % Pass the inputs to the function ZERNFUN: s)\PY  
    % ---------------------------------------- \n}%RD-Ce  
    switch nargin .U{}N%S  
        case 3 ~BI`{/O=  
            z = zernfun(n,m,r,theta); =d;a1AO{&  
        case 4 )v(rEY  
            z = zernfun(n,m,r,theta,nflag); (cVIjo+::  
        otherwise -c>3|bo  
            error('zernfun2:nargin','Incorrect number of inputs.') 4zs0+d +  
    end p W[TufTa  
    Wps^wY  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) _E9[4%f  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. X[/7vSqZ@w  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of WReHep  
    %   order N and frequency M, evaluated at R.  N is a vector of ` { Ox=+]M  
    %   positive integers (including 0), and M is a vector with the 7jw+o*;  
    %   same number of elements as N.  Each element k of M must be a I*3 >>VN  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) vAP1PQX;  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is %S%UMA.  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix  qbc=kP  
    %   with one column for every (N,M) pair, and one row for every U^}7DJ  
    %   element in R. q"269W:  
    % ;QVTb3Th  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- #y&5pP:@  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is fbM>jK  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to # ,H!<X;SS  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 w.rcYywI  
    %   for all [n,m]. _rSwQ<38>  
    % xm=Gt$>.o  
    %   The radial Zernike polynomials are the radial portion of the 7Tp +]"bL  
    %   Zernike functions, which are an orthogonal basis on the unit n+ H2cl }  
    %   circle.  The series representation of the radial Zernike U `lp56  
    %   polynomials is 3 K||(  
    % VOYQ<tg  
    %          (n-m)/2 Kf?:dF  
    %            __ Xtz29  
    %    m      \       s                                          n-2s K:13t|  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r |)d%3s\  
    %    n      s=0 ^$`mS&3/q  
    % ;mI^J=V3  
    %   The following table shows the first 12 polynomials. $J<WFDn9  
    % \R9izuc9  
    %       n    m    Zernike polynomial    Normalization 3;jx Io$,  
    %       --------------------------------------------- 3{qB<*!p"G  
    %       0    0    1                        sqrt(2) du0o4~-  
    %       1    1    r                           2 -~RGjx  
    %       2    0    2*r^2 - 1                sqrt(6) K#6@sas  
    %       2    2    r^2                      sqrt(6) EajJv>X7  
    %       3    1    3*r^3 - 2*r              sqrt(8) e KuF7Oo  
    %       3    3    r^3                      sqrt(8) Xn~\Vb  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) (:]+IjnE  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ZJ+ad,?,  
    %       4    4    r^4                      sqrt(10) !Mgo~h"]#  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) qHheF%[\5  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) KL!cPnAUu  
    %       5    5    r^5                      sqrt(12) R@uA4Al  
    %       --------------------------------------------- : &nF>  
    % |Ch ,C  
    %   Example: amExZ/  
    % 3_9CREZCl  
    %       % Display three example Zernike radial polynomials HNc/p4z  
    %       r = 0:0.01:1; O46v  
    %       n = [3 2 5]; ;,uATd|  
    %       m = [1 2 1]; { 2Ew^Li  
    %       z = zernpol(n,m,r); J8@.qC'!  
    %       figure +BO kHXk1  
    %       plot(r,z) `t9k!y!GV  
    %       grid on hwvitD!0  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') S~H>MtX(<  
    % y8C8~-&OK  
    %   See also ZERNFUN, ZERNFUN2. 86cnEj=   
    QrFKjmD<  
    % A note on the algorithm. R'vNJDFY  
    % ------------------------ R-<8j`[0  
    % The radial Zernike polynomials are computed using the series 1he5Zevm}  
    % representation shown in the Help section above. For many special KiFTj$w,  
    % functions, direct evaluation using the series representation can CAx eJ`Q  
    % produce poor numerical results (floating point errors), because \1#]qs -  
    % the summation often involves computing small differences between |c2sJyj*  
    % large successive terms in the series. (In such cases, the functions ShlTMTgS  
    % are often evaluated using alternative methods such as recurrence F?jD5M08t/  
    % relations: see the Legendre functions, for example). For the Zernike jAcKSx$}y"  
    % polynomials, however, this problem does not arise, because the R i,_x  
    % polynomials are evaluated over the finite domain r = (0,1), and KJ S-{ed  
    % because the coefficients for a given polynomial are generally all x![.C,O  
    % of similar magnitude. !%t2Z QJq  
    % \Wg_ gA  
    % ZERNPOL has been written using a vectorized implementation: multiple %CnNu  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] z Fj|E  
    % values can be passed as inputs) for a vector of points R.  To achieve Q}l~n)=  
    % this vectorization most efficiently, the algorithm in ZERNPOL 0s{7=Ef  
    % involves pre-determining all the powers p of R that are required to L^Q;M,.c;  
    % compute the outputs, and then compiling the {R^p} into a single a9 q:e  
    % matrix.  This avoids any redundant computation of the R^p, and K0B<9Wi |  
    % minimizes the sizes of certain intermediate variables. p_]b=3wt~  
    % oD9L5c)  
    %   Paul Fricker 11/13/2006 D@.qdRc3  
    Qm*ZOz'i  
    j_h:_D4  
    % Check and prepare the inputs: Q@PDhISa  
    % ----------------------------- NOkgG0Z  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) T>b"Gj/  
        error('zernpol:NMvectors','N and M must be vectors.') k?L2LIB<  
    end qP&:9eL  
    ~Mar  
    if length(n)~=length(m) /J!:_Nq  
        error('zernpol:NMlength','N and M must be the same length.') #639N9a~  
    end 7hu7rWY`E  
    FIVC~LDd  
    n = n(:); :?y Ma$  
    m = m(:); l1O"hd'~s  
    length_n = length(n); Wi!"V cn  
    .oLV\'HAR  
    if any(mod(n-m,2)) 0b n%L~KU  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') P7Qel,  
    end [eOv fD  
    wYV>Qd Z  
    if any(m<0) aHYISjZ]>  
        error('zernpol:Mpositive','All M must be positive.') [.Kp/,JY  
    end IFS_DW  
    y5O &9Ckw  
    if any(m>n) W\w#}kY  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') nfGI4ZE  
    end E'U x2sh  
    [Y@>,B!V  
    if any( r>1 | r<0 ) Yc_(g0NK  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') +w?R4Sxjn  
    end tk=S4 /VWv  
    :Y1;= W  
    if ~any(size(r)==1) Kdp($L9r  
        error('zernpol:Rvector','R must be a vector.') ZE_  
    end v3XM-+Z4  
    0x]?rd+q8Q  
    r = r(:);  O&|<2Qr  
    length_r = length(r); 0jjtx'F  
    "&4r!2A  
    if nargin==4  |Nj6RB7  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); Za3}:7`Gu  
        if ~isnorm k1zK3I&c_  
            error('zernpol:normalization','Unrecognized normalization flag.') 2=0HQXXrq  
        end #qDm)zCM  
    else +Y~5197V  
        isnorm = false; fxr#T'i  
    end qnj'*]ysBC  
    {Y Y,{H  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% c>^(=52Q  
    % Compute the Zernike Polynomials Yb/*2iWX  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% nQ_{IO8/6W  
    PcU~1m1  
    % Determine the required powers of r: 650qG$  
    % ----------------------------------- HDZl;=  
    rpowers = []; { $yju_[  
    for j = 1:length(n) uh2_Rzln  
        rpowers = [rpowers m(j):2:n(j)]; kV5)3%?  
    end "2sk1  
    rpowers = unique(rpowers); Q1?*+]  
    9jEH"`qqk  
    % Pre-compute the values of r raised to the required powers, rZaO^}u]  
    % and compile them in a matrix: YE{t?Y\5  
    % ----------------------------- ]SRpMZ  
    if rpowers(1)==0 wB \`3u4  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); (uDd_@a9t  
        rpowern = cat(2,rpowern{:}); q^EY?;Y  
        rpowern = [ones(length_r,1) rpowern]; !%('8-x%  
    else 6:Z8d%Z  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 23>[-XZb[O  
        rpowern = cat(2,rpowern{:}); Tsa]SN14  
    end wT::b V{  
    )(-;H|]?  
    % Compute the values of the polynomials: Uza '%R  
    % -------------------------------------- 0Q_*Z (  
    z = zeros(length_r,length_n); l$/lbwi%  
    for j = 1:length_n Hy[: _E  
        s = 0:(n(j)-m(j))/2; sAL ]N][Y  
        pows = n(j):-2:m(j); W_Y8)KxG:L  
        for k = length(s):-1:1 BrwC9:  
            p = (1-2*mod(s(k),2))* ... x}?<9(nE c  
                       prod(2:(n(j)-s(k)))/          ... 5j1d=h  
                       prod(2:s(k))/                 ... AO|9H`6U6F  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 6xJffl  
                       prod(2:((n(j)+m(j))/2-s(k))); &EQhk9j  
            idx = (pows(k)==rpowers); Rxd4{L )n  
            z(:,j) = z(:,j) + p*rpowern(:,idx); PKSfu++Z  
        end $P0q!  
         c!4F0(n4  
        if isnorm PLc5m5  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); GN(<$,~g  
        end `9J9[!+!`  
    end r%ES#\L6+|  
    iT4*~(p 3  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  f-=\qSo  
    fV(3RG  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 I$n= >s  
    ^[L(kHOGzk  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)