非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 ^|/](
function z = zernfun(n,m,r,theta,nflag) } ~"hC3w
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. ?p(/_@
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N lW(px^&IN
% and angular frequency M, evaluated at positions (R,THETA) on the QHWBAGA
% unit circle. N is a vector of positive integers (including 0), and [8Qro8
% M is a vector with the same number of elements as N. Each element #]#sGmW/L
% k of M must be a positive integer, with possible values M(k) = -N(k) wMdal:n^
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, Wm);C~Le
% and THETA is a vector of angles. R and THETA must have the same -S$1Yn
% length. The output Z is a matrix with one column for every (N,M) c%[#~;E
% pair, and one row for every (R,THETA) pair. K]j0_~3s
% +V{7")px6
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike /F4pb]U!*
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), _UT$,0u_i
% with delta(m,0) the Kronecker delta, is chosen so that the integral n+BJxu?
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, w.lAQ5)I%\
% and theta=0 to theta=2*pi) is unity. For the non-normalized UN%Vg:=
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. !2z?YZhu
% >~`r:0',
% The Zernike functions are an orthogonal basis on the unit circle. "Ae@lINn[y
% They are used in disciplines such as astronomy, optics, and $uap8nN
% optometry to describe functions on a circular domain. ^':!1
% N.4q.
% The following table lists the first 15 Zernike functions. .[Ap=UYI>
% V^hE}`>z&
% n m Zernike function Normalization +<}0|Xl&
% -------------------------------------------------- 9elga"4:'
% 0 0 1 1 p|Q*5TO
% 1 1 r * cos(theta) 2 f m(e3]
% 1 -1 r * sin(theta) 2 vk>b#%1{
% 2 -2 r^2 * cos(2*theta) sqrt(6) fx@j?*Qb
% 2 0 (2*r^2 - 1) sqrt(3) zOV=9"~{
% 2 2 r^2 * sin(2*theta) sqrt(6) 2MATpV#BT
% 3 -3 r^3 * cos(3*theta) sqrt(8) ?x+Z)`w_
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 6<N5_1
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) LY[~Os W
% 3 3 r^3 * sin(3*theta) sqrt(8) xB@|LtdO9;
% 4 -4 r^4 * cos(4*theta) sqrt(10) 4n
%?YQ[t
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 3d-%>?-ee
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) H*bs31i{
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ?%VI{[y#>
% 4 4 r^4 * sin(4*theta) sqrt(10) M;0]u.D*=
% -------------------------------------------------- @xeAc0.^
% Y!WG)u5
% Example 1: #U*_1P0h
% Wm H~m k"
% % Display the Zernike function Z(n=5,m=1) _{Sm k[
% x = -1:0.01:1; /
}R z=&
% [X,Y] = meshgrid(x,x); Cn>ADWpT&
% [theta,r] = cart2pol(X,Y); $5v0m#[^
% idx = r<=1; ]c&<zeX,
% z = nan(size(X)); N`E-+9L)
% z(idx) = zernfun(5,1,r(idx),theta(idx)); $''9K
% figure !r`, =jK"
% pcolor(x,x,z), shading interp ifo7%XPcg
% axis square, colorbar 9}c8Xt^&