非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 4oxAC; L
function z = zernfun(n,m,r,theta,nflag) n1yIQ8 F
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. FA5|`
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N jh7-Fl`
% and angular frequency M, evaluated at positions (R,THETA) on the EJAk'L+nuH
% unit circle. N is a vector of positive integers (including 0), and NUSb7<s,&Y
% M is a vector with the same number of elements as N. Each element S($8_u$U
% k of M must be a positive integer, with possible values M(k) = -N(k) @aQ};~
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, (!cG*FrN
% and THETA is a vector of angles. R and THETA must have the same =&%}p[
3g
% length. The output Z is a matrix with one column for every (N,M) Ry47Fze
% pair, and one row for every (R,THETA) pair. ??Lda='
% Gm`#0)VC
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike pCacm@(hG
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), V{A_\
% with delta(m,0) the Kronecker delta, is chosen so that the integral 3?%?J^/a
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, uU$YN-
% and theta=0 to theta=2*pi) is unity. For the non-normalized {J&[JA\
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. -BV8,1
% 0H9UM*O
% The Zernike functions are an orthogonal basis on the unit circle. dG8_3T}i
% They are used in disciplines such as astronomy, optics, and *'i9
% optometry to describe functions on a circular domain. RpmOg
% e]9Z]a2
% The following table lists the first 15 Zernike functions. {l0[`"EF
% 8]@$7hy8
% n m Zernike function Normalization [SKN}:D
% -------------------------------------------------- `[)!4Jb
% 0 0 1 1 Zk:Kux[7
% 1 1 r * cos(theta) 2 gT-"=AsxZQ
% 1 -1 r * sin(theta) 2 "26=@Q^Y
% 2 -2 r^2 * cos(2*theta) sqrt(6) Mg"e$m
% 2 0 (2*r^2 - 1) sqrt(3) }xa~U,#5
% 2 2 r^2 * sin(2*theta) sqrt(6) =)c^ik%F&
% 3 -3 r^3 * cos(3*theta) sqrt(8) twWzS
4;
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ^-^ii3G`
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) MlKSjKl" !
% 3 3 r^3 * sin(3*theta) sqrt(8) -P6Z[V%
% 4 -4 r^4 * cos(4*theta) sqrt(10) rv?4S`Z,x$
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 969Y[XQ
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 1
ORA6
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ;% <[*T:*'
% 4 4 r^4 * sin(4*theta) sqrt(10) .&i_~?1[N
% -------------------------------------------------- ;T\+TZ tI
% zG*
>g
% Example 1: 73p7]Uo
% ]t"X~
% % Display the Zernike function Z(n=5,m=1) \{EYkk0]
% x = -1:0.01:1; UdOO+Z_K%
% [X,Y] = meshgrid(x,x); ~T^,5Tz1j
% [theta,r] = cart2pol(X,Y); koojF|H>
% idx = r<=1; 4JO[yN
% z = nan(size(X)); 14pyHMOR
% z(idx) = zernfun(5,1,r(idx),theta(idx)); xNd p]u
% figure gyz_$T@x
% pcolor(x,x,z), shading interp }vXiq T
% axis square, colorbar H~NK:qRzK
% title('Zernike function Z_5^1(r,\theta)') oQiRjDLx
% }?)U`zF)7}
% Example 2: s-801JpiJ
% kBeYl+*pk
% % Display the first 10 Zernike functions @P)2ZGG
% x = -1:0.01:1; h(K}N5`
% [X,Y] = meshgrid(x,x); LgxsO:mi
% [theta,r] = cart2pol(X,Y); IZ_?1%q>}
% idx = r<=1; &_$0lIDQ
% z = nan(size(X)); <MyT ;
% n = [0 1 1 2 2 2 3 3 3 3]; vR7S!
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; X> T_Xc
% Nplot = [4 10 12 16 18 20 22 24 26 28]; $
~Ks!8'P
% y = zernfun(n,m,r(idx),theta(idx)); nv<t$r
% figure('Units','normalized') 3;JF5e\?x
% for k = 1:10 9Ca }+
% z(idx) = y(:,k); 6z5wFzJv?q
% subplot(4,7,Nplot(k)) 9e*o$)j_
% pcolor(x,x,z), shading interp R>t?6HOcp
% set(gca,'XTick',[],'YTick',[]) _Ie?{5$ng`
% axis square 34,'smH i%
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) /|p\l"
% end V!Pe%.>
% Ay6]vU
% See also ZERNPOL, ZERNFUN2. IP
O2:1aG
% Paul Fricker 11/13/2006 N9#5 P!
DkEf;P
,R\e x =c
% Check and prepare the inputs: \1O
wZ@
% ----------------------------- y(wb?86#W5
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 25j?0P"&
error('zernfun:NMvectors','N and M must be vectors.') jmG)p|6
end I|l5e2j
e>m+@4*sn
if length(n)~=length(m) 7_R[=t
error('zernfun:NMlength','N and M must be the same length.') zZW5M^z8
end "%YVAaN
ceuEsQ}
n = n(:); Ss3~X90!*B
m = m(:); vScEQS$>
if any(mod(n-m,2)) j 8)*'T
error('zernfun:NMmultiplesof2', ... Ga_Pt8L6
'All N and M must differ by multiples of 2 (including 0).') Q@uWh:
end R=3|(R+kA
~d3|zlh
if any(m>n) _<GXR
?
error('zernfun:MlessthanN', ... q|}O-A*wa
'Each M must be less than or equal to its corresponding N.') z(u,$vZ_
end qu\U^F
D_?dy4\
if any( r>1 | r<0 ) r PTfwhs
error('zernfun:Rlessthan1','All R must be between 0 and 1.') Ng2Z7k
end <KJ|U0/jGd
H.;2o(vD
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) HV'M31m~q
error('zernfun:RTHvector','R and THETA must be vectors.') /BN=Kl]
end Y4+]5;B8
j/jFS]iC
r = r(:); $DaQM'-
theta = theta(:); _F(Np\%_
length_r = length(r); WL|<xNL
if length_r~=length(theta) ]T{v~]7:{
error('zernfun:RTHlength', ... xSqr=^
'The number of R- and THETA-values must be equal.') 9 I:3
end )%b 5uZ
l<qEX O
% Check normalization: AV4fN@BX
% -------------------- VN0KK
1I
if nargin==5 && ischar(nflag) @}
+k]c25
isnorm = strcmpi(nflag,'norm'); f1S%p
if ~isnorm (Y*9[hm
error('zernfun:normalization','Unrecognized normalization flag.') v$xurj:v#i
end ]a`"O
else ">M&/}4
isnorm = false; cE>m/^SKr
end ~xv3R
Ct^=j@g
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }]M'f:%b
% Compute the Zernike Polynomials (J?_~(,`"
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% M(yWE0 3
>l #D9%
% Determine the required powers of r: z7z9lDS
% ----------------------------------- 5i}g$yjZ<
m_abs = abs(m); R!
n7g8I%
rpowers = []; =7#"}%4Q
for j = 1:length(n) N]14~r=
rpowers = [rpowers m_abs(j):2:n(j)]; `e`DSl D>
end R)4,f~@"
rpowers = unique(rpowers); JIjo^zOXsc
YNl".c
% Pre-compute the values of r raised to the required powers, ll[&O4.F
% and compile them in a matrix: itE/QB
% ----------------------------- Wsp c;]&
if rpowers(1)==0 y\4/M6
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); w ~"%&SNN
rpowern = cat(2,rpowern{:}); Q"uK6ANp'
rpowern = [ones(length_r,1) rpowern]; K'/if5>Bc
else 2.=G
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); '@
p464
rpowern = cat(2,rpowern{:}); %"=GQ 3u[
end 0~+*$W
LitdO>%#2
% Compute the values of the polynomials: W'=}2Y$]u
% -------------------------------------- jse!EtB:
y = zeros(length_r,length(n)); a\~118 !
for j = 1:length(n) )#1!%aQ
s = 0:(n(j)-m_abs(j))/2; {;th~[
pows = n(j):-2:m_abs(j); $iMLT8U
for k = length(s):-1:1 ~{);Ab.9+
p = (1-2*mod(s(k),2))* ... #qUGc`
prod(2:(n(j)-s(k)))/ ... ._t1eb`m{
prod(2:s(k))/ ... +Wgfxk'{
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... )pe17T1|
prod(2:((n(j)+m_abs(j))/2-s(k))); m>F:dI
idx = (pows(k)==rpowers); _yX.Apv]
y(:,j) = y(:,j) + p*rpowern(:,idx); #d<|_
end UCkV;//.
,KD?kSIf
if isnorm *-(o. !#1
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); KT*>OYI
end mhOgv\?
end kwqY~@W
% END: Compute the Zernike Polynomials hg:$H9\%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (2QfH$HEk
Gg]Jp:GF
% Compute the Zernike functions: ho B[L}<c
% ------------------------------ QSn18V>{
idx_pos = m>0; Hq,@j{($
idx_neg = m<0; ,!LY:pMK
'\+"3!$
z = y; fLd2{jI,
if any(idx_pos) H3`.Y$z
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); |W$|og'wC
end n)Cr<^j
if any(idx_neg) M#-E
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); RHpjJZUV
end v`jHd*&6)
$o;c:Kh$$
% EOF zernfun