非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 R{OE{8;
function z = zernfun(n,m,r,theta,nflag) jcv1z v.
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. AZ9\>U@hD
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 1f pS"_}
% and angular frequency M, evaluated at positions (R,THETA) on the g0:4zeL
% unit circle. N is a vector of positive integers (including 0), and ";S*[d.2tA
% M is a vector with the same number of elements as N. Each element ch,Zk )y:_
% k of M must be a positive integer, with possible values M(k) = -N(k) N>nvt.`P
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ?lwQne8/
% and THETA is a vector of angles. R and THETA must have the same EDidg"0p
% length. The output Z is a matrix with one column for every (N,M) kFIB lPV
% pair, and one row for every (R,THETA) pair. vb"dX0)<
% .dKRIFo
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike FG5c:Ep
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), )Y,?r[4{
% with delta(m,0) the Kronecker delta, is chosen so that the integral Va
|9)m
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, xjhAAM
% and theta=0 to theta=2*pi) is unity. For the non-normalized %}ApO{
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. gM5p1?E
% =u3@ Dhw
% The Zernike functions are an orthogonal basis on the unit circle. L5 k>;|SA
% They are used in disciplines such as astronomy, optics, and "k1Tsd-
% optometry to describe functions on a circular domain. yDkDtO`K
% F)5B[.ce
% The following table lists the first 15 Zernike functions. 4@mXtA
% $@qs(Xwr
% n m Zernike function Normalization k-ex<el)#
% -------------------------------------------------- f~" V
% 0 0 1 1 4bFVyv
% 1 1 r * cos(theta) 2 o(>-:l i0
% 1 -1 r * sin(theta) 2 V&+$Vq
% 2 -2 r^2 * cos(2*theta) sqrt(6) Oc/_T>
% 2 0 (2*r^2 - 1) sqrt(3) 1DlcO>#@
% 2 2 r^2 * sin(2*theta) sqrt(6) eZod}~J8
% 3 -3 r^3 * cos(3*theta) sqrt(8) ^.1VhTB
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) hC,-9c
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) v{{2<,l
% 3 3 r^3 * sin(3*theta) sqrt(8) @ Rb1)$~#
% 4 -4 r^4 * cos(4*theta) sqrt(10) s^?sJUj
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) .q9|XDqQc
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) |UDD/e
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) %FWfiFV|<
% 4 4 r^4 * sin(4*theta) sqrt(10) ]|LaMMD
% --------------------------------------------------
T!xy^n]}
% '-]BSU
% Example 1: 8!%"/*P$
% kbT-Oz 2
% % Display the Zernike function Z(n=5,m=1) JX0_UU
% x = -1:0.01:1; U9fF;[g
% [X,Y] = meshgrid(x,x); U>-#('
% [theta,r] = cart2pol(X,Y); pL/.JzB
% idx = r<=1; jG(~9P7
% z = nan(size(X)); PW//8lsR
% z(idx) = zernfun(5,1,r(idx),theta(idx)); 6N+)LF}P b
% figure P5xmLefng
% pcolor(x,x,z), shading interp |wb(rua
% axis square, colorbar @gjdyz
% title('Zernike function Z_5^1(r,\theta)') wY_-
% EbYH?hPo
% Example 2: *^+xcG
% ,Ve@=<
% % Display the first 10 Zernike functions n9/0W%X>
% x = -1:0.01:1; R|$`MX}'z
% [X,Y] = meshgrid(x,x); N5Mz=UgB
% [theta,r] = cart2pol(X,Y); @OY-(cW
% idx = r<=1; BI^]juH-c
% z = nan(size(X)); T_%]#M
% n = [0 1 1 2 2 2 3 3 3 3]; _%TeTNY#
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; *=9#tYn~
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 71&+dC
% y = zernfun(n,m,r(idx),theta(idx)); (<JDD]J
% figure('Units','normalized') 3 DHA^9<q
% for k = 1:10 `DllW{l
% z(idx) = y(:,k); <a[8;YQC
% subplot(4,7,Nplot(k)) M>gZVB,eP>
% pcolor(x,x,z), shading interp Jv.R?1;8i
% set(gca,'XTick',[],'YTick',[]) d@f2Vxe7
% axis square
F-,{+B66
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) dTQvz9 C
% end T`ZJ=gv
% "[S
6w
% See also ZERNPOL, ZERNFUN2. AR6vc
g2<S4
% Paul Fricker 11/13/2006 l{o{=]x1
}F`2$Q+CW
-?1J+}?
% Check and prepare the inputs: y]4`d
% ----------------------------- "$pgmf2
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) Ht^2)~e~:
error('zernfun:NMvectors','N and M must be vectors.') 5w{pX1z1
end *Y0,d`
mM{v>Em2K#
if length(n)~=length(m) ucP MT0k
error('zernfun:NMlength','N and M must be the same length.') $QBUnLOek&
end `2+e\%f/0
g9Gy3zk=
n = n(:); '\\Cpc_g
m = m(:); BQ0\+
if any(mod(n-m,2)) Ka\b_P&
error('zernfun:NMmultiplesof2', ... %\&dFwb
'All N and M must differ by multiples of 2 (including 0).') xumv I{
end qDd/wR,44
#e>MNc
'z
if any(m>n) J3^Z PW
error('zernfun:MlessthanN', ... -JK4-Hg
'Each M must be less than or equal to its corresponding N.') |raQ]b@t&
end F]#fl%
yLOLv6g~e
if any( r>1 | r<0 ) fGWK&nONyk
error('zernfun:Rlessthan1','All R must be between 0 and 1.') Z@/5~p
end 2<@!m@
Y{tuaBzD
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) V<pjR@
error('zernfun:RTHvector','R and THETA must be vectors.') kk+8NwM1
end ZhaOH5{9
y<d#sv(s
r = r(:); w/6@R 4)p
theta = theta(:); 'FFc"lqj
length_r = length(r); <U pjAuG8
if length_r~=length(theta) Fsj[J E
error('zernfun:RTHlength', ... %([H*sLX
'The number of R- and THETA-values must be equal.') xR`2+t&t
end 26K~m@
k"{U}Y/}
% Check normalization: {?hjx+v[
% -------------------- cpnwx1q@
if nargin==5 && ischar(nflag) c%.&F
isnorm = strcmpi(nflag,'norm'); oH"N>@ Vl
if ~isnorm Ntiz-qW
error('zernfun:normalization','Unrecognized normalization flag.') G3?z.5,Q
end c$fM6M
}
else -;"l5oX
isnorm = false; ),,vu
end `,d7_#9'
u`|fmVI
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <-}\V!@E!
% Compute the Zernike Polynomials Q#KjX;No
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% oD\+ 5[x
}*.*{I
% Determine the required powers of r: 'DQyB`V2y
% ----------------------------------- UI;{3Bn
m_abs = abs(m); BUyA]
rpowers = []; m.1BLN[9
for j = 1:length(n) 6~>k]G
rpowers = [rpowers m_abs(j):2:n(j)]; I#U44+c
end eVXbYv=gJ@
rpowers = unique(rpowers); {8RGW0Y
9l]IE,u
% Pre-compute the values of r raised to the required powers, :TI1tJS~*
% and compile them in a matrix: 8F1!9W7
% ----------------------------- mM.&c5U
if rpowers(1)==0 =w-H )
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); F}>`3//u
rpowern = cat(2,rpowern{:}); (xL=X%6a
rpowern = [ones(length_r,1) rpowern]; |=s3a5sl
else :f;|^(]"
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); aDuanGC/V
rpowern = cat(2,rpowern{:}); Jiq[VeLe
end 4+Y5u4`t
Cq~Ir*"
% Compute the values of the polynomials: 7I|Mq
% -------------------------------------- bAp`lmFI
y = zeros(length_r,length(n)); GWKefH
for j = 1:length(n) rY}ofq7b
s = 0:(n(j)-m_abs(j))/2; F1>,^qyG6
pows = n(j):-2:m_abs(j); :cTi$n
for k = length(s):-1:1 T*m21<
p = (1-2*mod(s(k),2))* ... t
,$)PV
prod(2:(n(j)-s(k)))/ ... 1CbC|q
prod(2:s(k))/ ... soF ^G21N
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... k1J}9HNYR
prod(2:((n(j)+m_abs(j))/2-s(k))); 2uIAnbW]M
idx = (pows(k)==rpowers); l<0V0R(
y(:,j) = y(:,j) + p*rpowern(:,idx); }g?]B +0
end pjFgIG2=9
X!Q"p$D4(
if isnorm 7Y/_/t~Y
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); f$|v
end >nX'RE|F
end zVu}7v()
% END: Compute the Zernike Polynomials V 6F,X`7
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% q9Q4F
;q Z2V
% Compute the Zernike functions: xpz
Jt2S
% ------------------------------ [z\*Zg
idx_pos = m>0; 1a<~Rmcil
idx_neg = m<0; \B)<<[ $
J3=jC5=J4
z = y; w]_a0{Uh
if any(idx_pos) ?=/l@ d
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); i+}M#Y-O
end e
6*=Si}V
if any(idx_neg) ''G@n*
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); aC*J=_9o#
end _),@^^&x
Go4l#6
% EOF zernfun