切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11415阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 |Xl,~-.  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! > 9wEx[  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 \{G1d"n  
    function z = zernfun(n,m,r,theta,nflag) czf|c  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. u@$C i/J*  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 8L<GAe  
    %   and angular frequency M, evaluated at positions (R,THETA) on the JYB<};,  
    %   unit circle.  N is a vector of positive integers (including 0), and \P_1@sH=  
    %   M is a vector with the same number of elements as N.  Each element ;$\d^i{N  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) )MZQ\8,)]  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, FU|c[u|z  
    %   and THETA is a vector of angles.  R and THETA must have the same KN;b+`x;M  
    %   length.  The output Z is a matrix with one column for every (N,M) PXk+Vi,%k  
    %   pair, and one row for every (R,THETA) pair. {%5tqF  
    % (!U5B Hnd  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 37@_"  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), X#mppMU  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral zF2GW  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ttPa[h{!  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized NGlX%j4j  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. >g@;`l.Z#  
    % E{*~>#+  
    %   The Zernike functions are an orthogonal basis on the unit circle. V11Zl{uOl  
    %   They are used in disciplines such as astronomy, optics, and Kd _tjWS  
    %   optometry to describe functions on a circular domain. Brh<6Btl  
    % !tT$}?Ano  
    %   The following table lists the first 15 Zernike functions. (ROurq"  
    % >uuP@j  
    %       n    m    Zernike function           Normalization "|S \J5-%  
    %       -------------------------------------------------- 0.-2FHc9L  
    %       0    0    1                                 1 2 fX-J  
    %       1    1    r * cos(theta)                    2 H/p<lp  
    %       1   -1    r * sin(theta)                    2 "]ow1{  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) }MDuQP]  
    %       2    0    (2*r^2 - 1)                    sqrt(3) /YWoDHL  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) z F'{{7o  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) dwKre#4F  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) *K6 V$_{S  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) vIrLG1EK  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) 7CzZHkTg  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10)  ] }XK  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ;SF0}51  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Cyxt EzPp  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) O&=?,zLO[  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 'g8~539{&  
    %       -------------------------------------------------- W;coi4   
    % UB]} j^  
    %   Example 1: ^.F@yo2}  
    % 2jf-vWV_  
    %       % Display the Zernike function Z(n=5,m=1) t i)foam  
    %       x = -1:0.01:1; AG2iLictv  
    %       [X,Y] = meshgrid(x,x); ,qak_bP  
    %       [theta,r] = cart2pol(X,Y); gOZ$rv^g  
    %       idx = r<=1; IBY3QG  
    %       z = nan(size(X)); b+\jFGC%6=  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); z]> 0A  
    %       figure XB-pOtVm  
    %       pcolor(x,x,z), shading interp kIV/o  
    %       axis square, colorbar 12aAO|]/~  
    %       title('Zernike function Z_5^1(r,\theta)') :cop0;X:Wm  
    % MN|y5w}$u  
    %   Example 2: g6$X {  
    % qtTys gv  
    %       % Display the first 10 Zernike functions | QJ!5nb  
    %       x = -1:0.01:1; 8w~I(2S:#  
    %       [X,Y] = meshgrid(x,x); !}^c.<38Q  
    %       [theta,r] = cart2pol(X,Y); }`4o+  
    %       idx = r<=1; %-|Po:6  
    %       z = nan(size(X)); 0 ]U ;5  
    %       n = [0  1  1  2  2  2  3  3  3  3]; Xvm.Un< N  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Gd`qZqx#  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; A5tY4?|  
    %       y = zernfun(n,m,r(idx),theta(idx)); Deq~"  
    %       figure('Units','normalized') {j[[E/8N!y  
    %       for k = 1:10 5.#r\' Z#  
    %           z(idx) = y(:,k); to^ &:  
    %           subplot(4,7,Nplot(k)) B=#rp*vwL  
    %           pcolor(x,x,z), shading interp UXoaUW L  
    %           set(gca,'XTick',[],'YTick',[]) dfGdY"&  
    %           axis square 9ulJZ\cQ  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) =L9sb!  
    %       end ;Aiuy{<  
    % &h-d\gMJ  
    %   See also ZERNPOL, ZERNFUN2. r80w{[S$  
    (F]f{8  
    %   Paul Fricker 11/13/2006 Ooz+V;#Q  
    uh%%MhTjv  
    _L(6F T J  
    % Check and prepare the inputs: 4hg]/X"H#  
    % ----------------------------- gQgG_&xkC  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) d l@  
        error('zernfun:NMvectors','N and M must be vectors.') m;lwMrY\7>  
    end I)V2cOrXM  
    +q"d=   
    if length(n)~=length(m) CTbdY,=B  
        error('zernfun:NMlength','N and M must be the same length.') j/{F#auI  
    end Miqu  
    gAC}  
    n = n(:); >IC.Zt@  
    m = m(:); MftW^7W-  
    if any(mod(n-m,2)) ~!&WK,k6  
        error('zernfun:NMmultiplesof2', ... Z,qo jtw  
              'All N and M must differ by multiples of 2 (including 0).') /OK.n3Tt  
    end K0yTHX?(.  
    ]nhLv!Co  
    if any(m>n) 7w_`<b6  
        error('zernfun:MlessthanN', ... }XWic88!~  
              'Each M must be less than or equal to its corresponding N.') GptJQ=pV  
    end 3_B .W  
    Lg[*P8wE  
    if any( r>1 | r<0 ) ]y@9 z b  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') p@/!+$^{  
    end a Umcs!@  
    NQ !t`  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) FAJ\9  
        error('zernfun:RTHvector','R and THETA must be vectors.') C;}~C:aJ  
    end THWT\3~,  
    v2G_p |+O  
    r = r(:); !m^;Apuy  
    theta = theta(:); C,hs!v6  
    length_r = length(r); QK<sibDI  
    if length_r~=length(theta) :h=];^/E  
        error('zernfun:RTHlength', ... &OK(6o2m;  
              'The number of R- and THETA-values must be equal.') sb Z)z#Tr  
    end F(^vD_G  
    \$T  
    % Check normalization: mMjY I1F  
    % -------------------- XU5/7 .  
    if nargin==5 && ischar(nflag) HvN!_}[  
        isnorm = strcmpi(nflag,'norm'); Bjq1za  
        if ~isnorm 63QMv[`,  
            error('zernfun:normalization','Unrecognized normalization flag.') YH&`+ +  
        end )7Gm<r  
    else D3$PvX[f  
        isnorm = false; )9 5&-Hs  
    end kjfZ*V=-  
    &Vg+n 0  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4 FW~Y  
    % Compute the Zernike Polynomials hU3c;6]3  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >K1)XP  
    W~aVwO'(  
    % Determine the required powers of r: AIR,XlD  
    % ----------------------------------- O;9u1,%w  
    m_abs = abs(m); I!dA{INN  
    rpowers = []; G)]'>m<y  
    for j = 1:length(n) b4ZZyw  
        rpowers = [rpowers m_abs(j):2:n(j)]; A&jkc'  
    end cKdn3 2Y4  
    rpowers = unique(rpowers); 0z #'=XWk  
    >A|(mc  
    % Pre-compute the values of r raised to the required powers, IP7j)SM!  
    % and compile them in a matrix: 2Hw&}8  
    % ----------------------------- !qS~YA  
    if rpowers(1)==0 K PSFy<  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); U BzX%:A  
        rpowern = cat(2,rpowern{:}); J:Ea|tXK^  
        rpowern = [ones(length_r,1) rpowern]; 0f&B;?)!  
    else D+P(  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Ci4`,  
        rpowern = cat(2,rpowern{:}); #3>o^cN~8k  
    end H<#M)8  
    JGOry \  
    % Compute the values of the polynomials: <{ GpAf8-  
    % -------------------------------------- dIg/g~ t"  
    y = zeros(length_r,length(n)); nICc}U?k  
    for j = 1:length(n) Oq@+/UWX  
        s = 0:(n(j)-m_abs(j))/2; 7DDd 1"jE  
        pows = n(j):-2:m_abs(j); }(A`aB_  
        for k = length(s):-1:1 ukpbx;O:hc  
            p = (1-2*mod(s(k),2))* ... "3.v(GVr  
                       prod(2:(n(j)-s(k)))/              ... 3}(6z"r  
                       prod(2:s(k))/                     ... 3)88B"E  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... 5. 5<.")  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); FM;NA{  
            idx = (pows(k)==rpowers); WHeyE3}p  
            y(:,j) = y(:,j) + p*rpowern(:,idx); z/!LC;(  
        end nNz1gV:0X  
         ^MIF+/bQ  
        if isnorm cWjb149@)  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 7rQwn2XD{  
        end =!)Ye:\Q  
    end k>E^FB=  
    % END: Compute the Zernike Polynomials a?jUm.  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% YbtsJ <w  
    :dq.@:+<R  
    % Compute the Zernike functions: L#O1 >  
    % ------------------------------ waI?X2  
    idx_pos = m>0; dp#JvZb  
    idx_neg = m<0; ?C)a0>L  
    SW5V:|/  
    z = y; 3}aKok"k  
    if any(idx_pos) VzfaUAIZl  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); [ )3rc}:1  
    end b .I_  
    if any(idx_neg) N8x[8Rp  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); -]el_:H  
    end 2[~|#0x  
    ~MWI-oK  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) GDF/0-/Z  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. |w5m2Z  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated `%QXaKO-  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive Q^\m@7O :  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, #($~e|  
    %   and THETA is a vector of angles.  R and THETA must have the same '8J!(+  
    %   length.  The output Z is a matrix with one column for every P-value, $UNC0 (4  
    %   and one row for every (R,THETA) pair. .~$!BWP  
    % $%BI8_  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike nQGl]2  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) Cj%n?-  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) Pi+pQFz5  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 R2Es~T  
    %   for all p. T@wgWE<0y_  
    % >|X )  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 vB74r]'F  
    %   Zernike functions (order N<=7).  In some disciplines it is |I[/Fl:  
    %   traditional to label the first 36 functions using a single mode yPrF2@#XZ/  
    %   number P instead of separate numbers for the order N and azimuthal 6VUs:iO1j5  
    %   frequency M. "QD>m7  
    % r[?GO"ej5  
    %   Example: k5M5bH',  
    % H;nEU@>"Z  
    %       % Display the first 16 Zernike functions *+OS;R1<  
    %       x = -1:0.01:1; M*!WXQlud  
    %       [X,Y] = meshgrid(x,x);  `j1oxJm  
    %       [theta,r] = cart2pol(X,Y); }y%c.  
    %       idx = r<=1; BLN|QaZ  
    %       p = 0:15; Y~ xo=v(  
    %       z = nan(size(X)); &(7=NAQsE  
    %       y = zernfun2(p,r(idx),theta(idx)); Gv[s86AP,  
    %       figure('Units','normalized') pMHF u/|Pr  
    %       for k = 1:length(p) 3 ,zW6 -}  
    %           z(idx) = y(:,k); li hIPMU  
    %           subplot(4,4,k) +GJPj(S  
    %           pcolor(x,x,z), shading interp w73?E#8  
    %           set(gca,'XTick',[],'YTick',[]) _tUh*"e&  
    %           axis square [#=IKsO'R6  
    %           title(['Z_{' num2str(p(k)) '}']) ]A ;.}1'  
    %       end O8 OAXRt/Y  
    % 9tX+n{i  
    %   See also ZERNPOL, ZERNFUN. 5JHWt<n{P  
    KomMzG:  
    %   Paul Fricker 11/13/2006 mC0_rN^Aj  
    2E8G 5?qe)  
    @R-11wP)M  
    % Check and prepare the inputs: AsD$M*It  
    % ----------------------------- 5(gWK{R)*  
    if min(size(p))~=1 M8V c5  
        error('zernfun2:Pvector','Input P must be vector.') 6Df*wi!jI  
    end k".kbwcaF  
    <UF0Xc&X'  
    if any(p)>35 Xp] jF^5  
        error('zernfun2:P36', ... nY7gST  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ?&'Kw>s@  
               '(P = 0 to 35).']) []v$QR&u#v  
    end hq&|   
    ue^HhZ9  
    % Get the order and frequency corresonding to the function number: RL:B.Lv/W  
    % ---------------------------------------------------------------- eF]8Ar1  
    p = p(:); wVqp')e  
    n = ceil((-3+sqrt(9+8*p))/2); &?1O D5  
    m = 2*p - n.*(n+2); 4Q/{lqG  
    l$1NI#&  
    % Pass the inputs to the function ZERNFUN: Nc &J%a  
    % ---------------------------------------- ,]:Gn5~  
    switch nargin P1AC2<H  
        case 3 X;H\u6-|>6  
            z = zernfun(n,m,r,theta); DF_wMv:>^  
        case 4 N8pV[\f  
            z = zernfun(n,m,r,theta,nflag); ?2l `%l5(  
        otherwise Th$Z9+()  
            error('zernfun2:nargin','Incorrect number of inputs.') _Dd>e=v  
    end Um}AV  
    $|xSM2  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) E_En"r)y  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. "!D y[J  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of 6F!B*lr  
    %   order N and frequency M, evaluated at R.  N is a vector of 9Q^cE\j  
    %   positive integers (including 0), and M is a vector with the l_/(J)|a  
    %   same number of elements as N.  Each element k of M must be a ^P^%Q)QXl  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) @J&korU  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is C+uW]]~I)  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix  *<W8j[?  
    %   with one column for every (N,M) pair, and one row for every ]VxC]a2  
    %   element in R. _crhBp5@T3  
    % CxeW5qc  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- );':aX j  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is 71\53Qr#U  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to ? "r=08  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 cLl~4jL  
    %   for all [n,m]. &n )MGg1%  
    % Go)g}#.&  
    %   The radial Zernike polynomials are the radial portion of the *s*Y uY%y  
    %   Zernike functions, which are an orthogonal basis on the unit ,bXZ<RY$  
    %   circle.  The series representation of the radial Zernike F^'$%XKV  
    %   polynomials is chKK9SC+|  
    % y7M{L8{0  
    %          (n-m)/2 + x=)Kp>  
    %            __ cd1G.10  
    %    m      \       s                                          n-2s R__:~ uv,  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r fE+zA)KX  
    %    n      s=0 Inv`C,$7Q#  
    % ]vlBYAW'  
    %   The following table shows the first 12 polynomials. Cl`i|cF\  
    % !CWe1Dm  
    %       n    m    Zernike polynomial    Normalization q9_ $&9  
    %       --------------------------------------------- RC/ 3\ '  
    %       0    0    1                        sqrt(2) s@ r{TXEn  
    %       1    1    r                           2 4lB??`UN  
    %       2    0    2*r^2 - 1                sqrt(6) (_zlCHB  
    %       2    2    r^2                      sqrt(6) WN+i3hC  
    %       3    1    3*r^3 - 2*r              sqrt(8) D<;~eZ'  
    %       3    3    r^3                      sqrt(8) nFNRiDx  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) PQkw)D<n]_  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) bsF_.S*k@  
    %       4    4    r^4                      sqrt(10) (tX3?[ii  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) Fs(PVN  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) <'~m1l#2  
    %       5    5    r^5                      sqrt(12) WJOoDS!i  
    %       --------------------------------------------- N! 7}B  
    % WHY/x /$  
    %   Example: R~4X?@ZB  
    % 80*hi)ux[  
    %       % Display three example Zernike radial polynomials n?.;*:  
    %       r = 0:0.01:1; );h(D!D,  
    %       n = [3 2 5]; @|SeabN^-  
    %       m = [1 2 1]; l,7& z  
    %       z = zernpol(n,m,r); b<00 %Z  
    %       figure 5, 1<A@H  
    %       plot(r,z) FAEF  
    %       grid on  f\<r1  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') (QiA5!wg  
    % e~SK*vR%]  
    %   See also ZERNFUN, ZERNFUN2. 0I)$!1~O)  
    +:.Jl:fx4  
    % A note on the algorithm. aDK b78 1d  
    % ------------------------ 8|i'~BFHs  
    % The radial Zernike polynomials are computed using the series +-^>B%/&Z  
    % representation shown in the Help section above. For many special 1IA1;  
    % functions, direct evaluation using the series representation can WFOJg&  
    % produce poor numerical results (floating point errors), because Hw]E#S  
    % the summation often involves computing small differences between /h0bBP  
    % large successive terms in the series. (In such cases, the functions ZwS:Te9-  
    % are often evaluated using alternative methods such as recurrence Tu#;Y."T  
    % relations: see the Legendre functions, for example). For the Zernike iYStl  
    % polynomials, however, this problem does not arise, because the -`~qmRpqY  
    % polynomials are evaluated over the finite domain r = (0,1), and B`B =bn+4  
    % because the coefficients for a given polynomial are generally all z%YNZ ^d  
    % of similar magnitude. [Cl0Kw.LD  
    % etr-\Cp  
    % ZERNPOL has been written using a vectorized implementation: multiple ,Z@#( =f  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] _J l(:r\%  
    % values can be passed as inputs) for a vector of points R.  To achieve 0SIC=p=J  
    % this vectorization most efficiently, the algorithm in ZERNPOL a{]=BY oL  
    % involves pre-determining all the powers p of R that are required to EL?(D  
    % compute the outputs, and then compiling the {R^p} into a single `I5^zi8  
    % matrix.  This avoids any redundant computation of the R^p, and fHup&|.  
    % minimizes the sizes of certain intermediate variables. }=^ ,c  
    % lGd'_~'=  
    %   Paul Fricker 11/13/2006 7AV{ h[J  
    KNx/1 lf  
    zuvPV{ X  
    % Check and prepare the inputs: z qeQ  
    % ----------------------------- $Z@*!B^  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) hC<ROD  
        error('zernpol:NMvectors','N and M must be vectors.') VL9wRu;  
    end ^c\O , *:  
    E=s,-  
    if length(n)~=length(m) RV~fml9c  
        error('zernpol:NMlength','N and M must be the same length.') )7>GXZG>=  
    end  ,&hv x  
    Hf`i~6  
    n = n(:); S<i$0p8J;  
    m = m(:); >v:ex(y0  
    length_n = length(n); &h334N|4{  
    +Q5 O$8i  
    if any(mod(n-m,2)) c{MoeIG)v@  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') C?z S}ob  
    end E3uu vQ#|  
    l00i2w  
    if any(m<0) \=ML*Gi*  
        error('zernpol:Mpositive','All M must be positive.') ~:a1ELqVw  
    end ,{_i{WV  
    C*Vm}|)  
    if any(m>n) 3V k8'  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') VE )D4RL  
    end 3(BL  
    'c35%? ]  
    if any( r>1 | r<0 ) Xh@K89`uX  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') yfG;OnkZ  
    end KL&/Yt   
    /Y0~BQC7!  
    if ~any(size(r)==1) 0?7yM:!l  
        error('zernpol:Rvector','R must be a vector.') -n _Y.~  
    end H/D=$)3op  
    P<]U  
    r = r(:); J>Ar(p  
    length_r = length(r); N<)CG,/w[M  
    M)bQvjj  
    if nargin==4 FuHBzBoM=  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); ';I}6N  
        if ~isnorm X7*F~LFr j  
            error('zernpol:normalization','Unrecognized normalization flag.') ;+hh|NiQ  
        end P6gkbtg  
    else WcN4ff-  
        isnorm = false; ,->ihxf  
    end c^r8<KlI9  
    )d3 09O  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :5k* kx#y  
    % Compute the Zernike Polynomials ;(NTzBq!1  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fCY|iO0.t  
    |;gx;qp4cN  
    % Determine the required powers of r: z9o]);dZ  
    % ----------------------------------- uN%Cc12  
    rpowers = []; x"2p5T7*>  
    for j = 1:length(n) K"!rj.Da  
        rpowers = [rpowers m(j):2:n(j)]; aq?bI:>8  
    end tiK M+ ;C  
    rpowers = unique(rpowers); 7P{= Pv+  
    Id=20og  
    % Pre-compute the values of r raised to the required powers, B7\4^6Tx  
    % and compile them in a matrix: %S312=w  
    % ----------------------------- Vl5r~+$|  
    if rpowers(1)==0 j7P49{  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); $JFjR@j  
        rpowern = cat(2,rpowern{:}); Oc)n,D)0  
        rpowern = [ones(length_r,1) rpowern]; #}~tTL  
    else (PpY*jKR  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false);  Q6 *n'6  
        rpowern = cat(2,rpowern{:}); nDrRK  
    end -h8mJ D%Oi  
    maa pX/J  
    % Compute the values of the polynomials: >{^_]phlb  
    % -------------------------------------- cj>@Jx}]M  
    z = zeros(length_r,length_n); Sm/8VSY  
    for j = 1:length_n `gl?y;xC  
        s = 0:(n(j)-m(j))/2; HYl+xH'.j  
        pows = n(j):-2:m(j); ?qQ{]_q1&.  
        for k = length(s):-1:1 fN9{@)2Mz  
            p = (1-2*mod(s(k),2))* ... 8r( Vz  
                       prod(2:(n(j)-s(k)))/          ... S]H[&o1o  
                       prod(2:s(k))/                 ... xM_#FxJb  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... 5H._Q  
                       prod(2:((n(j)+m(j))/2-s(k))); NZGO8u  
            idx = (pows(k)==rpowers); SlsNtaNt  
            z(:,j) = z(:,j) + p*rpowern(:,idx); |]kiH^Ap  
        end /qQx~doK  
         Zl5DlRuw  
        if isnorm h#zm+([B*  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); ZRhk2DA#FF  
        end AG >D,6Y  
    end DS8HSSD  
    Gr({30"8  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  m]++ !  
    P; =,Q$e8  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 Jl) Q #  
    ?cr^.LV|h^  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)