非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 #%ld~dgz-
function z = zernfun(n,m,r,theta,nflag) I6;6x
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. lb9?Uc@
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N lijTL-3
% and angular frequency M, evaluated at positions (R,THETA) on the #?r|6<4X
% unit circle. N is a vector of positive integers (including 0), and aaf}AIL.
% M is a vector with the same number of elements as N. Each element &`s{-<t<L
% k of M must be a positive integer, with possible values M(k) = -N(k) Z~h6^h
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, "(W;rl
% and THETA is a vector of angles. R and THETA must have the same {5
pK8
% length. The output Z is a matrix with one column for every (N,M) 'MX|=K!C
% pair, and one row for every (R,THETA) pair. K%L6UQ;
% :4 z\Q]
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike cy(w*5Upu
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), p),*4@2<
% with delta(m,0) the Kronecker delta, is chosen so that the integral d])ctxB
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, P-[})Z=
% and theta=0 to theta=2*pi) is unity. For the non-normalized 8<0P Ssx
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. g i/k#3_m
% lr;ubBbT
% The Zernike functions are an orthogonal basis on the unit circle. *^g]QQ
% They are used in disciplines such as astronomy, optics, and .]KC*2
% optometry to describe functions on a circular domain. Q1|6;4L
% &R.5t/x_
% The following table lists the first 15 Zernike functions. toDi70o
% gfN=0Xj4
% n m Zernike function Normalization '{~[e**
% -------------------------------------------------- Kv1~,j6
% 0 0 1 1 f{L;,
% 1 1 r * cos(theta) 2 'ParMT
% 1 -1 r * sin(theta) 2 - |DWPU!"
% 2 -2 r^2 * cos(2*theta) sqrt(6) *XWu) >*o
% 2 0 (2*r^2 - 1) sqrt(3) PN9vg9'
% 2 2 r^2 * sin(2*theta) sqrt(6) re%XaL
% 3 -3 r^3 * cos(3*theta) sqrt(8) 5Hj/7~ =
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Xl2g Hh
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) f^QC4hf0
% 3 3 r^3 * sin(3*theta) sqrt(8) *re?V9
% 4 -4 r^4 * cos(4*theta) sqrt(10) d>I)_05t
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) F~E)w5?\O
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) |[5;dt_U/
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) >oyf i:
% 4 4 r^4 * sin(4*theta) sqrt(10) [S]q'c)
% -------------------------------------------------- OW=3t#"7Kp
% D9P,[:"
% Example 1: ,KM%/;1Dm
% b@4UR<
% % Display the Zernike function Z(n=5,m=1) 19(x$=:
% x = -1:0.01:1; E Lq1
% [X,Y] = meshgrid(x,x); bG"FN/vg
% [theta,r] = cart2pol(X,Y); kk<%VKC
% idx = r<=1; :epB:r
% z = nan(size(X)); e~)4v
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 5QXU"kWH
% figure QaEiP n~
% pcolor(x,x,z), shading interp I*o6Bn
|D
% axis square, colorbar ]Z\ W%'q+
% title('Zernike function Z_5^1(r,\theta)') ZBY}Mz$
% D2D+S
% Example 2: 9'~qA(=.?
% la)+"uW
% % Display the first 10 Zernike functions {_.(,Z{
% x = -1:0.01:1; euT=]j
% [X,Y] = meshgrid(x,x); p(I^Y{sGI
% [theta,r] = cart2pol(X,Y); 9cN@y<_I
% idx = r<=1; 91&=UUkK?
% z = nan(size(X)); N#-.[9!
% n = [0 1 1 2 2 2 3 3 3 3]; +&f_k@+
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; N
GnE
% Nplot = [4 10 12 16 18 20 22 24 26 28]; n{<@-6
% y = zernfun(n,m,r(idx),theta(idx)); Cpd>xXZz&S
% figure('Units','normalized') RWM~7^JA
% for k = 1:10 xo @|;Z>&F
% z(idx) = y(:,k); lQ ki58.
% subplot(4,7,Nplot(k)) _a"|
:kX
% pcolor(x,x,z), shading interp CiHx.5TiC
% set(gca,'XTick',[],'YTick',[]) =&"pG`x
% axis square $(0<T<\
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) @|ZUyat
% end !E00I0W-h
% ,*lns.|n
% See also ZERNPOL, ZERNFUN2. $X.F=Kv
B3[X{n$px
% Paul Fricker 11/13/2006 W2$rC5|
#>_fYjT
d!&LpODI]*
% Check and prepare the inputs: 'CqAjlj
% ----------------------------- ;XZN0A2
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) im:[ViR {
error('zernfun:NMvectors','N and M must be vectors.') 6-?/kY 6
end 6OC4?#96%'
@pv:uON\
if length(n)~=length(m) 5M)B
error('zernfun:NMlength','N and M must be the same length.') ^_G#JJ\@$
end ~v/`
`s
qx >Z@o
n = n(:); CP"5E?dcK
m = m(:); MxGQM>
if any(mod(n-m,2)) zN+jn
error('zernfun:NMmultiplesof2', ... >yVrIko
'All N and M must differ by multiples of 2 (including 0).') x?0(K=h,
end u\xrC\Ka
0VR,I{<.{
if any(m>n) t*BCpC}
error('zernfun:MlessthanN', ... UDcr5u eKn
'Each M must be less than or equal to its corresponding N.') 9_&]7ABV
end GP^^
K
A9DFZZ0
if any( r>1 | r<0 ) l&] %APL
error('zernfun:Rlessthan1','All R must be between 0 and 1.') Q(1R=4?.Z
end F!C<^q~!
u5U^}<}y}
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 9
s2z=^
error('zernfun:RTHvector','R and THETA must be vectors.') ~k
6V?z}
end }L{GwiDMDl
@wAYhnxq
r = r(:); *E|3Vy{4
theta = theta(:); (l2n%LL]*
length_r = length(r); +\PLUOk
if length_r~=length(theta) ep48 r>
error('zernfun:RTHlength', ... _Eq,udCso
'The number of R- and THETA-values must be equal.') t?weD{O
end Gh{9nM_\"
K;\fJ2ag
% Check normalization: Pa|*Jcr
% -------------------- ZL!5dT&@W
if nargin==5 && ischar(nflag) T0@<u
isnorm = strcmpi(nflag,'norm'); a{ByU%
if ~isnorm ]wbV1Y"
error('zernfun:normalization','Unrecognized normalization flag.') cUi6 On1C
end VeFfkg4
else }.=wQ_
isnorm = false; 1Sns$t%b
end XK0lv8(
/b4>0DXT5
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% dt<P6pK-
% Compute the Zernike Polynomials K7q R
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% h2+"e# _
%|2x7@&s
% Determine the required powers of r: rXGaav9
% ----------------------------------- FB~IO#E8W
m_abs = abs(m); AQ"rk9Z
rpowers = []; FPE6H:'
for j = 1:length(n) 5]3Mj*u\
rpowers = [rpowers m_abs(j):2:n(j)]; iNL>TVUM
end XzBl }4s
rpowers = unique(rpowers); 6LT.ng
_(@Vf=t
% Pre-compute the values of r raised to the required powers, [A;0IjKam
% and compile them in a matrix: mLHl]xs4
% ----------------------------- ronZa0
if rpowers(1)==0 h)r=+Q\'(S
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); V)oKsO
rpowern = cat(2,rpowern{:}); leXdxpc
rpowern = [ones(length_r,1) rpowern]; `7V'A
else u@4khN:
^p
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); yyVE%e5nl
rpowern = cat(2,rpowern{:}); 7u%OYt
D E
end OR10IS
?Bd6<F-G
% Compute the values of the polynomials: urD{'FQf
% -------------------------------------- +5Y;JL<%/
y = zeros(length_r,length(n)); a7z%)i;Z
for j = 1:length(n) ]6WP;.[
s = 0:(n(j)-m_abs(j))/2; j W-K
pows = n(j):-2:m_abs(j); J@q!N;eh|
for k = length(s):-1:1 ]#FQde4]5
p = (1-2*mod(s(k),2))* ... 3HndE~_C&
prod(2:(n(j)-s(k)))/ ... AD'c#CT
prod(2:s(k))/ ... v +?'/Q%
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 8/|1FI
prod(2:((n(j)+m_abs(j))/2-s(k))); X&%;(`
idx = (pows(k)==rpowers); 7"])Y
y(:,j) = y(:,j) + p*rpowern(:,idx); 5%fR9?)
end )},/=#C0
cMAY8$
if isnorm //}KWz
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); +L=a\8Ep
end `6*1mE1K&
end -D_xA10
% END: Compute the Zernike Polynomials uX&Tn1Kg
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %/K;!'7
d]^\qeG^p
% Compute the Zernike functions: 7}Jn`^!
% ------------------------------ Vf$q3X
idx_pos = m>0; &WVRh=R
idx_neg = m<0; tHH @[E+h
v*@R U
z = y; "A}2iI
if any(idx_pos) o{MmW~/o&
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); KyzdJ^xC"
end 1F[W~@jW
if any(idx_neg) hJoh5DIE95
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); w`>g^_xsg
end Q~)A
fa{
EvDg{M}
% EOF zernfun