非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 C
`>1x`n
function z = zernfun(n,m,r,theta,nflag) !^,<nP
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. G!^}z(Mgi
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N F/QRgXV
% and angular frequency M, evaluated at positions (R,THETA) on the #cZ<[K q6
% unit circle. N is a vector of positive integers (including 0), and +ROwk
% M is a vector with the same number of elements as N. Each element LzS)WjEN
% k of M must be a positive integer, with possible values M(k) = -N(k) 5d4/}o}%"
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, >@mvb@4*
% and THETA is a vector of angles. R and THETA must have the same y1FE +EX[
% length. The output Z is a matrix with one column for every (N,M) c(R=f+
% pair, and one row for every (R,THETA) pair. q#mw#Uw-
% &F!Ct(c99
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike -/7[\S
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), L
PDx3MS
% with delta(m,0) the Kronecker delta, is chosen so that the integral ISbhC!59
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 15 /lX
% and theta=0 to theta=2*pi) is unity. For the non-normalized c^?+"7oO0
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. A:?|\r
% Q.$|TbVfds
% The Zernike functions are an orthogonal basis on the unit circle. nKO4o8js{{
% They are used in disciplines such as astronomy, optics, and -D4"uoN.
% optometry to describe functions on a circular domain. :d!qZFln
% soTmKqj E
% The following table lists the first 15 Zernike functions. lo!.%PP|
%
RAh4#8]
% n m Zernike function Normalization N1vPY]8
% -------------------------------------------------- T08SGB]
% 0 0 1 1 v{T%`WuPRf
% 1 1 r * cos(theta) 2 FthrI
% 1 -1 r * sin(theta) 2 &.ilku/
% 2 -2 r^2 * cos(2*theta) sqrt(6) ZliJc7lss
% 2 0 (2*r^2 - 1) sqrt(3) J'=iEI
% 2 2 r^2 * sin(2*theta) sqrt(6) z"vI-~,YU
% 3 -3 r^3 * cos(3*theta) sqrt(8) 65>1f
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) 8vK$]e36
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) $$tFP"pZ
% 3 3 r^3 * sin(3*theta) sqrt(8) X>$s>})Y
% 4 -4 r^4 * cos(4*theta) sqrt(10) G%RL8HU
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) w`Ss MI
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) /4!.G#DLQ
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10)
^tFbg+.
% 4 4 r^4 * sin(4*theta) sqrt(10) ]m(C}}
% -------------------------------------------------- [`]h23vRW
% 4^jIV!V
% Example 1: [ljC S
% ]c=nkS
% % Display the Zernike function Z(n=5,m=1) t
5{Y'
% x = -1:0.01:1; u5 1%~
% [X,Y] = meshgrid(x,x);
RM(MCle}
% [theta,r] = cart2pol(X,Y); 3R=R k
% idx = r<=1; TJhzyJ"t
% z = nan(size(X)); n$03##pf
% z(idx) = zernfun(5,1,r(idx),theta(idx)); BS@x&DB
% figure {j!jm5
% pcolor(x,x,z), shading interp YWXY4*G
% axis square, colorbar ,1! ~@dhs
% title('Zernike function Z_5^1(r,\theta)') 8F;f&&L"y
% Q~y) V
% Example 2: l[P VWM
% B'kV.3t
% % Display the first 10 Zernike functions ylo/]pVs
% x = -1:0.01:1; XP|qY1
% [X,Y] = meshgrid(x,x); [l7 G9T}/[
% [theta,r] = cart2pol(X,Y); &{5v[:$
% idx = r<=1; l)m]<EX
% z = nan(size(X)); Ol@ssm
% n = [0 1 1 2 2 2 3 3 3 3]; }nO[;2Na
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ydx-`yg#
% Nplot = [4 10 12 16 18 20 22 24 26 28]; O9_S"\8]@
% y = zernfun(n,m,r(idx),theta(idx)); dZ"B6L!^(
% figure('Units','normalized') 'cpO"d?{
% for k = 1:10 p[&6hXTd
% z(idx) = y(:,k); Shm$>\~=
% subplot(4,7,Nplot(k)) @}r2xY1
% pcolor(x,x,z), shading interp K@0/iWm*
% set(gca,'XTick',[],'YTick',[]) D rMG{Yiu
% axis square e]qbh_A
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) KBO{g:"
% end ]-D&/88``
% O*:8gu'Y2
% See also ZERNPOL, ZERNFUN2. )dMXn2O
+kXj+2
% Paul Fricker 11/13/2006 Q
6)5*o8n
`PH*tdYrh
M*xt9'Yd
% Check and prepare the inputs: t]QGyW A]
% ----------------------------- { yvKUTq`
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) N)&(&