切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11245阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 _)4zm  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! k ,r*xt  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 $ylxl"Y  
    function z = zernfun(n,m,r,theta,nflag) 4(,X. GVY/  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. xz7CnW1  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N j1ap,<\.k  
    %   and angular frequency M, evaluated at positions (R,THETA) on the a@?ebCE  
    %   unit circle.  N is a vector of positive integers (including 0), and ER4#5gd  
    %   M is a vector with the same number of elements as N.  Each element y35e3  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) OSC_-[b-  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, R F;u1vEQ8  
    %   and THETA is a vector of angles.  R and THETA must have the same V9  EC@)  
    %   length.  The output Z is a matrix with one column for every (N,M) |I.5]r-EK  
    %   pair, and one row for every (R,THETA) pair. $u)#-X;x  
    % HEK?z|Ne  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 1Va@w  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Xxm7s S  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral !__^M3S,k  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, &kH7_Lz  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized clIn}wQ  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. =knBwjeD  
    % qJXf c||Zg  
    %   The Zernike functions are an orthogonal basis on the unit circle. iciRlx.$c  
    %   They are used in disciplines such as astronomy, optics, and t Q>/1  
    %   optometry to describe functions on a circular domain. KXu1%`x=%Z  
    % #vPk XcP  
    %   The following table lists the first 15 Zernike functions. aZ ta%3`)  
    % h?GE-F  
    %       n    m    Zernike function           Normalization W:2]d  
    %       -------------------------------------------------- .e5rKkkT  
    %       0    0    1                                 1 #"o`'5  
    %       1    1    r * cos(theta)                    2 3b<;y%  
    %       1   -1    r * sin(theta)                    2 gO]8hLT  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 3BB/u%N}  
    %       2    0    (2*r^2 - 1)                    sqrt(3) L1q]  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) :QMpp}G  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) G4uOY?0N  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) (IAR-957pN  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) h>/L4j*Z  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) ED A6b]  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) ip*UujmNyR  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) !nF.whq  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) . B6mvb\  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) `O?j -zR  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) pEb/yIT"  
    %       -------------------------------------------------- !@ )JqF.  
    % >V&GL{  
    %   Example 1: LO)QEUG  
    % ;^8X(R  
    %       % Display the Zernike function Z(n=5,m=1) m!Aw,*m+*  
    %       x = -1:0.01:1; p.vxrk`c  
    %       [X,Y] = meshgrid(x,x); !\q'{x5C  
    %       [theta,r] = cart2pol(X,Y); $,1KD3;+]  
    %       idx = r<=1; 7+P-MT  
    %       z = nan(size(X)); qwd T= H  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); ;O({|mpS\  
    %       figure -Z:nImqzc  
    %       pcolor(x,x,z), shading interp ,WS{O6O7  
    %       axis square, colorbar U H6 Jvt  
    %       title('Zernike function Z_5^1(r,\theta)') qK&h$;~*y  
    % vVbS 4_  
    %   Example 2: , .uI>  
    % H$xUOqL  
    %       % Display the first 10 Zernike functions -L2% ,.E>4  
    %       x = -1:0.01:1; VQ4rEO=t  
    %       [X,Y] = meshgrid(x,x); K- TLzoYA  
    %       [theta,r] = cart2pol(X,Y); <\?dPRw2>  
    %       idx = r<=1; ^ }|$_  
    %       z = nan(size(X)); rmhL|! Y  
    %       n = [0  1  1  2  2  2  3  3  3  3]; E,|OMK#   
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; x<) T,c5Y  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; HgOrrewj  
    %       y = zernfun(n,m,r(idx),theta(idx)); FW"gj\  
    %       figure('Units','normalized') 5Yx 7Q:D  
    %       for k = 1:10 }A7 ] bd  
    %           z(idx) = y(:,k); l>@){zxL  
    %           subplot(4,7,Nplot(k)) ztV%W6  
    %           pcolor(x,x,z), shading interp -q DL':  
    %           set(gca,'XTick',[],'YTick',[]) ?L>}( {9  
    %           axis square \Jr7Hy1;  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) >jm^MS=  
    %       end $_ k:{?  
    % ajD/)9S  
    %   See also ZERNPOL, ZERNFUN2. #!]~E@;E  
    1K{hj%  
    %   Paul Fricker 11/13/2006 6b h.5|  
    B..> *Xb  
    ]goPjfWvU"  
    % Check and prepare the inputs: Y r 1k\q  
    % ----------------------------- 4,7W*mr3(  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) m%i!;K"{s  
        error('zernfun:NMvectors','N and M must be vectors.') E <h9o>h  
    end #80r?,q  
    ]{pH,vk-  
    if length(n)~=length(m) uS{WeL6%  
        error('zernfun:NMlength','N and M must be the same length.') ZG_iF#  
    end 42,K8  
    jGOE CKP  
    n = n(:); +(##B pC  
    m = m(:); QQX7p!~E  
    if any(mod(n-m,2)) w(R+p/RF  
        error('zernfun:NMmultiplesof2', ... Zs}EGC~&  
              'All N and M must differ by multiples of 2 (including 0).') -|/*S]6kK  
    end Q Pp>%iE@  
    @s~*>k#"#  
    if any(m>n) Ve\P,.  
        error('zernfun:MlessthanN', ... lgh+\pj  
              'Each M must be less than or equal to its corresponding N.') RRR=R]  
    end j79$/ Ol  
    6g%~~hX  
    if any( r>1 | r<0 ) !v]~ut !p  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') H@ .1cO  
    end fZrB!\Q  
    Z}$1~uyw  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) N PE7AdB8  
        error('zernfun:RTHvector','R and THETA must be vectors.') -n`2>L1  
    end (Ei} :6,}  
    'Rw*WK  
    r = r(:); <+e&E9;>6  
    theta = theta(:); 1Et{lrgh f  
    length_r = length(r); Y .\<P*iO  
    if length_r~=length(theta) \Gz 79VW  
        error('zernfun:RTHlength', ... hZeF? G)L'  
              'The number of R- and THETA-values must be equal.') zZ{(7K fz  
    end 0*8uo W t&  
    GQ= Pkko  
    % Check normalization: qc@v"pIz'S  
    % -------------------- Zi ;7.PqL  
    if nargin==5 && ischar(nflag) eLN[`hJ  
        isnorm = strcmpi(nflag,'norm'); vU,;asgy  
        if ~isnorm 6B`,^8Lp  
            error('zernfun:normalization','Unrecognized normalization flag.') xX2/uxi8  
        end oD~q/04!  
    else rd4mAX6@  
        isnorm = false; R(<_p"9(  
    end XF Wo"%}w  
    Gque@u  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% K8|>"c~  
    % Compute the Zernike Polynomials *|&&3&7  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% u eV,p?Wo  
    EMMp4KKOx+  
    % Determine the required powers of r: h9WyQl7  
    % ----------------------------------- S]}W+BF3  
    m_abs = abs(m); JD{AwE@Ro  
    rpowers = []; 1agI/R  
    for j = 1:length(n) w.R2' W R  
        rpowers = [rpowers m_abs(j):2:n(j)]; bKP@-<:]  
    end u4.2u}A/R%  
    rpowers = unique(rpowers); Ls(l  
    Ebytvs,w  
    % Pre-compute the values of r raised to the required powers, uw9w{3]0f  
    % and compile them in a matrix: O (YvE  
    % ----------------------------- T{mIk p<  
    if rpowers(1)==0 @RFJe$%  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); JzuP A I  
        rpowern = cat(2,rpowern{:}); %Y<3v \`_  
        rpowern = [ones(length_r,1) rpowern]; geEETb} +y  
    else 95hdQ<W  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); +}.S:w_xQ  
        rpowern = cat(2,rpowern{:}); iVqXf;eB!5  
    end DyPb]Udb:  
    x]<0Kq9K  
    % Compute the values of the polynomials: f^9ntos|  
    % -------------------------------------- ,ku3;58O<  
    y = zeros(length_r,length(n)); /faP@Q3kR  
    for j = 1:length(n) ^DOQ+  
        s = 0:(n(j)-m_abs(j))/2; f l*O)r  
        pows = n(j):-2:m_abs(j); ~ U`|+ 5  
        for k = length(s):-1:1 -%6Y&_5VK  
            p = (1-2*mod(s(k),2))* ... MFO1v%m  
                       prod(2:(n(j)-s(k)))/              ... x] j&Knli  
                       prod(2:s(k))/                     ... Qvhz$W[P>  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... N2e]S8-  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); #i0f}&  
            idx = (pows(k)==rpowers); XI58Cy*!  
            y(:,j) = y(:,j) + p*rpowern(:,idx); OIdoe0JR:O  
        end 8I,/ysT:  
         6V6,m4e  
        if isnorm D}A>`6W<  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 6HR^q  
        end HC/?o0  
    end [-'LJG Wb<  
    % END: Compute the Zernike Polynomials (GXFPEH8  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% S# sar}-I  
    BewJ!,A!  
    % Compute the Zernike functions: 2;&!]2vo$  
    % ------------------------------ &)#bdt[  
    idx_pos = m>0; Trt1M  
    idx_neg = m<0; |;MW98 A  
    h\PybSW4s  
    z = y; Q<d|OX  
    if any(idx_pos) %P`w"H,v3#  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); "?#O*x  
    end !0!r}#P  
    if any(idx_neg) "%]vSr  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)');  T6N~L~J  
    end d0 qc%.s  
    1]]#HTwX  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) >^ijj`{d  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. ,%EGM+  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated ]q CCCI`  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 0>)F+QC  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 't <hhjPqY  
    %   and THETA is a vector of angles.  R and THETA must have the same Zia<$kAO  
    %   length.  The output Z is a matrix with one column for every P-value, Z@ZSn0  
    %   and one row for every (R,THETA) pair. 3KN>t)A#  
    % XL!^tMk  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike v"J7VF2  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) /j:fc?yv  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) Ch,%xs.)G  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 /XZ\Yy=  
    %   for all p. 2(iv+<t  
    % bFtzwa5Gc  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ] R-<v&O  
    %   Zernike functions (order N<=7).  In some disciplines it is k$v8cE  
    %   traditional to label the first 36 functions using a single mode )9'Zb`n  
    %   number P instead of separate numbers for the order N and azimuthal mdy+ >e <  
    %   frequency M. _5&LV2  
    % j#[%-nOT  
    %   Example: CWW|?  
    %  O)?  
    %       % Display the first 16 Zernike functions _yP02a^2  
    %       x = -1:0.01:1; | +r5D4]e  
    %       [X,Y] = meshgrid(x,x); )W.Y{\D0  
    %       [theta,r] = cart2pol(X,Y);  TDR2){I  
    %       idx = r<=1; kQQhZ8Ch  
    %       p = 0:15; BFH=cs  
    %       z = nan(size(X)); nMU[S +  
    %       y = zernfun2(p,r(idx),theta(idx)); h(MS>=  
    %       figure('Units','normalized') L qdz qq  
    %       for k = 1:length(p) A ^U`c'$  
    %           z(idx) = y(:,k); fOkB|E]  
    %           subplot(4,4,k) e =Teq~K  
    %           pcolor(x,x,z), shading interp $1b x\  
    %           set(gca,'XTick',[],'YTick',[]) vQhi2J'  
    %           axis square JDj^7\`  
    %           title(['Z_{' num2str(p(k)) '}']) \bzT=^Z;2  
    %       end `R{ ZED l'  
    % fw+ VR.#2H  
    %   See also ZERNPOL, ZERNFUN. 71inHg  
    EGIwqci:  
    %   Paul Fricker 11/13/2006 B#Z-kFn@  
    2z615?2_U  
    8@J5tFJ&%  
    % Check and prepare the inputs: to"[r  
    % ----------------------------- }&:F,q*  
    if min(size(p))~=1 k%fy  
        error('zernfun2:Pvector','Input P must be vector.') c`x[C  
    end v'X=|$75  
    %x zgTZ  
    if any(p)>35 tF=Y3W+L  
        error('zernfun2:P36', ... ^":Dk5gl  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... > g=u Y{Rf  
               '(P = 0 to 35).']) 1?N$I}?  
    end k=8LhO  
    ;$>wuc'L  
    % Get the order and frequency corresonding to the function number: 9HJA:k*k|  
    % ---------------------------------------------------------------- [V_?`M  
    p = p(:); rm nfyn  
    n = ceil((-3+sqrt(9+8*p))/2); O| zLD  
    m = 2*p - n.*(n+2); 4C[n@ p2  
    <rAk"R^  
    % Pass the inputs to the function ZERNFUN: $dgez#TPL  
    % ---------------------------------------- k>;a5'S  
    switch nargin PquATAzQA  
        case 3 <"rckPv_H  
            z = zernfun(n,m,r,theta); UOtrq=y  
        case 4 .e8S^lSl  
            z = zernfun(n,m,r,theta,nflag); dgsD~.((A  
        otherwise jYi{[* *  
            error('zernfun2:nargin','Incorrect number of inputs.') %V&I${z  
    end ;V"(! 'd  
    2lm{:tS  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) Jxy94y*  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. ' y9yx[P  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of <DjFMTCN  
    %   order N and frequency M, evaluated at R.  N is a vector of U%,N"]`  
    %   positive integers (including 0), and M is a vector with the :$"L;"  
    %   same number of elements as N.  Each element k of M must be a 1S26Y|L)  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) :*wjC.Z  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is =P.m5e<  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix umo@JWr  
    %   with one column for every (N,M) pair, and one row for every wWNHZ v&  
    %   element in R. H!NyM}jsr  
    % ]2Q:&T  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- &R "Q  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is j7M[]/|  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to bkgJz+u  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 =1}Umn|ZLS  
    %   for all [n,m]. :W\xZ  
    %  MXj7Z3  
    %   The radial Zernike polynomials are the radial portion of the Ka"Z,\T   
    %   Zernike functions, which are an orthogonal basis on the unit G`HL^/Z*  
    %   circle.  The series representation of the radial Zernike """gV)Y  
    %   polynomials is 01nbR+e  
    % :z!N_]t  
    %          (n-m)/2 UHEn+Tc>  
    %            __ '`*{ig  
    %    m      \       s                                          n-2s YIQm;E EG  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r 6SIk,Isy8  
    %    n      s=0 2y&m8_s-p  
    % -H3tBEvoI  
    %   The following table shows the first 12 polynomials. Eo$7W5h J  
    % hK,e<?N^  
    %       n    m    Zernike polynomial    Normalization f(h nomn  
    %       --------------------------------------------- 9;^r  
    %       0    0    1                        sqrt(2) 4Em mh=A  
    %       1    1    r                           2 y0d a8sd)  
    %       2    0    2*r^2 - 1                sqrt(6) %U&O \GB  
    %       2    2    r^2                      sqrt(6) 3YG[~o|4  
    %       3    1    3*r^3 - 2*r              sqrt(8) . _5g<aw;  
    %       3    3    r^3                      sqrt(8) <J`",h  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) d_j% ,1-#  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) X4:\Shb97  
    %       4    4    r^4                      sqrt(10) swBgV,;   
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) Nd.+Rs  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) n4cM /unU  
    %       5    5    r^5                      sqrt(12) 3Ms ` ajJ  
    %       --------------------------------------------- kgX"LQh;[G  
    % +P?!yH,n  
    %   Example: v>FsP$p4yE  
    % TX96 ^EoH  
    %       % Display three example Zernike radial polynomials UJXRL   
    %       r = 0:0.01:1; +mQMzZZTZ  
    %       n = [3 2 5]; FYI*44E  
    %       m = [1 2 1]; E|t. 3  
    %       z = zernpol(n,m,r); $r`^8/Mq3  
    %       figure i+$G=Z#3E  
    %       plot(r,z) kCXQHX  
    %       grid on R^PPgE6!$  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') vps</f!  
    % [X'XxYbZ  
    %   See also ZERNFUN, ZERNFUN2. 9Ij=~p]p  
    .Vm!Ng )j  
    % A note on the algorithm. d%:B,bck  
    % ------------------------ B \U9F5  
    % The radial Zernike polynomials are computed using the series E880X<V)>  
    % representation shown in the Help section above. For many special +>#SB"'  
    % functions, direct evaluation using the series representation can GJ:65)KU  
    % produce poor numerical results (floating point errors), because ]d$:R`;  
    % the summation often involves computing small differences between M]O _L  
    % large successive terms in the series. (In such cases, the functions Q k e8BRBn  
    % are often evaluated using alternative methods such as recurrence /DG+8u  
    % relations: see the Legendre functions, for example). For the Zernike i`3h\ku  
    % polynomials, however, this problem does not arise, because the 9 )1 8  
    % polynomials are evaluated over the finite domain r = (0,1), and &@tD/Jw3  
    % because the coefficients for a given polynomial are generally all V _(L/6  
    % of similar magnitude. P|> fO'  
    % kiLwN nq  
    % ZERNPOL has been written using a vectorized implementation: multiple OOzk@j^  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] '- >%b  
    % values can be passed as inputs) for a vector of points R.  To achieve /gkHV3}fu  
    % this vectorization most efficiently, the algorithm in ZERNPOL xV&c)l>}  
    % involves pre-determining all the powers p of R that are required to {9kH<,PJ;!  
    % compute the outputs, and then compiling the {R^p} into a single :DI``]Si\  
    % matrix.  This avoids any redundant computation of the R^p, and SV2DvrIR  
    % minimizes the sizes of certain intermediate variables. J*Dt\[X  
    % woCmpCN*I  
    %   Paul Fricker 11/13/2006 `SdvX n  
    YP*EDb?f  
    xbbQ)sH&m  
    % Check and prepare the inputs: lSGtbSyDI  
    % ----------------------------- $#3O:aW  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) KxyD{W1  
        error('zernpol:NMvectors','N and M must be vectors.') ~HWH2g  
    end dNH6%1(s]0  
    :ud<"I]:  
    if length(n)~=length(m) \ 5MD1r}  
        error('zernpol:NMlength','N and M must be the same length.') KIY/nu   
    end bXVH7Fy  
    %49P<vo`?  
    n = n(:); >?-etl  
    m = m(:); !i >&z?  
    length_n = length(n); }I3 ZNd   
    n}KF) W=  
    if any(mod(n-m,2)) 6n[O8^  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') ^HJvT)e4  
    end EL*OeyU1l  
    7ojU]ly  
    if any(m<0) vD,ZEKAN  
        error('zernpol:Mpositive','All M must be positive.') B|\pzWD%  
    end /y8=r"'G  
    6Z09)}tZb  
    if any(m>n) h(M_ K  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') \<cs:C\h7  
    end 'CF?pxNQ l  
    R,]J~TfPK  
    if any( r>1 | r<0 ) Y[_{tS#u  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') <+7]EwVcn^  
    end S&yKi  
    ~3f`=r3/.  
    if ~any(size(r)==1) |6]2XW  
        error('zernpol:Rvector','R must be a vector.') vy:-a G  
    end ]2:w?+T  
    XH^X4W  
    r = r(:); $&fP%p  
    length_r = length(r); 7D5[ L  
    gu~JB  
    if nargin==4 Ge'[AhA  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); i5PZ)&  
        if ~isnorm QcW6o,  
            error('zernpol:normalization','Unrecognized normalization flag.') wSy|h*a,  
        end p(B^](?  
    else xqZZ(jZ  
        isnorm = false; Hnq$d6F  
    end 35q4](o9"  
    6]%SSq&  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% S*aVcyDEP  
    % Compute the Zernike Polynomials m`;dFL7"E  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% c0 I;8z`b  
    /nPNHO>U  
    % Determine the required powers of r: N7Kg52|  
    % ----------------------------------- 0|Rt[qwKb@  
    rpowers = []; 2F}D?] A  
    for j = 1:length(n) Rcn6puZt  
        rpowers = [rpowers m(j):2:n(j)]; n]%T>\gw  
    end )9pRT dT  
    rpowers = unique(rpowers); ^ gy"$F3{`  
    8;%F-?  
    % Pre-compute the values of r raised to the required powers,  1{fu  
    % and compile them in a matrix: g-C)y 06  
    % ----------------------------- Oax6_kmOj  
    if rpowers(1)==0 QIK;kjr*A3  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); ES4[@RX  
        rpowern = cat(2,rpowern{:}); j7(S=  
        rpowern = [ones(length_r,1) rpowern]; MH0xD  
    else n_ 3g  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); S17iYjy#8T  
        rpowern = cat(2,rpowern{:}); xYLTz8g=  
    end $D][_I  
    [-5l=j r  
    % Compute the values of the polynomials: GLBzlZ?  
    % -------------------------------------- IPVD^a ?  
    z = zeros(length_r,length_n); ZwFVtR  
    for j = 1:length_n s ahXPl%;U  
        s = 0:(n(j)-m(j))/2; lH%%iYBM  
        pows = n(j):-2:m(j); w/1Os!p  
        for k = length(s):-1:1 6_=t~9sY  
            p = (1-2*mod(s(k),2))* ... 1B0+dxN`  
                       prod(2:(n(j)-s(k)))/          ... M#u~]?hS  
                       prod(2:s(k))/                 ... >h Rq  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... FjU -t/  
                       prod(2:((n(j)+m(j))/2-s(k))); }J^+66{  
            idx = (pows(k)==rpowers); -f-@[;D  
            z(:,j) = z(:,j) + p*rpowern(:,idx); 6)]zt  
        end O0Pb"ou_h.  
         E,}(jAq7  
        if isnorm G m~2s;/  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); 8[B0[2O  
        end  Z,"f2UJ  
    end ]aZ3_<b  
    -;Ij ,  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  zYEb#*Kar  
    |N0RBa4%  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 22Oe~W;  
    n9Ktn}  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)