非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 1Tk\n
function z = zernfun(n,m,r,theta,nflag) z ]4g`K+
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. "YJ;-$rb
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N J7aK3he
% and angular frequency M, evaluated at positions (R,THETA) on the ]9l%
% unit circle. N is a vector of positive integers (including 0), and "Z1&z-
% M is a vector with the same number of elements as N. Each element B7QtB3bn
% k of M must be a positive integer, with possible values M(k) = -N(k) M%dl?9pbq
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, fgz'C?
% and THETA is a vector of angles. R and THETA must have the same 2$/gg"g+
% length. The output Z is a matrix with one column for every (N,M) h,RUL
% pair, and one row for every (R,THETA) pair. (YWc%f4
% X
+
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike Gxt<kz
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), x;b+gIz*
% with delta(m,0) the Kronecker delta, is chosen so that the integral 88LbO(q\d
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, u:>3j,Cs
% and theta=0 to theta=2*pi) is unity. For the non-normalized Ydd>A\v\;
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. -W"0,.Dvg
% V<R+A* gY:
% The Zernike functions are an orthogonal basis on the unit circle. l+kg4y
% They are used in disciplines such as astronomy, optics, and N[D\@o
% optometry to describe functions on a circular domain. >rX R;4%
% 7bW!u*v-c
% The following table lists the first 15 Zernike functions. ,0u0 '
% 2ZIY{lBe
% n m Zernike function Normalization %<o$
J~l~
% -------------------------------------------------- .mU.eLM
% 0 0 1 1 ;.[$
% 1 1 r * cos(theta) 2 kIZdND&
% 1 -1 r * sin(theta) 2 4oEq,o_
% 2 -2 r^2 * cos(2*theta) sqrt(6) ~m=%a
% 2 0 (2*r^2 - 1) sqrt(3) !`Yi{}1_
% 2 2 r^2 * sin(2*theta) sqrt(6) ^+l\YB7pD
% 3 -3 r^3 * cos(3*theta) sqrt(8) Pj5#G0i%
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) -{sv3|P>
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 5x'y{S<
% 3 3 r^3 * sin(3*theta) sqrt(8) g.sV$.T2K
% 4 -4 r^4 * cos(4*theta) sqrt(10) ,$(v#Tz
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 3B|-xq;]I
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) xWZcSIH!
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) COJ!b
% 4 4 r^4 * sin(4*theta) sqrt(10) 10C91/
% -------------------------------------------------- gBS#Z.
% ZUI\0qh+
% Example 1: sWCm[HpG
% Q]'!FmXf
% % Display the Zernike function Z(n=5,m=1) '{*>hj5.8
% x = -1:0.01:1; J7] 60H#P
% [X,Y] = meshgrid(x,x); )'CEWc%
% [theta,r] = cart2pol(X,Y); zjZTar1Re
% idx = r<=1; :NyE d<'
% z = nan(size(X)); ]<?)(xz
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 1^>g>bn_"
% figure |dzF>8< )
% pcolor(x,x,z), shading interp swgBPJ"?
% axis square, colorbar ASU\O3%%
% title('Zernike function Z_5^1(r,\theta)') y$No o)Z
% I*R$*/)
% Example 2: Qg.:w
% PGhZ`nl
% % Display the first 10 Zernike functions e[dRHl
% x = -1:0.01:1; vj$6
% [X,Y] = meshgrid(x,x); N9|.D.#MF
% [theta,r] = cart2pol(X,Y); W)~.o/;
% idx = r<=1; C7_T]e <
% z = nan(size(X)); 0>MI*fnY"
% n = [0 1 1 2 2 2 3 3 3 3]; Bb"4^EOZ,
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; F7l:*r,O
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ?C2;:ol
% y = zernfun(n,m,r(idx),theta(idx)); j]D = \
% figure('Units','normalized') !QspmCo+
% for k = 1:10 jch8d(`?d
% z(idx) = y(:,k); <%7
V`,*g/
% subplot(4,7,Nplot(k)) /~5YTe(F
% pcolor(x,x,z), shading interp s@iCfX U
% set(gca,'XTick',[],'YTick',[]) >7q,[:(gs
% axis square :vT%5CQ
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 28yxX431S
% end dw!Eao47
% *
XGBym
% See also ZERNPOL, ZERNFUN2. 4TE ?mh}
I*2rS_i[T
% Paul Fricker 11/13/2006 ^eRT8I
,RO(k4
XOU$3+8q5
% Check and prepare the inputs: ='>UKy[=
% ----------------------------- ;qK6."b`;
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) =1[g`b
error('zernfun:NMvectors','N and M must be vectors.') +eXfT*=u5
end Acv{XnB
rv%[?Ml
if length(n)~=length(m) d vxEXy
error('zernfun:NMlength','N and M must be the same length.') ~`H<sJ?9
end (*BW/.Fq
59]9-1" +
n = n(:); 7# 3)&"j
m = m(:); :n9^:srGZH
if any(mod(n-m,2)) ;P~S/j[ 8
error('zernfun:NMmultiplesof2', ... e6'O,\
'All N and M must differ by multiples of 2 (including 0).') !
fc)
end 3Q)>gh*
-P&e4sV{
if any(m>n) IBh~(6
error('zernfun:MlessthanN', ... -rlX<(pl)
'Each M must be less than or equal to its corresponding N.') Uk6!Sb
end 1?\ Y,+
0&@pX~h:
if any( r>1 | r<0 ) KLW+&.re8
error('zernfun:Rlessthan1','All R must be between 0 and 1.') xv l
end X+8p2xSO|
,ua1xsZl&
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) f tDV3If
error('zernfun:RTHvector','R and THETA must be vectors.') V p{5Kxq
end Y cpO;md
T%/w^27E
r = r(:); Q$j48,e
theta = theta(:); tvRy8u;
length_r = length(r); 1bkUT_
if length_r~=length(theta) hh&y2#Io
error('zernfun:RTHlength', ... pa-4|)qY
'The number of R- and THETA-values must be equal.') 1+($"$ZC&B
end edx'p`%d5
[^~9wFNtd
% Check normalization: I_7EfAqg(
% -------------------- wP"|$HN
if nargin==5 && ischar(nflag) >oDP(]YGg
isnorm = strcmpi(nflag,'norm'); k^jCB>b
if ~isnorm 'bPo 5V|
error('zernfun:normalization','Unrecognized normalization flag.') k)Wz b
end ^j}sS!p
else wgrOW]e
isnorm = false; <Q)}
end 06 s3
b
12dW:#[
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ku8c)
% Compute the Zernike Polynomials V"iLeC
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :X*LlN
[bJnl>A
% Determine the required powers of r: qCN7i&k,
% ----------------------------------- "s9gQAoaO
m_abs = abs(m); 3=7 h+ZgB
rpowers = []; =lQ[%&
for j = 1:length(n) IxBO$2
rpowers = [rpowers m_abs(j):2:n(j)]; 8f5^@K\c
end DjvgKy=Jr_
rpowers = unique(rpowers); I=a$1%BzEX
#HYkzjb
% Pre-compute the values of r raised to the required powers, :j4
[_9\
% and compile them in a matrix: HYmXPpse
% ----------------------------- );H[lKy
if rpowers(1)==0
kZ%W?#
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); \;gt&*$-
rpowern = cat(2,rpowern{:}); *PU,Rc()6
rpowern = [ones(length_r,1) rpowern]; Z]\^.x9S
else NI:N
W-!
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); %= y3
rpowern = cat(2,rpowern{:}); Z"Ni
Y
end #)}bUNc'
m]q!y3
% Compute the values of the polynomials: 2tm-:CPG
% -------------------------------------- \zL7j4
y = zeros(length_r,length(n)); I.1l
for j = 1:length(n) KdsvZim0>
s = 0:(n(j)-m_abs(j))/2; =XlIe{
pows = n(j):-2:m_abs(j); ?<^AXLiKV
for k = length(s):-1:1 15DK\_;
p = (1-2*mod(s(k),2))* ... Cbs4`D,
prod(2:(n(j)-s(k)))/ ... CT%m_lN
prod(2:s(k))/ ... ^|(4j_.(e
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ~ O=| v/]
prod(2:((n(j)+m_abs(j))/2-s(k))); T<k1?h^7
idx = (pows(k)==rpowers); fhx:EZ:~
y(:,j) = y(:,j) + p*rpowern(:,idx); =c^=Yvc7U
end dU3>h[q
v};qMceJ
if isnorm wNhR(M7
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi);
D#}Yx]Q1
end /C2f;h(1
end ,GP4I3D
% END: Compute the Zernike Polynomials yUwgRj
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Ltd?#HP
y@\Q@
9
% Compute the Zernike functions: 166c\QO
% ------------------------------ &})d%*n
idx_pos = m>0; E wsq0D
idx_neg = m<0; >=:T
ZU
%kFELtx
z = y; 7qK0!fk5
if any(idx_pos) 9|A-oS
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); f<altz_\q
end v|2q2 bz
if any(idx_neg) -7z y
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); 0W%}z}/N
end I4f
?iEXFYJG
% EOF zernfun