切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11481阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 @$Z5A g!  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! RrGS$<  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 P4Wd=Xoz6  
    function z = zernfun(n,m,r,theta,nflag) v;jrAND  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. xLq+n jH E  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N dax|4R  
    %   and angular frequency M, evaluated at positions (R,THETA) on the ~d){7OG  
    %   unit circle.  N is a vector of positive integers (including 0), and irgjq/&d  
    %   M is a vector with the same number of elements as N.  Each element [uZU p*.V  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) q>!T*BQ  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, 9]7+fu  
    %   and THETA is a vector of angles.  R and THETA must have the same DlfXzKn;  
    %   length.  The output Z is a matrix with one column for every (N,M) &> }MoB  
    %   pair, and one row for every (R,THETA) pair. A7~)h}~   
    % _ 4Hf?m7z  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ?W%3>A  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), B~yD4^  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Y13IrCA2  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, efZdtrKgy  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized SS(jjpe&,  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. YWd:Ok0  
    % B=|yjA'Fg  
    %   The Zernike functions are an orthogonal basis on the unit circle. u\s mQhQGE  
    %   They are used in disciplines such as astronomy, optics, and q2&&n6PYW  
    %   optometry to describe functions on a circular domain. z8vF QO\I"  
    % \`|,wLgH  
    %   The following table lists the first 15 Zernike functions. 7o0e j#  
    % *l_1T4]S  
    %       n    m    Zernike function           Normalization F2 >o"j2  
    %       -------------------------------------------------- e[>(L%QV+  
    %       0    0    1                                 1 )u3<lpoTy  
    %       1    1    r * cos(theta)                    2 ;2#HM^Mu  
    %       1   -1    r * sin(theta)                    2 aH,0+|  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) @fbvu_-].  
    %       2    0    (2*r^2 - 1)                    sqrt(3) nb(#;3DQ  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) x\I9J4Q  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) q\d'}:kfu  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) oV,>u5:B  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) pd>EUdbrp&  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) h#;fBQ]   
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) [<8<+lH=P  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) )k0bP1oGS  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) V u;tU.  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) (O /hu3  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) |Z#) 1K  
    %       -------------------------------------------------- *kZJ  
    % [4PG_k[uTJ  
    %   Example 1: k<8:  
    % #HM0s~^w&  
    %       % Display the Zernike function Z(n=5,m=1) 9~Q.[ A  
    %       x = -1:0.01:1; }SUe 4r&4}  
    %       [X,Y] = meshgrid(x,x); sL+/Eeb` c  
    %       [theta,r] = cart2pol(X,Y); U%w ?muJW  
    %       idx = r<=1; l$)pCo  
    %       z = nan(size(X)); "4n_MV>p  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Tet,mzVuu  
    %       figure j~Rh_\>Q  
    %       pcolor(x,x,z), shading interp V"T;3@N/4  
    %       axis square, colorbar V..m2nQj  
    %       title('Zernike function Z_5^1(r,\theta)') Kax85)9u  
    % {jggiMwo.v  
    %   Example 2: d=H C;T)  
    % :+!hR4Z~\;  
    %       % Display the first 10 Zernike functions F-UY~i8  
    %       x = -1:0.01:1; zx0{cNPK5  
    %       [X,Y] = meshgrid(x,x); w9i1ag  
    %       [theta,r] = cart2pol(X,Y); ]>*Z 1g;  
    %       idx = r<=1; :mY(d6#A>  
    %       z = nan(size(X)); \u",bMQF  
    %       n = [0  1  1  2  2  2  3  3  3  3]; +4B>gS[ F  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; !mq+Oz~  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; w9c  
    %       y = zernfun(n,m,r(idx),theta(idx)); DFqXZfjm  
    %       figure('Units','normalized') L!-T`R8'c  
    %       for k = 1:10 "m/0>UU0  
    %           z(idx) = y(:,k); xjv?Z"X  
    %           subplot(4,7,Nplot(k)) j YO #  
    %           pcolor(x,x,z), shading interp bWjW_$8  
    %           set(gca,'XTick',[],'YTick',[]) -zG/@.  
    %           axis square won%(n,HT  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) !63x^# kg  
    %       end >(~; V;  
    % y*|"!FK  
    %   See also ZERNPOL, ZERNFUN2. GZ*cV3Y`&  
    MP0gLi  
    %   Paul Fricker 11/13/2006 S :9zz  
    f>l}y->-Ug  
    NqlG=pu  
    % Check and prepare the inputs: /,GDG=ra  
    % ----------------------------- [ V/*{Z  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) b~%(5r.  
        error('zernfun:NMvectors','N and M must be vectors.') ~ hYG%  
    end F7cv`i?2."  
    g2w0#-  
    if length(n)~=length(m) AdR}{:ia  
        error('zernfun:NMlength','N and M must be the same length.') lN{-}f;TN  
    end |;Jcf3e(  
    V\X.AGc  
    n = n(:); Fag%#jxI  
    m = m(:); o;_v'  
    if any(mod(n-m,2)) $WrDZU 2z  
        error('zernfun:NMmultiplesof2', ... Z5_U D  
              'All N and M must differ by multiples of 2 (including 0).') b!ot%uZZ  
    end ([tbFI}A  
    m7g; psg  
    if any(m>n) WPCaxA+l  
        error('zernfun:MlessthanN', ... hSo\  
              'Each M must be less than or equal to its corresponding N.') G W|~sE +  
    end <gQw4  
    X0Xs"--}  
    if any( r>1 | r<0 ) "*XR'9~7  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') e ST8>r  
    end zF3fpEKe  
    /wH]OD{  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) ]rXRon='  
        error('zernfun:RTHvector','R and THETA must be vectors.') QJ-6aB  
    end Jc(tV(z  
    yA \C3r'  
    r = r(:); YPFjAQ  
    theta = theta(:); @/E5$mX`  
    length_r = length(r); \C~Y  
    if length_r~=length(theta) NuLQkf)  
        error('zernfun:RTHlength', ... \h,S1KmIBD  
              'The number of R- and THETA-values must be equal.') E@Q+[~H}  
    end [#M^:Q  
    rpQB# Pz  
    % Check normalization: ^e8~eL+  
    % -------------------- 4}gqtw:  
    if nargin==5 && ischar(nflag) .@gv }`>  
        isnorm = strcmpi(nflag,'norm'); w=e~ M  
        if ~isnorm Qpe&_.&RE  
            error('zernfun:normalization','Unrecognized normalization flag.') Ca0~K42~  
        end K p ~x  
    else ~OAST  
        isnorm = false; 1|q$Wn:*  
    end oV&AJ=|\  
    7=aF-;X3jj  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @K3<K (  
    % Compute the Zernike Polynomials (kK6=Mrf  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (6L[eWuTn  
    ~?H _?}e  
    % Determine the required powers of r: $*\[I{Zau}  
    % ----------------------------------- )lTkqz8v  
    m_abs = abs(m); c7[|x%~  
    rpowers = []; `h+sSIko  
    for j = 1:length(n) Fi14_{  
        rpowers = [rpowers m_abs(j):2:n(j)]; >Ke4lO"  
    end am]$`7R5d  
    rpowers = unique(rpowers); *[) b}?  
    5<0&y3  
    % Pre-compute the values of r raised to the required powers, Ugp[Ugr  
    % and compile them in a matrix: "\Zsr6y  
    % ----------------------------- hl(M0cxEWP  
    if rpowers(1)==0 cz~Fz;)2{N  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); _{_ybXG|  
        rpowern = cat(2,rpowern{:}); uosFpa  
        rpowern = [ones(length_r,1) rpowern]; `b=?z%LuT  
    else se:]F/  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 4onRO!G,  
        rpowern = cat(2,rpowern{:}); vUk <z*  
    end Gc^w,n[E  
    PO%Z.ol9  
    % Compute the values of the polynomials: }te\) Yk.N  
    % -------------------------------------- a^ hDxeG  
    y = zeros(length_r,length(n)); SzR7:U  
    for j = 1:length(n) MDZ,a 0?4t  
        s = 0:(n(j)-m_abs(j))/2; kAsYh4[  
        pows = n(j):-2:m_abs(j); <5%x3e"7u  
        for k = length(s):-1:1 wR@&C\}9  
            p = (1-2*mod(s(k),2))* ... %5?qS`/c(  
                       prod(2:(n(j)-s(k)))/              ... 56Z 1jN^U  
                       prod(2:s(k))/                     ... b)"bX}  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... ^oDCF  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); a/A$ MXZ_  
            idx = (pows(k)==rpowers); ?W:YS82  
            y(:,j) = y(:,j) + p*rpowern(:,idx); _WO*N9Iz  
        end %JF.m$-  
         3J%(2}{y  
        if isnorm :s`~m;Y9?  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); !ba /] A/  
        end ~xZFm  
    end `CP# S7W^  
    % END: Compute the Zernike Polynomials d:cs8f4>  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "#anL8  
    q,w8ca 4~y  
    % Compute the Zernike functions: owM3Gz%?UA  
    % ------------------------------ ,Dd )=  
    idx_pos = m>0; 'id] <<F  
    idx_neg = m<0; 4iMo&E<  
    "Qj;pqR  
    z = y; K:hZ  
    if any(idx_pos) |3j'HN5S  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); lf3QMr+  
    end )!M %clm.  
    if any(idx_neg) p B*8D  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ^x8*]Sz#x  
    end ' P5t tI#|  
    xXkP(^ Y  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) J=v" HeVm  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. UolsF-U}'  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 2wCTd:e:  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive  @Tk5<B3  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, l`"i'P   
    %   and THETA is a vector of angles.  R and THETA must have the same 2UqLV^ZY  
    %   length.  The output Z is a matrix with one column for every P-value, R <Mvwu  
    %   and one row for every (R,THETA) pair. v w(X9xa  
    % D2<(V,h9  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike -CePtq`  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) gT3i{iU  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) ]rk8Jsg  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 sv}k_6XgY  
    %   for all p. W>[0u3  
    % b/^i  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36  M18<d1*  
    %   Zernike functions (order N<=7).  In some disciplines it is a@+n  
    %   traditional to label the first 36 functions using a single mode 9Q)9*nHe  
    %   number P instead of separate numbers for the order N and azimuthal ^&^~LKl~  
    %   frequency M. i|M^QKvF  
    % 9*`(*>S  
    %   Example: 0_\@!#-sml  
    % {DfXn1Cg0U  
    %       % Display the first 16 Zernike functions ~\ uI&S5  
    %       x = -1:0.01:1; D=ZH? d  
    %       [X,Y] = meshgrid(x,x); W_JFe(=3,  
    %       [theta,r] = cart2pol(X,Y); _4+'@u #  
    %       idx = r<=1; 9UbD =}W  
    %       p = 0:15; xcf`i:\  
    %       z = nan(size(X)); _o,Mji|  
    %       y = zernfun2(p,r(idx),theta(idx)); kF,_o/Jc  
    %       figure('Units','normalized') W.67};',  
    %       for k = 1:length(p) ^)wTCkH&y  
    %           z(idx) = y(:,k); Wycood*  
    %           subplot(4,4,k) p0r:U< &  
    %           pcolor(x,x,z), shading interp }fqz8'E9  
    %           set(gca,'XTick',[],'YTick',[]) 4n}tDHvd  
    %           axis square uu5L9.i9  
    %           title(['Z_{' num2str(p(k)) '}']) (j>a?dKDS  
    %       end a8Va3Y  
    % ph5rS<  
    %   See also ZERNPOL, ZERNFUN. nogdOGo  
    ^/`W0kT  
    %   Paul Fricker 11/13/2006 ()cqax4  
    w6cW7}ZD,  
    !t.*xT4W  
    % Check and prepare the inputs: APR"%(xD#  
    % ----------------------------- IXA3G7$)  
    if min(size(p))~=1 eG&3E`[  
        error('zernfun2:Pvector','Input P must be vector.') tV'>9YVdG  
    end }hoyjzv]L  
    BNj@~uC{  
    if any(p)>35 _zuX6DO  
        error('zernfun2:P36', ... B_ x?s  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... JI5%fU%O#n  
               '(P = 0 to 35).']) ;1gWz  
    end agI"Kh]j?  
    v4$"{W;'  
    % Get the order and frequency corresonding to the function number: bxXNv^  
    % ---------------------------------------------------------------- #?^%#"~4H  
    p = p(:); 8*$HS.Db'  
    n = ceil((-3+sqrt(9+8*p))/2); %k+G-oT5  
    m = 2*p - n.*(n+2); &N+i3l6`  
    Mtw7aK  
    % Pass the inputs to the function ZERNFUN: *IGCFZbp41  
    % ---------------------------------------- QGq8r>  
    switch nargin <F%c"Rkh  
        case 3 Dwx^hNh  
            z = zernfun(n,m,r,theta); \H&8.<HJ  
        case 4 CW+]Jv]"  
            z = zernfun(n,m,r,theta,nflag); *hV$\CLT.  
        otherwise G*y! Q  
            error('zernfun2:nargin','Incorrect number of inputs.') v9_7OMl/x  
    end f6$$e+  
    C)z?-f  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) *U}cj A:ZN  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. 6Qx[W>I  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of ]IM/R@  
    %   order N and frequency M, evaluated at R.  N is a vector of /h v2=A  
    %   positive integers (including 0), and M is a vector with the =3H*%  
    %   same number of elements as N.  Each element k of M must be a G)8H9EV  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) <t"KNKI  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is V/@7XAt  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix v"v-c!k  
    %   with one column for every (N,M) pair, and one row for every b+tm[@|,v  
    %   element in R. G5T(  
    % n5z";:p  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- p\G1O*Z  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is QP~Iz*J'  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to /V"6Q'D  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 (/^dyG|X'  
    %   for all [n,m]. @p 2XaqZ  
    % 1Pp2wpD4iC  
    %   The radial Zernike polynomials are the radial portion of the 87p tab@  
    %   Zernike functions, which are an orthogonal basis on the unit y8Oz4|  
    %   circle.  The series representation of the radial Zernike m.b}A'GT  
    %   polynomials is ? \p,s-CR:  
    % {;^GKb+  
    %          (n-m)/2 4SNDKFw  
    %            __ (p!w`MSv  
    %    m      \       s                                          n-2s A2p]BW&  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r >MLP mER  
    %    n      s=0 M'sq{K9  
    % ('oA{,#L  
    %   The following table shows the first 12 polynomials. l\"wdS}  
    % 1F]jy  
    %       n    m    Zernike polynomial    Normalization dUc ([&  
    %       --------------------------------------------- mXK7y.9\  
    %       0    0    1                        sqrt(2) SFkB,)Z N  
    %       1    1    r                           2 ;4Wz0suf  
    %       2    0    2*r^2 - 1                sqrt(6) 4OTrMT$y  
    %       2    2    r^2                      sqrt(6) =EQaZ8k  
    %       3    1    3*r^3 - 2*r              sqrt(8) n>L24rL  
    %       3    3    r^3                      sqrt(8) SpA-E/el  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) J_}Rsp ED  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) ?atHZLF  
    %       4    4    r^4                      sqrt(10) qL2Sv(A Z!  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) Sh;Z\nj  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) <gLq?~e|A  
    %       5    5    r^5                      sqrt(12) D&|HS!  
    %       --------------------------------------------- {D`_q|  
    % X 3(CY`HH[  
    %   Example: PE&$2(  
    % G"|c_qX  
    %       % Display three example Zernike radial polynomials  BRF4 p:  
    %       r = 0:0.01:1; [+(fN  
    %       n = [3 2 5]; T_I ApC  
    %       m = [1 2 1]; 5XF&yYWq  
    %       z = zernpol(n,m,r); #%{x*y:Ms  
    %       figure P,*yuF|bk  
    %       plot(r,z) "YoFUfaNg  
    %       grid on !D~\uW1b  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') 5]F4.sa  
    % 5{\;7(  
    %   See also ZERNFUN, ZERNFUN2. 7$A=|/'nSA  
    7f]O /  
    % A note on the algorithm. B]wfDUG  
    % ------------------------ $m[* )0/  
    % The radial Zernike polynomials are computed using the series @M=\u-jJ.  
    % representation shown in the Help section above. For many special ~^v*f   
    % functions, direct evaluation using the series representation can Ur,{ZGm  
    % produce poor numerical results (floating point errors), because fK; I0J  
    % the summation often involves computing small differences between ,ek0)z.  
    % large successive terms in the series. (In such cases, the functions 6>F1!Q  
    % are often evaluated using alternative methods such as recurrence }c ,:uN  
    % relations: see the Legendre functions, for example). For the Zernike M|IgG:a;T  
    % polynomials, however, this problem does not arise, because the <hB~|a<#  
    % polynomials are evaluated over the finite domain r = (0,1), and ]>oI3&6s  
    % because the coefficients for a given polynomial are generally all mt]50}eK  
    % of similar magnitude. $&KiN82,  
    % CW'<Nh  
    % ZERNPOL has been written using a vectorized implementation: multiple 6T-iBJT  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] TSKR~3D#  
    % values can be passed as inputs) for a vector of points R.  To achieve a8cX {6  
    % this vectorization most efficiently, the algorithm in ZERNPOL Z/+H  
    % involves pre-determining all the powers p of R that are required to my*E7[  
    % compute the outputs, and then compiling the {R^p} into a single tr$d?  
    % matrix.  This avoids any redundant computation of the R^p, and m4 :"c"  
    % minimizes the sizes of certain intermediate variables. Dfw%Bu  
    % aB)G!Rm&  
    %   Paul Fricker 11/13/2006 oRQ( l I>  
    /[=U$=uH  
    XBN,{  
    % Check and prepare the inputs: *$9Rb2}kK  
    % ----------------------------- 8c'5P  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) G4QsR7  
        error('zernpol:NMvectors','N and M must be vectors.') 4$Ud4<  
    end C`b)}dY  
    f ( ug3(j  
    if length(n)~=length(m) )g[7XB/w  
        error('zernpol:NMlength','N and M must be the same length.') mL3 Q  
    end n*y@3.  
    cW?~]E'<  
    n = n(:); t[%ELHV  
    m = m(:); (tz fyZ M  
    length_n = length(n); of0 hJR  
    41^ $  
    if any(mod(n-m,2)) &D#B"XI  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') g7O , <  
    end FcmL 4^s.`  
    uV\~2#o$_  
    if any(m<0) >IEc4  
        error('zernpol:Mpositive','All M must be positive.') ?Y'r=Q{w  
    end ;0;5+ J7  
    Xf*}V+&WN  
    if any(m>n) T74."Lo#  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') cPg$*,]  
    end M<cm]  
    L^{wxOf&6E  
    if any( r>1 | r<0 ) Ahrtl6@AS  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') [J+]1hCZ|  
    end N7}y U~j^  
    "<1-9CMl  
    if ~any(size(r)==1) "-A@d&5.  
        error('zernpol:Rvector','R must be a vector.') eN-lz_..7  
    end @2R+?2 j  
    X DAwE  
    r = r(:); SS"Z>talw  
    length_r = length(r); N3o kN8d  
    f<l.%B  
    if nargin==4 2hF j+Ay  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); y];@ M<<?e  
        if ~isnorm 66MWOrr  
            error('zernpol:normalization','Unrecognized normalization flag.') , \R,O  
        end HFTDea+#  
    else ;ksxz  
        isnorm = false; X2to](\% X  
    end +8|r_z\A5a  
    ^=Egf?|[  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6I~{~YvB"  
    % Compute the Zernike Polynomials Y"'k $jS-  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% uW^W/S%'  
    un(fr7NW  
    % Determine the required powers of r: .9KW| (uW  
    % ----------------------------------- vp..>BMJ  
    rpowers = []; 9}Qrb@DT  
    for j = 1:length(n) .aE%z/@s=  
        rpowers = [rpowers m(j):2:n(j)]; jS'hs>Ot  
    end =%R|@lz_x  
    rpowers = unique(rpowers); Ll'!aar,  
    (]*!`(_b  
    % Pre-compute the values of r raised to the required powers, MD=VR(P?eq  
    % and compile them in a matrix: [Se0+\,&  
    % ----------------------------- 2-.%WhE/  
    if rpowers(1)==0 Z'|A>4\  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); rBovC  
        rpowern = cat(2,rpowern{:}); 7T@"2WYat  
        rpowern = [ones(length_r,1) rpowern]; AAld2"r  
    else ,Z p9,nf  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); X^ZUm  
        rpowern = cat(2,rpowern{:}); qr[+^*Ha  
    end p:gM?2p1  
    /dt'iai~l  
    % Compute the values of the polynomials: ~L=Idt!9  
    % -------------------------------------- Ax"I$6n>  
    z = zeros(length_r,length_n); 8et.A  
    for j = 1:length_n DsH`I %w{  
        s = 0:(n(j)-m(j))/2; 7z4u?>pne*  
        pows = n(j):-2:m(j); NP5;&}uv*!  
        for k = length(s):-1:1 sKuPV  
            p = (1-2*mod(s(k),2))* ... +jpC%o}C  
                       prod(2:(n(j)-s(k)))/          ... Il,^/qvIY  
                       prod(2:s(k))/                 ... 9\[A%jp#K@  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... "J (.dg]"  
                       prod(2:((n(j)+m(j))/2-s(k))); &+>)H$5  
            idx = (pows(k)==rpowers); W_z?t;  
            z(:,j) = z(:,j) + p*rpowern(:,idx); b1`(f"&l  
        end hg=BXe4:  
         {ei,>5K  
        if isnorm 60St99@O  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); C/je5  
        end t?R=a-ZI  
    end \qh -fW; #  
    mQ]wLPP{1  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  IBU(Hm1,  
    'oHtg @  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 +J$[RxQ#  
    E'$r#k:o  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)