非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 )sV#
b
function z = zernfun(n,m,r,theta,nflag) <;=Y4$y[
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. (X>y)V
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N uTl:u
% and angular frequency M, evaluated at positions (R,THETA) on the 9Biw!%a
% unit circle. N is a vector of positive integers (including 0), and ~|uCZ.;o
% M is a vector with the same number of elements as N. Each element c4-&I"z
% k of M must be a positive integer, with possible values M(k) = -N(k) J~_p2TZJ\3
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 2M&4]d
% and THETA is a vector of angles. R and THETA must have the same x *qef_Hu
% length. The output Z is a matrix with one column for every (N,M) b,Z&P|
% pair, and one row for every (R,THETA) pair. =\XAD+
% U~H'c
p
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 21o_9=[^
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), \^#1~Kx
% with delta(m,0) the Kronecker delta, is chosen so that the integral izC>-
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 2#(7,o}Y5
% and theta=0 to theta=2*pi) is unity. For the non-normalized WN?T*bz2
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. dlT\VWMha(
% tjd"05"@:
% The Zernike functions are an orthogonal basis on the unit circle. q #p)E=$
% They are used in disciplines such as astronomy, optics, and ) F~>
% optometry to describe functions on a circular domain. ~HYP:6f
% Q?"[zX1
% The following table lists the first 15 Zernike functions. |iwTzlt*#
% Bw_Ih|y,w
% n m Zernike function Normalization 25ayYO%PTc
% -------------------------------------------------- -:~`g*3#
% 0 0 1 1 8m1zL[.8g
% 1 1 r * cos(theta) 2 &R5M&IwL
% 1 -1 r * sin(theta) 2 dt \O7Rjw8
% 2 -2 r^2 * cos(2*theta) sqrt(6) vlPE8U=
% 2 0 (2*r^2 - 1) sqrt(3) $U8ap4EXM
% 2 2 r^2 * sin(2*theta) sqrt(6) 9~; Ju^b
% 3 -3 r^3 * cos(3*theta) sqrt(8) l?R_wu,Q
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) aDOH3Ri0K!
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) J<BdIKCma
% 3 3 r^3 * sin(3*theta) sqrt(8) +.N;h-'
% 4 -4 r^4 * cos(4*theta) sqrt(10) W@ Z=1y
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) }cPV_^{
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) >bZ#
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) #KK(Z\;
% 4 4 r^4 * sin(4*theta) sqrt(10) yBe/UFp+
% --------------------------------------------------
=#V11j
% O#EBR<CuK
% Example 1: \6'A^cE/PX
% xw-q)u
% % Display the Zernike function Z(n=5,m=1) RdDcMZ
% x = -1:0.01:1; ZbrE m
% [X,Y] = meshgrid(x,x); =
]@xXVf/
% [theta,r] = cart2pol(X,Y); |M?HdxPa
% idx = r<=1; #_7c>gn
% z = nan(size(X)); ~Afs
% z(idx) = zernfun(5,1,r(idx),theta(idx)); q#a21~S<
% figure X,N@`
% pcolor(x,x,z), shading interp UA9LI<Y
% axis square, colorbar \\lC"Z#J`
% title('Zernike function Z_5^1(r,\theta)') YHA[PF
% (s3%1OC[
% Example 2: }dHiW:J>
% C\; 8l}t
% % Display the first 10 Zernike functions {S}@P~H=
% x = -1:0.01:1; q
kKABow
% [X,Y] = meshgrid(x,x); Sy'>JHx
% [theta,r] = cart2pol(X,Y); E\zhxiI
% idx = r<=1; </=PN1=A
% z = nan(size(X)); UZ!hk*PF
% n = [0 1 1 2 2 2 3 3 3 3]; %OtW\T=u
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; {
&'TA
% Nplot = [4 10 12 16 18 20 22 24 26 28]; Imwx~eo
% y = zernfun(n,m,r(idx),theta(idx)); iN*>Z(b"
% figure('Units','normalized') kW~F*
% for k = 1:10 sZH7EK
% z(idx) = y(:,k); 10J*S[n1
% subplot(4,7,Nplot(k)) 0/6&2
% pcolor(x,x,z), shading interp uqUo4z 5T
% set(gca,'XTick',[],'YTick',[]) v wyDY%B"n
% axis square s z\RmX
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) =c,gK8C
% end [5VUcXGt*\
% yq}{6IyZ^
% See also ZERNPOL, ZERNFUN2. k:TfE6JZ
TUaK:*x*
% Paul Fricker 11/13/2006 7&3URglsL"
o.5j@dr
l0&8vhw8k
% Check and prepare the inputs: injmP9ed
% ----------------------------- ie(7m|.
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) y]l"u=$Tr{
error('zernfun:NMvectors','N and M must be vectors.') 752wK|o0|;
end bIArAS9%
wuzz%9;@B
if length(n)~=length(m) *r`Yz}
error('zernfun:NMlength','N and M must be the same length.') 9^^#I~-
end $dP)8_Z2
g#4gGhI
n = n(:); #CPP dU$
m = m(:); aAri
if any(mod(n-m,2)) 7fay:_
error('zernfun:NMmultiplesof2', ...
@__;RVQ
'All N and M must differ by multiples of 2 (including 0).') Hl;p>>n
end L:M9|/
k&/)g3(N(
if any(m>n) 'j_H{kQy
error('zernfun:MlessthanN', ... {^W,e ^:
'Each M must be less than or equal to its corresponding N.') [kOA+\v
end F}]_/cY7B
`t1$Ew<
if any( r>1 | r<0 ) pxxFm~"d
error('zernfun:Rlessthan1','All R must be between 0 and 1.') L"iyjL<M
end ql~{`qoD~
QYgN39gp
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) XKX,7
error('zernfun:RTHvector','R and THETA must be vectors.') Pm^N0L9?q
end i)L:VkN
CFm1c1%Hg
r = r(:); 5|CiwQg|,p
theta = theta(:); (AG
length_r = length(r); ;_/q>DR>,3
if length_r~=length(theta) b0b9#9x
error('zernfun:RTHlength', ... kI3zYD^:
'The number of R- and THETA-values must be equal.') Jyci}CU3\Q
end A_Iu*pz^^
E`fssd~
% Check normalization: g/,Bx!'8p
% -------------------- i=UTc1
if nargin==5 && ischar(nflag) WKl'
isnorm = strcmpi(nflag,'norm'); RQCQGa^cP
if ~isnorm hIQ[:f
error('zernfun:normalization','Unrecognized normalization flag.') h.$__Gs
end %hbLT{w
else 4E-A@FR
isnorm = false; =>0M3 Qh{
end I'9s=~VfY,
4)HWPX
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% lo UwRz
% Compute the Zernike Polynomials SP*JleQN
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% h
^h-pd
+;*(a3Gp
% Determine the required powers of r: 0BB@E(*
% ----------------------------------- BZ+ mO
m_abs = abs(m); r!$NZ2I
rpowers = []; 7~ese+\smG
for j = 1:length(n) G;HlII9x[
rpowers = [rpowers m_abs(j):2:n(j)]; Ik5jwfz
end z|]oM#Gt
rpowers = unique(rpowers); y3nm!tjyM
@B'8SLoP
% Pre-compute the values of r raised to the required powers, 4A/,X>W61
% and compile them in a matrix: 2^bpH%
% ----------------------------- NhK(HTsvK
if rpowers(1)==0 As'M39*V
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 4@]xn
rpowern = cat(2,rpowern{:}); c =N]!
,MO
rpowern = [ones(length_r,1) rpowern]; *_<*bhR<
else V2s}<uG
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); sRyw\v-=P
rpowern = cat(2,rpowern{:}); {,f!'i&b@
end rrY{Jf9>
+B q}>
% Compute the values of the polynomials: mU+FQX
% -------------------------------------- 12d}#G<q-
y = zeros(length_r,length(n)); 0"^oTmQN
for j = 1:length(n) j t`p<gI
s = 0:(n(j)-m_abs(j))/2; TFC!u0Y"$
pows = n(j):-2:m_abs(j); nE,gQHw
for k = length(s):-1:1 @CaD8%j{
p = (1-2*mod(s(k),2))* ... C*s0r;
prod(2:(n(j)-s(k)))/ ... UiK+c30FU
prod(2:s(k))/ ... -hVv
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... c,+(FQ9
prod(2:((n(j)+m_abs(j))/2-s(k))); c_z/At;4
idx = (pows(k)==rpowers); ~6:LUM
y(:,j) = y(:,j) + p*rpowern(:,idx); e}R2J`7
end ^wO_b'@v
?St=7a(D
if isnorm E7yf[/it
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); A:.IBctsd
end {rb-DB-/5M
end G{f`K^
% END: Compute the Zernike Polynomials :%uyy5AZ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .hQ3A"
@r/Id{pCI
% Compute the Zernike functions: *K}z@a_
% ------------------------------ ll(e,9.D
idx_pos = m>0; 7/&C;"
idx_neg = m<0; nG},v%
b>bgUDq
z = y; Z9"{f)T
if any(idx_pos) V|3yZ8lE
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); urT/+deR
end -; us12SZ
if any(idx_neg) AU\xNF3
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); AJ>BF.>
end #0?"J)
W>?f^C!+m
% EOF zernfun