非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 j}eb
_K+I
function z = zernfun(n,m,r,theta,nflag) @)uV Fw"\
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. 26rg-?;V^
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N xlS*9>Ij
% and angular frequency M, evaluated at positions (R,THETA) on the w CB*v<*
% unit circle. N is a vector of positive integers (including 0), and z'_Fg0kR{
% M is a vector with the same number of elements as N. Each element ur\6~'l4
% k of M must be a positive integer, with possible values M(k) = -N(k) nYjrEy)Q
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, HDhISPg
% and THETA is a vector of angles. R and THETA must have the same YE{ [f@i0
% length. The output Z is a matrix with one column for every (N,M) fk5'v
% pair, and one row for every (R,THETA) pair. Td|u@l4B
% P,{Q k~iu
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike )6C+0b*
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), $M 8&&M
% with delta(m,0) the Kronecker delta, is chosen so that the integral 'R79,)|;[
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, eKvr1m- -
% and theta=0 to theta=2*pi) is unity. For the non-normalized GDL/5m#
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 2URGd#{VQ
% %S^hqC
% The Zernike functions are an orthogonal basis on the unit circle. &sWr)>vs
% They are used in disciplines such as astronomy, optics, and 8m?(* [[
% optometry to describe functions on a circular domain. A~bSB
n: '
% LJGpa )(
% The following table lists the first 15 Zernike functions. k.ou$mIY
% lx%c&~.DiB
% n m Zernike function Normalization U`ttT5;
% -------------------------------------------------- I?3b}#&V9
% 0 0 1 1 T,pr&1]Lw
% 1 1 r * cos(theta) 2 FfJp::|ddr
% 1 -1 r * sin(theta) 2 B>^6tdz
% 2 -2 r^2 * cos(2*theta) sqrt(6) 'K ?h6?#
% 2 0 (2*r^2 - 1) sqrt(3) 0\tac/
% 2 2 r^2 * sin(2*theta) sqrt(6) \5r^D|Rp}
% 3 -3 r^3 * cos(3*theta) sqrt(8) 5-|!mSd
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ?ZlXh51
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) Fvl\.
% 3 3 r^3 * sin(3*theta) sqrt(8) z4:!*:.Asu
% 4 -4 r^4 * cos(4*theta) sqrt(10) j%Au0k
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) X3:z=X&Zd
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) 1_]X
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 9&eY<'MgP
% 4 4 r^4 * sin(4*theta) sqrt(10) [<RhaZz
% -------------------------------------------------- L1SKOM$
% N>H@vt~
% Example 1: sN[}B{+
% j~-N2b6z
% % Display the Zernike function Z(n=5,m=1) O2{["c
e
% x = -1:0.01:1; |IcW7(
% [X,Y] = meshgrid(x,x); [gmov)\c
% [theta,r] = cart2pol(X,Y); XHk"nbj
% idx = r<=1; */;7Uv7
% z = nan(size(X)); ttsR`R1.k
% z(idx) = zernfun(5,1,r(idx),theta(idx)); \G gh 95y
% figure jq,M1
% pcolor(x,x,z), shading interp %} `` :
% axis square, colorbar 9Y:I)^ek
% title('Zernike function Z_5^1(r,\theta)') !/XNp QP
% @Lnv
% Example 2: bw P=f.
% PlkZ)S7C
% % Display the first 10 Zernike functions p3=Py7iz
% x = -1:0.01:1; 1Toiqb/
% [X,Y] = meshgrid(x,x); ~S8:xG+s
% [theta,r] = cart2pol(X,Y); J?8Mo=UZz
% idx = r<=1; O
k`}\NZL
% z = nan(size(X)); eP-|3$
% n = [0 1 1 2 2 2 3 3 3 3]; o9eOp3w30
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; VHD+NY/
% Nplot = [4 10 12 16 18 20 22 24 26 28]; GTP'js
% y = zernfun(n,m,r(idx),theta(idx)); GmH DG-
% figure('Units','normalized') Z3S+")^
% for k = 1:10 Z}+}X|
% z(idx) = y(:,k); dR S:S_
% subplot(4,7,Nplot(k)) _i05'_
% pcolor(x,x,z), shading interp ^9Pr`\
% set(gca,'XTick',[],'YTick',[]) w|9 >4
% axis square 1+FVM\<&
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 6gV*G
% end Dkz/hg:q
% PK[mf\G\
% See also ZERNPOL, ZERNFUN2. su%(!XJQpg
B0@
Tz39=
% Paul Fricker 11/13/2006 >w
S'z]T9
W8d-4')|
eY<<Hld
% Check and prepare the inputs: S^rf^%
% ----------------------------- k1wIb']m]z
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ukiWNF/
error('zernfun:NMvectors','N and M must be vectors.') xb;{<~`71
end I1<WHq
dQ`Tt- n
if length(n)~=length(m) ;st0Ekni)
error('zernfun:NMlength','N and M must be the same length.') 7:jLZ!mgi
end #t
;`
d0(zB5'}
n = n(:); E5ce=$o
m = m(:); uM2@&)u
if any(mod(n-m,2)) k =! Q
error('zernfun:NMmultiplesof2', ... :?Ns>#6t
'All N and M must differ by multiples of 2 (including 0).') _?~%+Oz/
end n28JWkK8
Q~N,QMr)k&
if any(m>n) jWrU'X
error('zernfun:MlessthanN', ... w(oK
'Each M must be less than or equal to its corresponding N.') 5XKTb
end eAy,T<#
&QHJ%c
if any( r>1 | r<0 ) ~5KcbGD~
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 'UlVc2%{
end Uy?jVPL
meX2Y;
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) QG5WsuT
error('zernfun:RTHvector','R and THETA must be vectors.') U{2xgNJ
end e*:K79y
LF7-??'
r = r(:); (]]hSkE
theta = theta(:); c*IrZm
length_r = length(r); @:>"VP<(
if length_r~=length(theta) mnpk9x}m
error('zernfun:RTHlength', ... 8 .%0JJ .3
'The number of R- and THETA-values must be equal.') TLwxP"
end &;@L]
o
+z;*r8d<X
% Check normalization: H>TO8;5(
% -------------------- !Z$d<~Mq q
if nargin==5 && ischar(nflag) UoT`/.
isnorm = strcmpi(nflag,'norm'); :HY$x
if ~isnorm :&BPKqKp
error('zernfun:normalization','Unrecognized normalization flag.') v=llg ^
end t1 3V>9to
else \g}]u(zg%
isnorm = false; y7HFmGM
end f?5>V
(?4%Xtul1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6GxLaI
% Compute the Zernike Polynomials (`.# n3{
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% noWF0+%
_b&|0j:Ud
% Determine the required powers of r: $)M3fZ$#
% ----------------------------------- D+7xMT8pqH
m_abs = abs(m); 0*{(R#
rpowers = []; 9X*Nk~}Y
for j = 1:length(n) F[ E'R.:
rpowers = [rpowers m_abs(j):2:n(j)]; tMl y*E
end Vl_6nY;
rpowers = unique(rpowers); :>&q?xvA
tq
L(H25z
% Pre-compute the values of r raised to the required powers, GHv6UIe&
% and compile them in a matrix: * 6}M.`.-
% ----------------------------- t'44X
if rpowers(1)==0 5Kzt8Tv[
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 5H3o?x
rpowern = cat(2,rpowern{:}); @|Pm%K`1
rpowern = [ones(length_r,1) rpowern]; 3%POTAw%
else !5*VBE\
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); dseI~}
rpowern = cat(2,rpowern{:}); j yHa}OT
end :;%Jm
Wb}-H-O
% Compute the values of the polynomials: aT0~C.vT
% -------------------------------------- _pdKcE\X
y = zeros(length_r,length(n)); @ m`C%7<
for j = 1:length(n) L.;b(bFe
s = 0:(n(j)-m_abs(j))/2; Myc-lCE
pows = n(j):-2:m_abs(j); h#0n2o #
for k = length(s):-1:1 SAm%$vz%M
p = (1-2*mod(s(k),2))* ... opa/+V3E4
prod(2:(n(j)-s(k)))/ ... %1#\LRA(
prod(2:s(k))/ ... UQ0!tFx
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... mb*Yw6q
prod(2:((n(j)+m_abs(j))/2-s(k))); s<