非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Qq{>]5<
function z = zernfun(n,m,r,theta,nflag) t3 rQ5m
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. CzfGb4
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N *Sw1b7l
% and angular frequency M, evaluated at positions (R,THETA) on the vPce6 Cl*
% unit circle. N is a vector of positive integers (including 0), and _O;2.M%@
% M is a vector with the same number of elements as N. Each element c( 8>|^M
% k of M must be a positive integer, with possible values M(k) = -N(k) :~wU/dEEiz
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, EQ%,IK/
% and THETA is a vector of angles. R and THETA must have the same lS96sjJp@
% length. The output Z is a matrix with one column for every (N,M) |kc#=b@l
% pair, and one row for every (R,THETA) pair. iOrpr,@
% YwaWhBCIF
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike hM "6-60
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi),
3PUyua'
% with delta(m,0) the Kronecker delta, is chosen so that the integral I6vy:5d
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ,LodP%%UV
% and theta=0 to theta=2*pi) is unity. For the non-normalized 4apaUP=Jp
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 0^9%E61YR
% 0K'^g0G
% The Zernike functions are an orthogonal basis on the unit circle. .8dlf7* ,
% They are used in disciplines such as astronomy, optics, and ; S~
% optometry to describe functions on a circular domain. PD$'
~2
% QzilivJf
% The following table lists the first 15 Zernike functions. }8eu 9~
% EPiZe-
% n m Zernike function Normalization N9cCfB\`
% -------------------------------------------------- |))O3]-
% 0 0 1 1 _ K Ix7
% 1 1 r * cos(theta) 2 cH48)
% 1 -1 r * sin(theta) 2 0BrAgv"3a_
% 2 -2 r^2 * cos(2*theta) sqrt(6) py }`thx
% 2 0 (2*r^2 - 1) sqrt(3) 3L^]J}|
% 2 2 r^2 * sin(2*theta) sqrt(6) jz$ ]"\G#
% 3 -3 r^3 * cos(3*theta) sqrt(8) ?aWMU?S
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Wy.^1M/n>~
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) DIBoIWSuR
% 3 3 r^3 * sin(3*theta) sqrt(8) "ph<V,lg
% 4 -4 r^4 * cos(4*theta) sqrt(10) ;ZoEqMv
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) LTw.w:"J
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) <`?V:};Q
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) &w%--!T
% 4 4 r^4 * sin(4*theta) sqrt(10) o2rL&
% -------------------------------------------------- p;Nq(=]
\
% SIZZFihcYh
% Example 1: (sqI:a
% 2Y~nU(
% % Display the Zernike function Z(n=5,m=1) hxZL/_n'
% x = -1:0.01:1; X" Upml
% [X,Y] = meshgrid(x,x); v2jpao<K
% [theta,r] = cart2pol(X,Y); N4)ZPLV
% idx = r<=1; @hwe
% z = nan(size(X)); 7m4*dBTr
% z(idx) = zernfun(5,1,r(idx),theta(idx)); Vrn+"2pdJ
% figure p(6KJK\
% pcolor(x,x,z), shading interp VT [TE
% axis square, colorbar DH Qs_8Df
% title('Zernike function Z_5^1(r,\theta)') 7 g|EqJ7
% W <u,S
% Example 2: xG WA5[YV
% A)_HSIVi
% % Display the first 10 Zernike functions 8Z!Mad
% x = -1:0.01:1; &4{!5r
% [X,Y] = meshgrid(x,x); *f o>
% [theta,r] = cart2pol(X,Y); B}+li1k
% idx = r<=1; "A]#KTP
% z = nan(size(X)); } 89-U
% n = [0 1 1 2 2 2 3 3 3 3]; 1ne3CA=
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; hQ (84u
% Nplot = [4 10 12 16 18 20 22 24 26 28]; .'PS L
% y = zernfun(n,m,r(idx),theta(idx)); s63!]LDr
% figure('Units','normalized') GK=b
% for k = 1:10 2(U;{;\n*
% z(idx) = y(:,k); d_7hh
% subplot(4,7,Nplot(k)) xF6byTi
% pcolor(x,x,z), shading interp s#H_QOE
% set(gca,'XTick',[],'YTick',[]) an2Yluc;
% axis square )&j@ ={0
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) }<^QW't_Y
% end $`[TIyA9!
% x c]#8K
% See also ZERNPOL, ZERNFUN2. {zalfw{+
8a3EVc
% Paul Fricker 11/13/2006 MML=J~1
3sD|R{
*yv@B!r
% Check and prepare the inputs: 66-tNy
% ----------------------------- ?I$- im
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ERy=lP~gV
error('zernfun:NMvectors','N and M must be vectors.') F*T$n"^
end _2TL>1KZt
erhez
if length(n)~=length(m) wC?$P
error('zernfun:NMlength','N and M must be the same length.') qrf90F)
end x\oSD1t,
zpjE_|
n = n(:); ?a-5^{{
m = m(:); V8#NXUg<!
if any(mod(n-m,2)) 6Ad C
error('zernfun:NMmultiplesof2', ... G6dUm_iB
'All N and M must differ by multiples of 2 (including 0).') U C_$5~8p
end [
ebk u_
OA^6l#
if any(m>n) 2 w6iqLr?
error('zernfun:MlessthanN', ... ( k,?)
'Each M must be less than or equal to its corresponding N.') )<lQJ#L86a
end ]T6pH7~
}3_>
if any( r>1 | r<0 ) _u]%K-_
error('zernfun:Rlessthan1','All R must be between 0 and 1.') O?O=]s
u
end 4fL`.n1^
v-BQ>-& s
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) yfal'DqKF
error('zernfun:RTHvector','R and THETA must be vectors.') 9s1^hW2%Q
end jweX"G54R
[X91nUz#
r = r(:); txvo7?Y*4
theta = theta(:); hI9q);g
length_r = length(r); 5YneoM]Q
if length_r~=length(theta) q}!h(-y}5n
error('zernfun:RTHlength', ... AvPPsN0
'The number of R- and THETA-values must be equal.') !6x7^E;c
end '/)qI.
MT7B'hd
% Check normalization: yO}5.
% -------------------- K:^0*5Y-k
if nargin==5 && ischar(nflag) RD46@Q`
isnorm = strcmpi(nflag,'norm'); Q'qX`K+@`
if ~isnorm lh[?`+A
error('zernfun:normalization','Unrecognized normalization flag.') KK6n"&TVa
end 3)OQgeKU
else <uxLG;R
isnorm = false; r?IBmatK/
end YRo,wsj
xK_oV+
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $
nHD,h
% Compute the Zernike Polynomials v`{N0 R
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #wo
*2(
tJybR"NQ
% Determine the required powers of r: RWGf]V]6
% ----------------------------------- Nk<^ Qv
m_abs = abs(m); OQ-
Hn-H
rpowers = []; !LzA
for j = 1:length(n) !=A;?Kdq
rpowers = [rpowers m_abs(j):2:n(j)]; 2:_6nWl
end 6i2%EC9
rpowers = unique(rpowers); U2l3E*O
9Msy=qvYG
% Pre-compute the values of r raised to the required powers, :W5W
@8Y
% and compile them in a matrix: Z %Ozzp/
% ----------------------------- uKd4+Km
if rpowers(1)==0 eZaSV>27
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); tc<uS%XT4^
rpowern = cat(2,rpowern{:}); [:FiA?O]
rpowern = [ones(length_r,1) rpowern];
o8Gygi5
else Xl$,f`f~
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); tAF?.\x"g
rpowern = cat(2,rpowern{:}); nYFrp)DLK
end 5nUJ9sqA
pF4Z4?W
% Compute the values of the polynomials: :nQlS
% -------------------------------------- i'7+
?YL
y = zeros(length_r,length(n)); Qr9;CVW
for j = 1:length(n) t*=[RS*
s = 0:(n(j)-m_abs(j))/2; BBRL_6
pows = n(j):-2:m_abs(j); Z*q9vX
for k = length(s):-1:1 TI8r/P?
]V
p = (1-2*mod(s(k),2))* ... ]S%(l,
prod(2:(n(j)-s(k)))/ ... #<S*MGp!=
prod(2:s(k))/ ... %/"n(?$W
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... }:Gs ,
prod(2:((n(j)+m_abs(j))/2-s(k))); pK@=]K~l0
idx = (pows(k)==rpowers); b7Jxv7$e
y(:,j) = y(:,j) + p*rpowern(:,idx); v6s,lC5qR
end !R"W2 Z4h
_ i}W1i
if isnorm pYx,*kG:HW
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); ,VHqZ'6
end 1|(Q|
end t/\
% END: Compute the Zernike Polynomials H*'1bLzq
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \3$!) z
eHuJFM
% Compute the Zernike functions: MQQm3VaKS
% ------------------------------ U}RBgPX!
idx_pos = m>0; ;^5k_\
idx_neg = m<0; { aUnOyX_
+cfEyiub
z = y; `8ac;b
if any(idx_pos) N)H "'#-
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); G
aV&y
end gvA}s/
if any(idx_neg) e@Lxduq
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); IT1YF.i
end x,!Dd
n^Ca?|}
,
% EOF zernfun