非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 $ylxl"Y
function z = zernfun(n,m,r,theta,nflag) 4(,X.GVY/
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. xz7CnW1
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N j1ap,<\.k
% and angular frequency M, evaluated at positions (R,THETA) on the a@?ebCE
% unit circle. N is a vector of positive integers (including 0), and ER4#5gd
% M is a vector with the same number of elements as N. Each element y35e3
% k of M must be a positive integer, with possible values M(k) = -N(k) OSC_-[b-
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, R F;u1vEQ8
% and THETA is a vector of angles. R and THETA must have the same V9
EC@)
% length. The output Z is a matrix with one column for every (N,M) |I.5]r-EK
% pair, and one row for every (R,THETA) pair. $u)#-X;x
% HEK?z|Ne
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 1 Va@w
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Xxm7s S
% with delta(m,0) the Kronecker delta, is chosen so that the integral !__^M3S,k
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, &kH7_Lz
% and theta=0 to theta=2*pi) is unity. For the non-normalized clIn}wQ
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. =knBwjeD
% qJXfc||Zg
% The Zernike functions are an orthogonal basis on the unit circle. iciRlx.$c
% They are used in disciplines such as astronomy, optics, and t
Q>/1
% optometry to describe functions on a circular domain. KXu1%`x=%Z
% #vPk
XcP
% The following table lists the first 15 Zernike functions. aZta%3`)
% h?GE-F
% n m Zernike function Normalization W:2]d
% -------------------------------------------------- .e5rKkkT
% 0 0 1 1 #"o`'5
% 1 1 r * cos(theta) 2 3b<;y%
% 1 -1 r * sin(theta) 2 gO]8hLT
% 2 -2 r^2 * cos(2*theta) sqrt(6)
3BB/u%N}
% 2 0 (2*r^2 - 1) sqrt(3) L 1q]
% 2 2 r^2 * sin(2*theta) sqrt(6) :QMpp}G
% 3 -3 r^3 * cos(3*theta) sqrt(8) G4uOY?0N
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) (IAR-957pN
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) h>/L4j*Z
% 3 3 r^3 * sin(3*theta) sqrt(8) EDA6b]
% 4 -4 r^4 * cos(4*theta) sqrt(10) ip*UujmNyR
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) !nF.whq
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) .B6mvb\
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) `O?j -zR
% 4 4 r^4 * sin(4*theta) sqrt(10) pEb/ yIT"
% -------------------------------------------------- !@
)JqF.
% >V&GL{
% Example 1: LO)QEUG
% ;^8X(R
% % Display the Zernike function Z(n=5,m=1) m!Aw,*m+*
% x = -1:0.01:1; p.vxrk`c
% [X,Y] = meshgrid(x,x); !\q'{x5C
% [theta,r] = cart2pol(X,Y); $,1KD3;+]
% idx = r<=1; 7+P-MT
% z = nan(size(X)); qwd
T=H
% z(idx) = zernfun(5,1,r(idx),theta(idx)); ;O({|mpS\
% figure -Z:nImqzc
% pcolor(x,x,z), shading interp ,WS{O6O7
% axis square, colorbar U
H6
Jvt
% title('Zernike function Z_5^1(r,\theta)') qK&h$;~*y
% vVbS
4_
% Example 2: ,.uI>
% H$xUOqL
% % Display the first 10 Zernike functions -L2%,.E>4
% x = -1:0.01:1; VQ4rEO=t
% [X,Y] = meshgrid(x,x); K- TLzoYA
% [theta,r] = cart2pol(X,Y); <\?dPRw2>
% idx = r<=1; ^
}|$_
% z = nan(size(X)); rmhL|!
Y
% n = [0 1 1 2 2 2 3 3 3 3]; E, |OMK#
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; x<) T,c5Y
% Nplot = [4 10 12 16 18 20 22 24 26 28]; HgOrrewj
% y = zernfun(n,m,r(idx),theta(idx)); FW"gj\
% figure('Units','normalized') 5Yx
7Q:D
% for k = 1:10 }A7]bd
% z(idx) = y(:,k); l>@){zxL
% subplot(4,7,Nplot(k)) ztV%W6
% pcolor(x,x,z), shading interp -qDL':
% set(gca,'XTick',[],'YTick',[]) ?L>}(
{9
% axis square \Jr7Hy1;
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) >jm^MS=
% end $_
k:{?
% ajD/)9S
% See also ZERNPOL, ZERNFUN2. #!]~E@;E
1K{hj%
% Paul Fricker 11/13/2006 6b h.5|
B..> *Xb
]goPjfWvU"
% Check and prepare the inputs: Yr 1k\q
% ----------------------------- 4,7W*mr3(
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) )
m%i!;K"{s
error('zernfun:NMvectors','N and M must be vectors.') E
<h9o>h
end #80r?,q
]{pH,vk-
if length(n)~=length(m) u S{WeL6%
error('zernfun:NMlength','N and M must be the same length.') ZG_iF#
end 42,K8
jGOE
CKP
n = n(:); +(##B pC
m = m(:); QQX7p!~E
if any(mod(n-m,2)) w(R+p/RF
error('zernfun:NMmultiplesof2', ... Zs}EGC~&
'All N and M must differ by multiples of 2 (including 0).') -|/*S]6kK
end QPp>%iE@
@s~*>k#"#
if any(m>n) Ve\P ,.
error('zernfun:MlessthanN', ... lgh+\pj
'Each M must be less than or equal to its corresponding N.') RRR=R]
end j79$/ Ol
6g%~~hX
if any( r>1 | r<0 ) !v]~ut !p
error('zernfun:Rlessthan1','All R must be between 0 and 1.') H@ .1cO
end fZrB!\Q
Z}$1~uyw
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) NPE7AdB8
error('zernfun:RTHvector','R and THETA must be vectors.') -n`2>L1
end (Ei} :6,}
'Rw*WK
r = r(:); <+e&E9;>6
theta = theta(:); 1Et{lrgh
f
length_r = length(r); Y .\<P*iO
if length_r~=length(theta) \Gz
79VW
error('zernfun:RTHlength', ... hZeF? G)L'
'The number of R- and THETA-values must be equal.') zZ{(7Kfz
end 0*8uo
Wt&
GQ=Pkko
% Check normalization: qc@v"pIz'S
% -------------------- Zi ;7.P qL
if nargin==5 && ischar(nflag) eLN[`hJ
isnorm = strcmpi(nflag,'norm'); vU,;asgy
if ~isnorm 6B`,^8Lp
error('zernfun:normalization','Unrecognized normalization flag.') xX2/uxi8
end oD~q/04!
else rd4mAX6@
isnorm = false; R(<_p"9(
end XFWo"%}w
Gque@u
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% K8|>" c~
% Compute the Zernike Polynomials *|&&3&7
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ueV,p?Wo
EMMp4KKOx+
% Determine the required powers of r: h9WyQl7
% ----------------------------------- S]}W+BF3
m_abs = abs(m); JD{AwE@Ro
rpowers = []; 1agI/R
for j = 1:length(n) w.R2' WR
rpowers = [rpowers m_abs(j):2:n(j)]; bKP@-<:]
end u4.2u}A/R%
rpowers = unique(rpowers); L s(l
Ebytvs,w
% Pre-compute the values of r raised to the required powers, uw9w{3]0f
% and compile them in a matrix: O(YvE
% ----------------------------- T{mIkp<
if rpowers(1)==0 @RFJe$%
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); JzuP AI
rpowern = cat(2,rpowern{:}); %Y<3v\`_
rpowern = [ones(length_r,1) rpowern]; geEETb}+y
else 95hdQ<W
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); +}.S:w_xQ
rpowern = cat(2,rpowern{:}); iVqXf;eB!5
end DyPb]Udb:
x]<0Kq9K
% Compute the values of the polynomials: f^9ntos|
% -------------------------------------- ,ku3;58O<
y = zeros(length_r,length(n)); /faP@Q3kR
for j = 1:length(n) ^DOQ+
s = 0:(n(j)-m_abs(j))/2; f
l*O)r
pows = n(j):-2:m_abs(j); ~U`|+
5
for k = length(s):-1:1 -%6Y&_5VK
p = (1-2*mod(s(k),2))* ... MFO1v%m
prod(2:(n(j)-s(k)))/ ... x] j&Knli
prod(2:s(k))/ ... Qvhz$W[P>
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... N2e]S8-
prod(2:((n(j)+m_abs(j))/2-s(k))); #i0f}&
idx = (pows(k)==rpowers); XI58Cy*!
y(:,j) = y(:,j) + p*rpowern(:,idx); OIdoe0JR:O
end 8I,/ysT:
6V6,m4e
if isnorm D}A>`6W<