非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 2FcL-?
function z = zernfun(n,m,r,theta,nflag) >hKsj{=R7
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. y48]|%73
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Nk~}aj
% and angular frequency M, evaluated at positions (R,THETA) on the J5@08bZm
% unit circle. N is a vector of positive integers (including 0), and )W@ug,y
% M is a vector with the same number of elements as N. Each element \j)Evjw
% k of M must be a positive integer, with possible values M(k) = -N(k) J )1
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, :,BAw ,
% and THETA is a vector of angles. R and THETA must have the same D6SUzI1+H
% length. The output Z is a matrix with one column for every (N,M) CB7dr&>
% pair, and one row for every (R,THETA) pair. k(Yz2
% |%_C$s%
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike {N(qS'N
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), :\TMm>%q
% with delta(m,0) the Kronecker delta, is chosen so that the integral n
`j._G
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ;w{<1NH2+.
% and theta=0 to theta=2*pi) is unity. For the non-normalized 3F9V,zWtTi
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. D?|D)"?qb
% ~G@NWF?7
% The Zernike functions are an orthogonal basis on the unit circle. pP\Cwo #,
% They are used in disciplines such as astronomy, optics, and {1GJ,['qL
% optometry to describe functions on a circular domain. $Dg-;I
% r}U6LE?>
% The following table lists the first 15 Zernike functions. %wD#[<BGn>
% D(cD8fn,J
% n m Zernike function Normalization ?y>N&\pt2
% -------------------------------------------------- HKN|pO3v
% 0 0 1 1 _S!^=9bJ
% 1 1 r * cos(theta) 2 }"Y<<e<z:
% 1 -1 r * sin(theta) 2 _h%Jf{nu
% 2 -2 r^2 * cos(2*theta) sqrt(6) .Xg.,kW
% 2 0 (2*r^2 - 1) sqrt(3) HC0juT OiO
% 2 2 r^2 * sin(2*theta) sqrt(6) (qcFGM22U
% 3 -3 r^3 * cos(3*theta) sqrt(8) zI88IM7/
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) J_s`G
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) UG1<Xfu|
% 3 3 r^3 * sin(3*theta) sqrt(8) aRd~T6I
% 4 -4 r^4 * cos(4*theta) sqrt(10) bC&A@.g{
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) b[%@3 }E
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) T2{e1 =Z7
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) FT).$h~+4
% 4 4 r^4 * sin(4*theta) sqrt(10) x07 =
% -------------------------------------------------- M-WSdG[AJ
% O7.V>7Y9H
% Example 1: Z'o0::k
% g 2Fg
% % Display the Zernike function Z(n=5,m=1) $-_" SWG.
% x = -1:0.01:1; )1 <0c@g=
% [X,Y] = meshgrid(x,x); )! [B(
% [theta,r] = cart2pol(X,Y); goM;Pf
"<
% idx = r<=1; B<W}:>3
% z = nan(size(X)); hzD)yf
% z(idx) = zernfun(5,1,r(idx),theta(idx)); L
K&c~
Uy
% figure N=mvr&arP
% pcolor(x,x,z), shading interp q4BXrEOw
% axis square, colorbar \F
_1C=
% title('Zernike function Z_5^1(r,\theta)') cGot0' mB
% z/Lb1ND8
% Example 2: 4^(x)r
&(?
% jAQ{H
% % Display the first 10 Zernike functions g4W$MI
% x = -1:0.01:1; (lsG4&\0F
% [X,Y] = meshgrid(x,x);
K^{j$
% [theta,r] = cart2pol(X,Y); U$:^^Zt`B
% idx = r<=1; %Z;RY5
% z = nan(size(X)); 1N/4W6
% n = [0 1 1 2 2 2 3 3 3 3]; C&O8fNB_
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; %Tp9GGt
% Nplot = [4 10 12 16 18 20 22 24 26 28]; v]JET9hY
% y = zernfun(n,m,r(idx),theta(idx)); >^8O :.
% figure('Units','normalized') Rsx6vF8]5
% for k = 1:10 mF
gqM:
% z(idx) = y(:,k); $.,PteYK
% subplot(4,7,Nplot(k)) )\U:e:Z ae
% pcolor(x,x,z), shading interp =B&|\2`{)
% set(gca,'XTick',[],'YTick',[]) YB*)&@yx
% axis square 6O4*OR<&
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) Y XhZWo{B
% end 6Dd>ex!-A
% gD$&OkH
% See also ZERNPOL, ZERNFUN2. b~;:[ #
;5X6`GlS#5
% Paul Fricker 11/13/2006 Zf M]A)
&zn|),
pI@71~|R
% Check and prepare the inputs: Yjg$o:M
% ----------------------------- besc7!S
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) n'rq
error('zernfun:NMvectors','N and M must be vectors.') yf{\^^ i(
end U=v>gNba
lU 9o"2
if length(n)~=length(m) hC-uz _/3
error('zernfun:NMlength','N and M must be the same length.') hyxv+m[
end 4lo7yx
1P]J3o
n = n(:); R0M>'V?e
m = m(:); x.t<@y~
if any(mod(n-m,2)) lB}?ey
error('zernfun:NMmultiplesof2', ... =K@LEZZ'/<
'All N and M must differ by multiples of 2 (including 0).') E2Sj IR}
end tFcQ.1
:b9#e g
if any(m>n) <v ub
Q4
error('zernfun:MlessthanN', ... [,bJKz)a
'Each M must be less than or equal to its corresponding N.') azZ|T{S
end _9oKW;7f7
kr$)nf
if any( r>1 | r<0 ) J
rK{MhO
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ,):aU
end 2NFk#_9e~
b$w66q8
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 28JVW3&)
error('zernfun:RTHvector','R and THETA must be vectors.') *wAX&+);
end +sJ{9# 6
tE>FL
r = r(:); -raK
theta = theta(:); oD%n}
length_r = length(r); NO/$}vw
if length_r~=length(theta) C,,T7(: k
error('zernfun:RTHlength', ... ?Gf'G{^}
'The number of R- and THETA-values must be equal.') :qS~"@ ?<
end bLTX_
R
+:m)BLA4l
% Check normalization: \;%D;3Au
% -------------------- '>[ZfT
if nargin==5 && ischar(nflag) E.yFCaL
isnorm = strcmpi(nflag,'norm'); tL&_@PD)3
if ~isnorm U>IsmF>m
error('zernfun:normalization','Unrecognized normalization flag.') #WA7}tHb
end 0gyvRM@ x[
else ,!SbH
isnorm = false; kFJ]F |^7
end };2Lrz9<
va~:Ivl-)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% e?\Od}Hbw
% Compute the Zernike Polynomials DvN_}h^nX
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% jHMP"(]
AsS~TLG9p
% Determine the required powers of r: :z?T/9,C
% ----------------------------------- 0$XrtnM
m_abs = abs(m); Ev#,}l+
rpowers = []; **AJFc
for j = 1:length(n) n n[idw
rpowers = [rpowers m_abs(j):2:n(j)]; ( 3,7
end $sL+k 'dY
rpowers = unique(rpowers); `U?S 9m
aorL ,l
% Pre-compute the values of r raised to the required powers, c5CxR#O
% and compile them in a matrix: <q MX,h2
% ----------------------------- cLp9|y0r
if rpowers(1)==0 GNG.N)q#C
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Q2|6W E
rpowern = cat(2,rpowern{:}); ?h7[^sxJ
rpowern = [ones(length_r,1) rpowern]; )W @
else z:n
JN%Qb
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); ( ^=kV?<
rpowern = cat(2,rpowern{:}); PzjIM!>
end J_
h\tM
?#5)TAW
% Compute the values of the polynomials: $
z+
=lF
% -------------------------------------- G4F~V't
y = zeros(length_r,length(n)); }WQ:Rmi
for j = 1:length(n) qztL M?iV
s = 0:(n(j)-m_abs(j))/2; d76C]R5L
pows = n(j):-2:m_abs(j); "|
oW6@
for k = length(s):-1:1 BZQJ@lk5
p = (1-2*mod(s(k),2))* ... OOsd*nX/
prod(2:(n(j)-s(k)))/ ...
?s 0")R&
prod(2:s(k))/ ... "Q23s"
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... d[(%5pw~zL
prod(2:((n(j)+m_abs(j))/2-s(k))); wS2N,X/Y
idx = (pows(k)==rpowers); +w?1<Z
y(:,j) = y(:,j) + p*rpowern(:,idx); L'BzefU;04
end |qk%UN<
|?fc]dl1]
if isnorm k/xNqN(
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 6Hpj&Qm
end w68VOymD/
end @0:mP
% END: Compute the Zernike Polynomials x(zW<J5X"
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% la!rg#)-X
I8hmn@ce
% Compute the Zernike functions: :;x#qtv~Iz
% ------------------------------ aG1[85:,\i
idx_pos = m>0; E<_+Tc
idx_neg = m<0; \?\q0o<V$
LD5E
z = y; !91<K{#A{
if any(idx_pos) %hzNkyD)Y
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); Z Q9's
end
XN'X&J
if any(idx_neg) |B*`%7{+
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); =7("xz%
end QeAkuqT'[
=HvLuVc
% EOF zernfun