切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10606阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 He}"e&K  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! XiAflO  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 .zvvk  
    function z = zernfun(n,m,r,theta,nflag) *N%)+-   
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. [m9=e-KS$Q  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N JUTlJyx8  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ^*WO*f>y  
    %   unit circle.  N is a vector of positive integers (including 0), and gX/?  
    %   M is a vector with the same number of elements as N.  Each element 0t)5KO  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) (YHK,aC>u  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, KZ|p_{0&  
    %   and THETA is a vector of angles.  R and THETA must have the same }XRRM:B|)(  
    %   length.  The output Z is a matrix with one column for every (N,M) QX+&[G!DZH  
    %   pair, and one row for every (R,THETA) pair. [`bA,)y"  
    % CA ,2&v"  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ^fti<Lw5  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), c1g'l.XL 3  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral p?x]|`M  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, x^y&<tA  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized 6#kK  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. __ G=xf  
    % ] {=qdgJ  
    %   The Zernike functions are an orthogonal basis on the unit circle. #6nuiSF  
    %   They are used in disciplines such as astronomy, optics, and TGI`}#  
    %   optometry to describe functions on a circular domain. sb</-']a  
    % 0#/Pc`z C  
    %   The following table lists the first 15 Zernike functions. *TYOsD**9  
    % l!%V&HJV  
    %       n    m    Zernike function           Normalization =_`cY^ib+  
    %       -------------------------------------------------- -@/!u9l  
    %       0    0    1                                 1 b%e7rY2  
    %       1    1    r * cos(theta)                    2 8 %^W<.Y  
    %       1   -1    r * sin(theta)                    2 Lg+cHaA  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) (sEZNo5n  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 5h p)Z7  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) +$B#] ,  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) ~uEI}z  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) +aRHMH  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) r[AqA  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) i{k v$ir!  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) nLnzl  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) ShMP_?]P  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) Z8WBOf*~e  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) iL3k8:x  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 49dN~k=  
    %       -------------------------------------------------- [)nU?l  
    % {e83 A /{  
    %   Example 1: kj'  
    %  q #X[oVq  
    %       % Display the Zernike function Z(n=5,m=1) 8V+  
    %       x = -1:0.01:1; k]yv#Pa  
    %       [X,Y] = meshgrid(x,x); tD No; f  
    %       [theta,r] = cart2pol(X,Y); )!d_Td\-  
    %       idx = r<=1; /UiB1-*b  
    %       z = nan(size(X)); (h% xqXs  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); 910N 1E  
    %       figure RzqU`<//  
    %       pcolor(x,x,z), shading interp #\MkbZc d  
    %       axis square, colorbar wW0m}L  
    %       title('Zernike function Z_5^1(r,\theta)') n$3w=9EX *  
    % vf['$um  
    %   Example 2: PpR eqmo  
    % sW!MVv  
    %       % Display the first 10 Zernike functions A|BN >?.t  
    %       x = -1:0.01:1; 5!7vD|6  
    %       [X,Y] = meshgrid(x,x); (:|1h@K/R  
    %       [theta,r] = cart2pol(X,Y);  fG|+ !  
    %       idx = r<=1; LH>h]OTQF  
    %       z = nan(size(X)); *|)O  
    %       n = [0  1  1  2  2  2  3  3  3  3]; bs_rw+  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; }r:8w*4 7  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ph@2[rUp  
    %       y = zernfun(n,m,r(idx),theta(idx)); UymhBh  
    %       figure('Units','normalized') Cj# ?Z7}z  
    %       for k = 1:10 #L xfE<^  
    %           z(idx) = y(:,k); q4ej7T8  
    %           subplot(4,7,Nplot(k)) qgsw8O&  
    %           pcolor(x,x,z), shading interp s:Z1 ZAxv  
    %           set(gca,'XTick',[],'YTick',[]) <`*v/D7\02  
    %           axis square i-Ri;E  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) No(S#,vJ;  
    %       end 7dXh,sD  
    % /G#W/Q  
    %   See also ZERNPOL, ZERNFUN2. G>W:3y  
    pOIfKd  
    %   Paul Fricker 11/13/2006 73(5.'F  
    6>- Gi  
    =N{-lyr)  
    % Check and prepare the inputs: X$ 76#x  
    % ----------------------------- Vvk \ $'  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) t: qPW<wc  
        error('zernfun:NMvectors','N and M must be vectors.') $ q$\  
    end *mfPq"/  
    szD BfGd%j  
    if length(n)~=length(m) 4mF=A$Q_/  
        error('zernfun:NMlength','N and M must be the same length.') `;#I_R_K  
    end K<7 Db4H  
    DP4l %2m0  
    n = n(:); 8^"P'XQ  
    m = m(:); !6{b)P  
    if any(mod(n-m,2)) 3Tr}t.mt  
        error('zernfun:NMmultiplesof2', ... 0vdnM8N2  
              'All N and M must differ by multiples of 2 (including 0).') gj1l9>f>]a  
    end u3_AZ2-;  
    cUM#|K#6  
    if any(m>n) F` ]s  
        error('zernfun:MlessthanN', ... ?iNihE  
              'Each M must be less than or equal to its corresponding N.') _c6 zzGtH  
    end C~:!WRCz  
    k0!D9tk  
    if any( r>1 | r<0 ) ru1FJ{n  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') DwH=ln=  
    end ,Y2){8#l  
    -xc'P,`  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 407;M%?'A  
        error('zernfun:RTHvector','R and THETA must be vectors.') ' $X}'u  
    end J`{HMv  
    K9f7,/  
    r = r(:); "Kt[jV;6  
    theta = theta(:); p&,2@(Q  
    length_r = length(r); <t4l5nr#  
    if length_r~=length(theta) 7(bE;(4  
        error('zernfun:RTHlength', ... v0S7 ]?_  
              'The number of R- and THETA-values must be equal.') f=*xdOB3  
    end N^&T5cAC  
    y5 bELWA  
    % Check normalization: &fWYQ'\>  
    % -------------------- vt-5 3fa|  
    if nargin==5 && ischar(nflag) 3ZU<u;  
        isnorm = strcmpi(nflag,'norm'); _gi?GQj  
        if ~isnorm ZVmgQ7m  
            error('zernfun:normalization','Unrecognized normalization flag.') }9ZcO\M  
        end gEQevy`T%c  
    else R^F\2yth-  
        isnorm = false; WXC}Ie  
    end NX4}o&mDwn  
    j=,]b6(  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [sH[bmLR  
    % Compute the Zernike Polynomials Uw5`zl  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% rnC u=n  
    9oA.!4q  
    % Determine the required powers of r: a uz2n  
    % ----------------------------------- Bn_@R`  
    m_abs = abs(m); 2KC~; 5  
    rpowers = []; ,l_n:H+"F  
    for j = 1:length(n) Dx<CO1%z-  
        rpowers = [rpowers m_abs(j):2:n(j)]; xlWTHn!j  
    end O<v9i4*  
    rpowers = unique(rpowers); RW. >;|m  
    Gd 5J<K  
    % Pre-compute the values of r raised to the required powers, (l3P<[[?  
    % and compile them in a matrix: sj?7}(s  
    % ----------------------------- ]1<O [d  
    if rpowers(1)==0 lfp'D+#p {  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); .\> I-  
        rpowern = cat(2,rpowern{:}); =K2mR}n\;  
        rpowern = [ones(length_r,1) rpowern]; m*S[oy&  
    else zbDM+;  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); U3yIONlt  
        rpowern = cat(2,rpowern{:}); :9`T.V<?  
    end /hMD Me  
    /)` kYD6  
    % Compute the values of the polynomials: ^L1#  
    % -------------------------------------- f}c z_"o4  
    y = zeros(length_r,length(n)); {~"6/L  
    for j = 1:length(n) ?Q)z5i'g#  
        s = 0:(n(j)-m_abs(j))/2; ^3L6mOoA  
        pows = n(j):-2:m_abs(j); Bld$<uU  
        for k = length(s):-1:1 $3Ct@}=n  
            p = (1-2*mod(s(k),2))* ... 6Q. _zk  
                       prod(2:(n(j)-s(k)))/              ... |[VtYV _{  
                       prod(2:s(k))/                     ... &&;ol}W  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... yw%5W=<  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); r%g?.4o*b  
            idx = (pows(k)==rpowers); ''f07R  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Uaho.(_GP  
        end N'nqVYTU  
         }'KVi=qnHb  
        if isnorm VzR (O B  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); YolO-5  
        end _ s]=g  
    end *8uSy/l  
    % END: Compute the Zernike Polynomials v^h \E+@  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 38%xB<Y  
    PL#8~e;'  
    % Compute the Zernike functions: Xh/i5}5 t  
    % ------------------------------ j3bTa|UdT  
    idx_pos = m>0; 64^dy V,;  
    idx_neg = m<0; Ab <4F 7  
    `A)9   
    z = y; ~R]E=/m|  
    if any(idx_pos) QM1-w^  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); .3%eSbt0  
    end n7"e 79  
    if any(idx_neg) FBM 73D@`  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); n2Oi< )  
    end VJX{2$L  
    x7X"'1U  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) z[DUktZl  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. xa`&/W>  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated O~g _rcG  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive cWl)ZE<hM  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, n*^g^gp  
    %   and THETA is a vector of angles.  R and THETA must have the same K,[g<7X5  
    %   length.  The output Z is a matrix with one column for every P-value, jK#y7E  
    %   and one row for every (R,THETA) pair. sB_o HUMH6  
    % :<=!v5 SK  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike BJk:h-m [  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2)  K6kPNi  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) e_+`%A+-  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 PNXZ3:W  
    %   for all p. zh'TR$+\hO  
    % e| (jv<~r  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 a\\B88iRRZ  
    %   Zernike functions (order N<=7).  In some disciplines it is +15j^ Az  
    %   traditional to label the first 36 functions using a single mode 5M{N-L_eC  
    %   number P instead of separate numbers for the order N and azimuthal PG9won5_  
    %   frequency M. %*<k5#Yq  
    % j3VM !/  
    %   Example: N~ljU;wo-9  
    % !&TbE@Xk  
    %       % Display the first 16 Zernike functions yw5MlZ4P=  
    %       x = -1:0.01:1; N10'./c K  
    %       [X,Y] = meshgrid(x,x); A6}M F  
    %       [theta,r] = cart2pol(X,Y); C81+nR  
    %       idx = r<=1; /`0*!sN*5  
    %       p = 0:15; RMDs~  
    %       z = nan(size(X)); V;?_l?_  
    %       y = zernfun2(p,r(idx),theta(idx)); 673v  
    %       figure('Units','normalized') %96JH YcX  
    %       for k = 1:length(p) ^LTLyt)/  
    %           z(idx) = y(:,k); ]c+qD,wqt>  
    %           subplot(4,4,k) kmM_Af&  
    %           pcolor(x,x,z), shading interp whoz^n3NE  
    %           set(gca,'XTick',[],'YTick',[]) m~r^@D  
    %           axis square kjN9(&D  
    %           title(['Z_{' num2str(p(k)) '}']) ppVjFCv0<  
    %       end LLg ']9  
    % <(?ahO5  
    %   See also ZERNPOL, ZERNFUN. 5?k_Q"~  
    e}f!zA  
    %   Paul Fricker 11/13/2006 |A 7Yv  
    M9]O!{ sq  
    hT^6Ifm  
    % Check and prepare the inputs: sU4(ed\gI\  
    % ----------------------------- <!K2xb-d^  
    if min(size(p))~=1 J @"wJEF  
        error('zernfun2:Pvector','Input P must be vector.') )rz4IfE  
    end w@.E}%bwq  
    q NU\XO`H  
    if any(p)>35 s>~!r.GC  
        error('zernfun2:P36', ... b.h~QyI/W  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... H0 km*5Sn  
               '(P = 0 to 35).']) v@`#!iu  
    end %fh ,e5(LT  
    !y'LKze+G  
    % Get the order and frequency corresonding to the function number: B c*Rn3i@  
    % ---------------------------------------------------------------- 1]fqt[*)  
    p = p(:); x+nrdW+  
    n = ceil((-3+sqrt(9+8*p))/2); Hy|$7]1  
    m = 2*p - n.*(n+2); ~m[^|w  
    ,y,NVF  
    % Pass the inputs to the function ZERNFUN: HV&N(;@  
    % ---------------------------------------- =nA;,9%  
    switch nargin l:8gCi  
        case 3 Ne@Iv)g?  
            z = zernfun(n,m,r,theta); =i Rc&  
        case 4 "X>Z!>  
            z = zernfun(n,m,r,theta,nflag); joAR;J  
        otherwise vC$[Zm  
            error('zernfun2:nargin','Incorrect number of inputs.') fa/ '4  
    end E0>4Q\n{  
    -#Yg B5  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) iwJBhu0@#  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. T}$1<^NK  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of ]b.@i&M  
    %   order N and frequency M, evaluated at R.  N is a vector of gr4Hh/V  
    %   positive integers (including 0), and M is a vector with the MH?|>6  
    %   same number of elements as N.  Each element k of M must be a &rorBD 5aj  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) pxM^|?Hxc  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is l\ts!p4f$  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix ^uMy|d  
    %   with one column for every (N,M) pair, and one row for every TRcY!  
    %   element in R. @mNf(&  
    % I/Hwf  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- %8yfF rk  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is T#|Qexz6 @  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to  |UZ#2  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 f /&Dy'OV7  
    %   for all [n,m]. <)uUAh  
    % Jv1.Yz  
    %   The radial Zernike polynomials are the radial portion of the $s/N;E!t  
    %   Zernike functions, which are an orthogonal basis on the unit C^aP)& qt  
    %   circle.  The series representation of the radial Zernike YnNB#x8|  
    %   polynomials is f%an<>j^w  
    % TCX*$ac"  
    %          (n-m)/2 8,a&i:C  
    %            __ 9 @!Og(l  
    %    m      \       s                                          n-2s "k)( ,  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r xA`Q4"[I  
    %    n      s=0 Ib*l{cxN  
    % b DeHU$  
    %   The following table shows the first 12 polynomials. zKx?cEpE  
    % U!XC-RA3 _  
    %       n    m    Zernike polynomial    Normalization g*N~r['dZ  
    %       --------------------------------------------- q^JJ5{36e  
    %       0    0    1                        sqrt(2) bVQLj}%   
    %       1    1    r                           2 ;? '`XB!  
    %       2    0    2*r^2 - 1                sqrt(6) .LIEZ^@  
    %       2    2    r^2                      sqrt(6) mK%!9F V  
    %       3    1    3*r^3 - 2*r              sqrt(8) 9Y&n$svB  
    %       3    3    r^3                      sqrt(8) " nq4!  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) -=&r}/&  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) up=4B  
    %       4    4    r^4                      sqrt(10) z. VuY3  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) =V5<>5"M?  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) I')URk[  
    %       5    5    r^5                      sqrt(12) 2L[/.|  
    %       --------------------------------------------- 38L8AJqD  
    % %DqF_4U9  
    %   Example: `pn]jpW9  
    % X)e6Y{vO  
    %       % Display three example Zernike radial polynomials Y 1rU  
    %       r = 0:0.01:1; mv/'H^"[_  
    %       n = [3 2 5]; -w1U /o.  
    %       m = [1 2 1]; pZ/x,b#.  
    %       z = zernpol(n,m,r); \;&j;"c,W  
    %       figure E b-?wzh  
    %       plot(r,z) c+f~>AaI  
    %       grid on xlp^XT6#  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 8Focs p2  
    % yH;=Y1([  
    %   See also ZERNFUN, ZERNFUN2. R56:}<Y,  
    Ett%Y*D+J  
    % A note on the algorithm. T6=c9f?7  
    % ------------------------ B[Fx2r`0  
    % The radial Zernike polynomials are computed using the series MH.,dB&  
    % representation shown in the Help section above. For many special Lco JltY{5  
    % functions, direct evaluation using the series representation can @.yp IE\  
    % produce poor numerical results (floating point errors), because Pp7}|/  
    % the summation often involves computing small differences between 6H+gFXIv  
    % large successive terms in the series. (In such cases, the functions 3!_y@sWx  
    % are often evaluated using alternative methods such as recurrence `{c %d  
    % relations: see the Legendre functions, for example). For the Zernike O]DZb+O"  
    % polynomials, however, this problem does not arise, because the "^fcXV9Wp  
    % polynomials are evaluated over the finite domain r = (0,1), and \sEq r)\k  
    % because the coefficients for a given polynomial are generally all ^ b{0|:  
    % of similar magnitude. e[$=5U~c  
    % 1\z5[ _  
    % ZERNPOL has been written using a vectorized implementation: multiple \rn:/  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] [w' Y3U\ i  
    % values can be passed as inputs) for a vector of points R.  To achieve \hai  
    % this vectorization most efficiently, the algorithm in ZERNPOL (n;#Z,  
    % involves pre-determining all the powers p of R that are required to #K.OJJaG  
    % compute the outputs, and then compiling the {R^p} into a single @Hw#O33/'  
    % matrix.  This avoids any redundant computation of the R^p, and i^eU!^KF  
    % minimizes the sizes of certain intermediate variables. X!ZUR^  
    % RZ#b)l  
    %   Paul Fricker 11/13/2006 y2;uG2IS_g  
    Qh<_/X?  
    LX[<Wh_X(  
    % Check and prepare the inputs: %JeT,{  
    % ----------------------------- V|e9G,z~A  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) =+% QfuK  
        error('zernpol:NMvectors','N and M must be vectors.') X,y0 J  
    end hm*1w6 =  
    R*VRxQ,h6+  
    if length(n)~=length(m) m^Qc9s#D  
        error('zernpol:NMlength','N and M must be the same length.') N_(qMW  
    end Q'/v-bd?o  
    ShbW[*5  
    n = n(:); s_S[iW`l=  
    m = m(:); ^&F8NEb=2>  
    length_n = length(n); Xb6X'rY  
    :c[iS~ ~Y  
    if any(mod(n-m,2)) 0Mpc#:a%1  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') LfOXgn\  
    end [vh&o-6  
    _; /onM   
    if any(m<0) bHZXMUewC  
        error('zernpol:Mpositive','All M must be positive.') O W`yv  
    end UfIH!6Q  
    0`VA} c  
    if any(m>n) Teh _  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') ,j\1UAa  
    end Kq& b1x  
    YaU)66=u  
    if any( r>1 | r<0 ) %ub\+~  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') qp$Td<'Y  
    end NrA?^F  
    V| 9<*  
    if ~any(size(r)==1) E>>@X^ =  
        error('zernpol:Rvector','R must be a vector.') 7.U CX"  
    end zt,pV \|  
    w6FtDl$  
    r = r(:); Zpc R   
    length_r = length(r); 6?\X)qBI  
    x h|NmZg  
    if nargin==4 xNDX(_U>\  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); Jd#g"a>zZ  
        if ~isnorm &(&5ao)5  
            error('zernpol:normalization','Unrecognized normalization flag.') ip.aM#  
        end vU|=" #  
    else h2~b%|Pv  
        isnorm = false; t$+[(}@ +  
    end 4'EC(NR7N  
    J; @g#h?  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% {Aq2}sRl{  
    % Compute the Zernike Polynomials (NB\wJg $  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ROH 2KSt  
    uRIa Nwohv  
    % Determine the required powers of r: 5}-e9U  
    % ----------------------------------- \ k&(D*u  
    rpowers = []; Ib V 7}  
    for j = 1:length(n) Y243mq-  
        rpowers = [rpowers m(j):2:n(j)]; 6IRzm6d  
    end |a! y%R=  
    rpowers = unique(rpowers); lHl1Ny\?  
    oW7\T !f  
    % Pre-compute the values of r raised to the required powers, 2g'o5B\ *  
    % and compile them in a matrix: nG B jxhl  
    % ----------------------------- 8<#S:O4kA  
    if rpowers(1)==0 zNg8Oq&  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); V'n4iM  
        rpowern = cat(2,rpowern{:}); L`"B;a&  
        rpowern = [ones(length_r,1) rpowern]; d4(!9O.\  
    else UB5X2uBv  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Fke_ms=I^  
        rpowern = cat(2,rpowern{:}); ~m0l_:SF  
    end `)Z+]5:  
    b&iJui"7k  
    % Compute the values of the polynomials: 7R4xJ H  
    % -------------------------------------- .|d2s  
    z = zeros(length_r,length_n); $)(K7> P  
    for j = 1:length_n XHX$Ur9  
        s = 0:(n(j)-m(j))/2; T1Gy_ G/  
        pows = n(j):-2:m(j); j)A$%xUo  
        for k = length(s):-1:1 F@C^nX9  
            p = (1-2*mod(s(k),2))* ... +#$(>6Zu"{  
                       prod(2:(n(j)-s(k)))/          ... Rq,ST:  
                       prod(2:s(k))/                 ... &uX| Ksq  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... J|Af`HJ  
                       prod(2:((n(j)+m(j))/2-s(k))); j4C{yk  
            idx = (pows(k)==rpowers); Z#Q)a;RA  
            z(:,j) = z(:,j) + p*rpowern(:,idx); *Y!c6eA  
        end W'0(0;+G/j  
         wfE%` 1  
        if isnorm cbHb!Lbg  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); $d[ -feU  
        end =5 zx]N1r  
    end (txr%Z0E  
    ,?zIt6Z  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    850
    光币
    833
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  GLb}_-|  
    g<s[6yA  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 ,q#^ _/?  
    Rg&6J#h  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)