切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9654阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 S <++eu  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! @l~MY *hp  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 x@,B))WlGr  
    function z = zernfun(n,m,r,theta,nflag) NAEAvXj  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. xayd_RB9  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N -f%J_`  
    %   and angular frequency M, evaluated at positions (R,THETA) on the Vg8c}>7  
    %   unit circle.  N is a vector of positive integers (including 0), and tD3v`Ke  
    %   M is a vector with the same number of elements as N.  Each element 690;\O '  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) "5$2b>_UE  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, N/eFwv.Er  
    %   and THETA is a vector of angles.  R and THETA must have the same e4Jx%v?_P  
    %   length.  The output Z is a matrix with one column for every (N,M) #w]@yL]|is  
    %   pair, and one row for every (R,THETA) pair. FK`M+ j  
    % ?8@EBPpC  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike *d,Z ?S/  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), PRyzUG&  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral a3E.rr;b  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, vI+X9C?  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized U:O&FE  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 2)+ddel<Z  
    % |C.[eHe&D  
    %   The Zernike functions are an orthogonal basis on the unit circle. sWX\/Iyy2p  
    %   They are used in disciplines such as astronomy, optics, and WRfhxl  
    %   optometry to describe functions on a circular domain. +p_>fO  
    % g7<u eF  
    %   The following table lists the first 15 Zernike functions. C;oT0(  
    % v L!?4k  
    %       n    m    Zernike function           Normalization cR/z;*wr7  
    %       -------------------------------------------------- dp#'~[j  
    %       0    0    1                                 1 ev%}\^Vl[  
    %       1    1    r * cos(theta)                    2 y,vrMWDy  
    %       1   -1    r * sin(theta)                    2 . I#dR*  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) PitDk 1T  
    %       2    0    (2*r^2 - 1)                    sqrt(3) hYU4%"X  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Bq#B+JwX  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) IRB BLXv7\  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Tn(c%ytN  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) nM6/c  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) / WJ+e  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) A&($X)t  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #tQ__ V   
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) vHxLn/  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) "o>gX'm*  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) Q[.HoqWK  
    %       -------------------------------------------------- KPMId`kf  
    % qr_:zXsob_  
    %   Example 1: EiWsVic[  
    % c:sk1I,d~^  
    %       % Display the Zernike function Z(n=5,m=1) a<mM )[U  
    %       x = -1:0.01:1; n>:|K0u"  
    %       [X,Y] = meshgrid(x,x); a) 5;Od  
    %       [theta,r] = cart2pol(X,Y); QPT%CW61M  
    %       idx = r<=1; Z2hIoCT  
    %       z = nan(size(X)); |sklY0?l(  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ? _Y2'O  
    %       figure 6=i@t tAK  
    %       pcolor(x,x,z), shading interp a  C<  
    %       axis square, colorbar 2C_/T8  
    %       title('Zernike function Z_5^1(r,\theta)') "`8~qZ7k  
    % JN:EcVuy  
    %   Example 2: h!h<!xaclW  
    % ;Vh5nO  
    %       % Display the first 10 Zernike functions -iJ @K  
    %       x = -1:0.01:1; PcK;L(  
    %       [X,Y] = meshgrid(x,x); _vgFcE~E@  
    %       [theta,r] = cart2pol(X,Y); t~@~XI5  
    %       idx = r<=1; O[/l';i  
    %       z = nan(size(X)); ; E]^7T  
    %       n = [0  1  1  2  2  2  3  3  3  3]; [Uw/;Kyh  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; EoD[,:*  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; etkKVr;Kv  
    %       y = zernfun(n,m,r(idx),theta(idx)); [[ ;vZ  
    %       figure('Units','normalized') dyMj=e  
    %       for k = 1:10 l/F'W}  
    %           z(idx) = y(:,k); {Wp5Ane  
    %           subplot(4,7,Nplot(k)) nFY6K%[  
    %           pcolor(x,x,z), shading interp ^J{tOxO=l  
    %           set(gca,'XTick',[],'YTick',[]) X9oxni#  
    %           axis square v<c@bDZ>  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 8*t8F\U#  
    %       end NT}r6V(Aju  
    % 9XSZD93L  
    %   See also ZERNPOL, ZERNFUN2. [>N`)]fP  
    u#uT|a.  
    %   Paul Fricker 11/13/2006 &m J +#vT  
    b9gezXAcd  
    }"CX`  
    % Check and prepare the inputs: B qA  
    % ----------------------------- :`w'}h7m  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) slWO\AYiO  
        error('zernfun:NMvectors','N and M must be vectors.') 4W$ t28)  
    end ="*:H)  
    ;)nV  
    if length(n)~=length(m) /9..hEq^  
        error('zernfun:NMlength','N and M must be the same length.') mqFo`Ee  
    end G^Q8B^Lg  
    UZ` <D/  
    n = n(:); gZLzE*NZ  
    m = m(:); @CJ`T&  
    if any(mod(n-m,2)) ]&mN~$+C  
        error('zernfun:NMmultiplesof2', ... 1>"[b8a/  
              'All N and M must differ by multiples of 2 (including 0).') m5/d=k0l  
    end D#I^;Xg0h  
    =T0;F0@#4  
    if any(m>n) ySEhi_)9^  
        error('zernfun:MlessthanN', ... ~ & @UH  
              'Each M must be less than or equal to its corresponding N.') _'"whZ)2  
    end WFTXSHcG  
    -4 !9cE  
    if any( r>1 | r<0 ) 8UahoNrSt  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') =K ctAR;  
    end l9eCsVQ~V  
    "7&DuF$s)  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) !8 V  
        error('zernfun:RTHvector','R and THETA must be vectors.') h/a|-V}m&  
    end --}5%6  
    :4V8Iz 71  
    r = r(:); <HC5YA)4  
    theta = theta(:); S);SfNh%CL  
    length_r = length(r); yD-L:)@"  
    if length_r~=length(theta) F^/1 u  
        error('zernfun:RTHlength', ... %gb4(~E+N  
              'The number of R- and THETA-values must be equal.') sOY+ X  
    end v3ky;~ke  
    ..5rW0lr  
    % Check normalization: &Oih#I  
    % -------------------- =5v=<, ]  
    if nargin==5 && ischar(nflag) LW$(;-rY  
        isnorm = strcmpi(nflag,'norm'); 1YrIcovi-  
        if ~isnorm }CCTz0[D"  
            error('zernfun:normalization','Unrecognized normalization flag.') k+D"LA%J  
        end ip`oL_c  
    else 7l~d_<h  
        isnorm = false; b,tf]Z-  
    end P,}cH;w6Ck  
    (1pR=  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !)1gGXRY  
    % Compute the Zernike Polynomials '[z529HN  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ]"2;x  
    D\ ;(BB  
    % Determine the required powers of r: U_8 Z&  
    % ----------------------------------- 5!b+^UR;z  
    m_abs = abs(m); X^td`}F/=V  
    rpowers = []; C;UqLMrOI  
    for j = 1:length(n) 6VsgZ"Il  
        rpowers = [rpowers m_abs(j):2:n(j)]; KqD]GS#(  
    end j+9;Cp]NV  
    rpowers = unique(rpowers); S /kM#  
    ]+ KN9  
    % Pre-compute the values of r raised to the required powers, cOq'MDr  
    % and compile them in a matrix: L2,.af6+  
    % ----------------------------- )43\qIu\  
    if rpowers(1)==0 v/m} {&K  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); w1&\heSQ  
        rpowern = cat(2,rpowern{:}); +&*D7A>~p  
        rpowern = [ones(length_r,1) rpowern]; g5OKhL0u  
    else AVnH|31dC~  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 9Ev<t \B  
        rpowern = cat(2,rpowern{:}); v><c@a=[  
    end 2I|`j^  
    l+vD`aJ3  
    % Compute the values of the polynomials: t4P`#,:8  
    % -------------------------------------- 7'~O ai~r  
    y = zeros(length_r,length(n)); nr{#Krkb  
    for j = 1:length(n) i!a. 6Gq  
        s = 0:(n(j)-m_abs(j))/2; )-s9CWJv  
        pows = n(j):-2:m_abs(j);   L* 0$x  
        for k = length(s):-1:1 x@)G@'vV|  
            p = (1-2*mod(s(k),2))* ... u^4$<fd  
                       prod(2:(n(j)-s(k)))/              ... lM |}K-2  
                       prod(2:s(k))/                     ... \2c 3Nsra  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ]<xzCPB  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); CQANex4&\  
            idx = (pows(k)==rpowers); Hh1]\4D,4  
            y(:,j) = y(:,j) + p*rpowern(:,idx); x<'<E@jpU;  
        end m}$7d5  
         j%`% DQ  
        if isnorm kdP*{  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); cp)BPg  
        end z%E ok  
    end ~z kzuh  
    % END: Compute the Zernike Polynomials @"G+kLv0  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !\}X?G f  
    1VR|z  
    % Compute the Zernike functions: Pxvf"SXX  
    % ------------------------------ >lV'}0u)  
    idx_pos = m>0; rHa*WA;TE  
    idx_neg = m<0; DP8%/CV!*  
    _qO'(DKylC  
    z = y; t+ vz=`  
    if any(idx_pos) ! }>CEE  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); 0sA+5*mdM  
    end S0' ACt`  
    if any(idx_neg) rQD^O4j R  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); PWBcK_4i%  
    end S?[@/35)  
    <5 }  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) r])V6 ^U  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 0Lf4 ^9N  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated lc$wjK[w[  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 2e9.U/9  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, WDi2m"  
    %   and THETA is a vector of angles.  R and THETA must have the same PbnAY{J  
    %   length.  The output Z is a matrix with one column for every P-value, 7Fx0#cS"\  
    %   and one row for every (R,THETA) pair. i IM\_<?  
    % {e5DQ21.  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 4a=QTq0p  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) E)`:sSd9  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) yv|`A2@9  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 #U(kK(uO  
    %   for all p. . 1+I8qj  
    % Ew JNpecX  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 dmWCNeja.  
    %   Zernike functions (order N<=7).  In some disciplines it is );zLgNx,  
    %   traditional to label the first 36 functions using a single mode j5wfqi  
    %   number P instead of separate numbers for the order N and azimuthal LS$zA>:  
    %   frequency M. oOHY+'V  
    % M-Ek(K3SRf  
    %   Example: ?t5<S]'r$  
    % KM+[1Ze$  
    %       % Display the first 16 Zernike functions PthgxB^  
    %       x = -1:0.01:1; S Rk%BJ? ~  
    %       [X,Y] = meshgrid(x,x); pm=m~  
    %       [theta,r] = cart2pol(X,Y); Wu"1M^a  
    %       idx = r<=1; 15S&,$ 1&  
    %       p = 0:15; 2EO x],(|  
    %       z = nan(size(X)); {- &`@V  
    %       y = zernfun2(p,r(idx),theta(idx)); TlowEh8r  
    %       figure('Units','normalized') G c \^Kg^#  
    %       for k = 1:length(p) %!r.) Wx|2  
    %           z(idx) = y(:,k); F{4v[WP)  
    %           subplot(4,4,k) :dqZM#$d  
    %           pcolor(x,x,z), shading interp \wD L oR  
    %           set(gca,'XTick',[],'YTick',[]) -p?&vQDo`  
    %           axis square l/,la]!T  
    %           title(['Z_{' num2str(p(k)) '}']) K9-9 c"cz  
    %       end ;80^ GDk~S  
    % \1SC:gN*#  
    %   See also ZERNPOL, ZERNFUN. VEpcCK  
    }i{qRx"4  
    %   Paul Fricker 11/13/2006 zn>+ \  
    9a @rsyX  
    5rmU9L  
    % Check and prepare the inputs: :}yT?LIyP  
    % ----------------------------- z)(W x">  
    if min(size(p))~=1 J?dLI_{ <  
        error('zernfun2:Pvector','Input P must be vector.') 4BSqL!i(  
    end 2kt0Rxg  
    x5CMP%}d  
    if any(p)>35 u>]3?ty`  
        error('zernfun2:P36', ... "%)g^Atp>  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... 1yZA_x15:  
               '(P = 0 to 35).']) yIcTc  
    end xr{Ym99E$  
    $C sE[+k1  
    % Get the order and frequency corresonding to the function number: O5aXa_A_u  
    % ---------------------------------------------------------------- NYr)=&)Ke.  
    p = p(:); KzP{bK5/  
    n = ceil((-3+sqrt(9+8*p))/2); i!RfUod  
    m = 2*p - n.*(n+2); uorX;yekC  
    TZ+ p6M8G  
    % Pass the inputs to the function ZERNFUN: $~iZaX8&  
    % ---------------------------------------- bU}v@Uk  
    switch nargin J jm={+@+  
        case 3 6Iqy"MQuq  
            z = zernfun(n,m,r,theta); .1q}mw   
        case 4 lcm3wJ'w  
            z = zernfun(n,m,r,theta,nflag); FuBt`H  
        otherwise ?].MnwYo  
            error('zernfun2:nargin','Incorrect number of inputs.') #G.eiqh$a  
    end SDC'S]{ew  
    ol*,&C:{  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) DH yv^  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. uQKQC?w  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 0M"n  
    %   order N and frequency M, evaluated at R.  N is a vector of 9e=}P L  
    %   positive integers (including 0), and M is a vector with the V:Gy pY)  
    %   same number of elements as N.  Each element k of M must be a \1jThJn  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) zXx/\B$&d*  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is XZ~kXE;B(  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix C[<}eD4bV  
    %   with one column for every (N,M) pair, and one row for every h/t;ZLUAZP  
    %   element in R. \0x>#ygX  
    % T2MC`s|`  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- A{ ~D_q  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is dazNwn  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to $C;i}q#  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 )0-A;X2  
    %   for all [n,m]. [j-?)  
    % 'EiCT l  
    %   The radial Zernike polynomials are the radial portion of the D,}bTwRb-  
    %   Zernike functions, which are an orthogonal basis on the unit wn5OgXxG<  
    %   circle.  The series representation of the radial Zernike U-9Aq  
    %   polynomials is NgDhdOB  
    % ywAvqT,  
    %          (n-m)/2 \jwG*a  
    %            __ hK3-j;eg  
    %    m      \       s                                          n-2s ]]PNYa  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r A.vAk''(}+  
    %    n      s=0 Tse#{  
    % Gu*y7I8  
    %   The following table shows the first 12 polynomials. 'z;(Y*jb  
    % <"5l<E  
    %       n    m    Zernike polynomial    Normalization =U3S"W %  
    %       --------------------------------------------- ZLT?G  
    %       0    0    1                        sqrt(2) zsXgpnlHT  
    %       1    1    r                           2 reN\| ?0{  
    %       2    0    2*r^2 - 1                sqrt(6) \R<MQ# x  
    %       2    2    r^2                      sqrt(6) uaF-3  
    %       3    1    3*r^3 - 2*r              sqrt(8) +d6onO{8  
    %       3    3    r^3                      sqrt(8) iAk:CJ{  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) hn8xs5vN  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ;DuVb2~+  
    %       4    4    r^4                      sqrt(10) "Xv} l@  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) .jCGtR )%  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) @KTuG ?.  
    %       5    5    r^5                      sqrt(12) {s mk<NL  
    %       --------------------------------------------- ,%TBW,>  
    % +c))fPuV  
    %   Example: -wXeue},>  
    % +>#SNZ[  
    %       % Display three example Zernike radial polynomials YGo?%.X  
    %       r = 0:0.01:1; qS vV |G  
    %       n = [3 2 5]; |#2WN-  
    %       m = [1 2 1]; IE`3I#v  
    %       z = zernpol(n,m,r); =y][j+WH  
    %       figure (SyD)G\rj  
    %       plot(r,z) hik.qK  
    %       grid on ^/ "}_bR  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') =wh[D$n$~  
    % o pTXI*QA  
    %   See also ZERNFUN, ZERNFUN2. tP@NQCo  
    Kyh>O)"G^%  
    % A note on the algorithm. dipfsH]p  
    % ------------------------ OT 0c5x  
    % The radial Zernike polynomials are computed using the series >5 -1?vi  
    % representation shown in the Help section above. For many special )q=F_:$  
    % functions, direct evaluation using the series representation can lcdhOjz!N  
    % produce poor numerical results (floating point errors), because l r&7 qu  
    % the summation often involves computing small differences between )dkU4]  
    % large successive terms in the series. (In such cases, the functions msmW2Zc  
    % are often evaluated using alternative methods such as recurrence Kv| x -_7  
    % relations: see the Legendre functions, for example). For the Zernike uyWheR  
    % polynomials, however, this problem does not arise, because the CVfV    
    % polynomials are evaluated over the finite domain r = (0,1), and +Uq|Yh'Q  
    % because the coefficients for a given polynomial are generally all ai_ve[A  
    % of similar magnitude. zKd@Ab  
    % M`cxxDj&j  
    % ZERNPOL has been written using a vectorized implementation: multiple z%D7x5!,R  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] FgH7YkKrD  
    % values can be passed as inputs) for a vector of points R.  To achieve 9^}&PEl  
    % this vectorization most efficiently, the algorithm in ZERNPOL '0HOL)cIz  
    % involves pre-determining all the powers p of R that are required to N{v)pu.  
    % compute the outputs, and then compiling the {R^p} into a single !/}3/iU  
    % matrix.  This avoids any redundant computation of the R^p, and I\Op/`_=E  
    % minimizes the sizes of certain intermediate variables. j9+4},>>CU  
    % v)+g<!  
    %   Paul Fricker 11/13/2006 8gS7$ EH'  
    Tvx1+0Z%z  
    ?@'&<o0p#  
    % Check and prepare the inputs: tJ^p}yxO  
    % ----------------------------- QF>T)1&J[7  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) nJ;^Sz17Q  
        error('zernpol:NMvectors','N and M must be vectors.') |n 26[=\B  
    end ]*=4>(F[  
    296}LW  
    if length(n)~=length(m) o !tC{"g  
        error('zernpol:NMlength','N and M must be the same length.') j .q}OK  
    end UY(T>4H+h  
    ]}v]j`9m%  
    n = n(:); ?\o~P  
    m = m(:); KqFI2@v   
    length_n = length(n); U ]<l-~|  
    qfDG.Zee#  
    if any(mod(n-m,2)) oXm !  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') QL7b<xDQC*  
    end &r1(1<  
    ,31 ? Aa  
    if any(m<0) 83vMj$P  
        error('zernpol:Mpositive','All M must be positive.')  cyl%p$  
    end \BnU ?z  
    : B^"V\WE  
    if any(m>n) kq}byv}3I  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ]E/0iM5  
    end kOydh(yE  
    UA$IVK&{  
    if any( r>1 | r<0 ) vJ&_-CX   
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') 7a"06Et^  
    end RcYUO*  
    ]rv\sD`[  
    if ~any(size(r)==1) e0`z~z]6&  
        error('zernpol:Rvector','R must be a vector.') cB uuq  
    end ^-"Iw y  
    b? ); D  
    r = r(:); \bARp z?a  
    length_r = length(r); A6]:BuP;c  
    &ksuk9M  
    if nargin==4 >PA*L(Dh%  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 7"(Zpu  
        if ~isnorm +9Tc.3vQ  
            error('zernpol:normalization','Unrecognized normalization flag.') IhNX~Jg'^  
        end <\#'o}  
    else O)q4^AE$  
        isnorm = false; (=!At)O  
    end V ?Jy  
    WGv47i  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +pR,BjY  
    % Compute the Zernike Polynomials lx|Aw@C3~  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% On*I.~  
    @;4;72@O  
    % Determine the required powers of r: I-R7+o  
    % ----------------------------------- !8G)` '  
    rpowers = []; uyYV_Q0~;  
    for j = 1:length(n) H7+"BWc  
        rpowers = [rpowers m(j):2:n(j)]; Q5ASN"_  
    end L3%frIUd  
    rpowers = unique(rpowers); ogFo/TKM  
    vqeH<$WHvy  
    % Pre-compute the values of r raised to the required powers, )gdeFA V  
    % and compile them in a matrix: uY5|Nmiu  
    % ----------------------------- bN_e~z  
    if rpowers(1)==0 #Pg#\v|7#>  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 9)VAEyv  
        rpowern = cat(2,rpowern{:}); )-4c@  
        rpowern = [ones(length_r,1) rpowern]; #|sE]\bsH  
    else !{-W%=Kf  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ZO%^r%~s  
        rpowern = cat(2,rpowern{:}); A]bQUWt2  
    end Cu+p!hV  
    3= =["hO  
    % Compute the values of the polynomials: Tksv7*5$  
    % -------------------------------------- +Csb8  
    z = zeros(length_r,length_n); F7<mm7BGZ  
    for j = 1:length_n GKoYT{6  
        s = 0:(n(j)-m(j))/2; 1J!v;Y\\  
        pows = n(j):-2:m(j); g4^-B  
        for k = length(s):-1:1 ?^~ZsOd8B  
            p = (1-2*mod(s(k),2))* ... }uIQ@f`  
                       prod(2:(n(j)-s(k)))/          ... |m-N5$\IC  
                       prod(2:s(k))/                 ... WR #XPbk  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... .eN"s'  
                       prod(2:((n(j)+m(j))/2-s(k))); h ;uzbu  
            idx = (pows(k)==rpowers); 3 P0z$jh"H  
            z(:,j) = z(:,j) + p*rpowern(:,idx); _#K|g#p5  
        end |mH* I  
         "e-Y?_S7R8  
        if isnorm 4 ?BQ&d  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); g"/n95k<  
        end 4pL'c@'  
    end z- q.8~Z  
    bhUE!h<  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    846
    光币
    834
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4347
    光币
    8695
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  >]Mhkf/=)  
    t`6~ ud>  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 @B)5Ho  
    =J-&usX  
    07年就写过这方面的计算程序了。
    提供免费光学设计培训,请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)