非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 J7$5<
function z = zernfun(n,m,r,theta,nflag) Es1Yx\/:
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. cvi+AZ=
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N anHP5gD
% and angular frequency M, evaluated at positions (R,THETA) on the pz~AsF
% unit circle. N is a vector of positive integers (including 0), and Qr$uFh/y
% M is a vector with the same number of elements as N. Each element %=%jy
% k of M must be a positive integer, with possible values M(k) = -N(k) 3%>"|Ye}A
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, 76(&O
% and THETA is a vector of angles. R and THETA must have the same yin"+&<T
% length. The output Z is a matrix with one column for every (N,M) Fod2KS;g
% pair, and one row for every (R,THETA) pair. ]Ocf %(
% <5G*#0gw
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike @zW'!Ol
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), =DUsQN!
% with delta(m,0) the Kronecker delta, is chosen so that the integral ,@8>=rT
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, f?[IwA`
% and theta=0 to theta=2*pi) is unity. For the non-normalized JuKj
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. PKty'}KF
% -(@dMY
% The Zernike functions are an orthogonal basis on the unit circle. K'7i$bl%
% They are used in disciplines such as astronomy, optics, and Kmk<
% optometry to describe functions on a circular domain. o0_RU<bWN
% #P<v[O/rA
% The following table lists the first 15 Zernike functions. Hi|'
% esWgYAc3{
% n m Zernike function Normalization FX4](oM
% -------------------------------------------------- +(QGlRd
% 0 0 1 1 bw ' yX
% 1 1 r * cos(theta) 2 -aXV}ZY"
% 1 -1 r * sin(theta) 2 !zVuO*+
% 2 -2 r^2 * cos(2*theta) sqrt(6) 48Z{wV,
% 2 0 (2*r^2 - 1) sqrt(3) [wi "
% 2 2 r^2 * sin(2*theta) sqrt(6) ;XRLp:y
% 3 -3 r^3 * cos(3*theta) sqrt(8) fOF02WP^
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) T1LtO O
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) ;a[56W
% 3 3 r^3 * sin(3*theta) sqrt(8) (Rve<n6{A
% 4 -4 r^4 * cos(4*theta) sqrt(10)
9Ld3
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) &Dgho
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) "n=`{~F
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Da0E)
% 4 4 r^4 * sin(4*theta) sqrt(10) ]+{Cy\*kR
% -------------------------------------------------- H_3S#.
% 1BmevEa)
% Example 1: {;=I69X
% +MIDq{B
% % Display the Zernike function Z(n=5,m=1) &NL=Bd
% x = -1:0.01:1;
+,gI|
% [X,Y] = meshgrid(x,x); @q} .BcSg
% [theta,r] = cart2pol(X,Y); %F` cNw]
% idx = r<=1; !FX;QD@"
% z = nan(size(X)); "W?k~.uw
% z(idx) = zernfun(5,1,r(idx),theta(idx)); Y7zg
% figure eo24I0`N
% pcolor(x,x,z), shading interp x~?,Wv|cm
% axis square, colorbar "[q/2vC
% title('Zernike function Z_5^1(r,\theta)') "@;q! B.qo
% )0
.gW
% Example 2: MMN2XxS
% @(,k%84z
% % Display the first 10 Zernike functions hCD0Zel
% x = -1:0.01:1; ;$wS<zp6
% [X,Y] = meshgrid(x,x); \f}S Hh
% [theta,r] = cart2pol(X,Y); &jT>)MXPu
% idx = r<=1; R#"kh/M
% z = nan(size(X)); A|,\}9)4X[
% n = [0 1 1 2 2 2 3 3 3 3]; ,2qJXMg"=$
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; ;O}%_ef@
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ?Lbwo<E
% y = zernfun(n,m,r(idx),theta(idx)); b'p bf
% figure('Units','normalized') :_~UO^*h
% for k = 1:10 Ou"QUn|
% z(idx) = y(:,k); eu@-v"=w
% subplot(4,7,Nplot(k)) #I'W[\l~+
% pcolor(x,x,z), shading interp i/2OE&*O[
% set(gca,'XTick',[],'YTick',[]) $W<H[k&(B
% axis square [rC-3sGar
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 5?r#6:(yI
% end >_!pg<{,
% ClCb.Ozj4
% See also ZERNPOL, ZERNFUN2. @NWjYHM[`
E ~<SEA
% Paul Fricker 11/13/2006 ;nyV)+t+a
9<I@}w
+AhR7R!
% Check and prepare the inputs: v`A^6)U#M
% ----------------------------- W$O^IC
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) PspH[db
error('zernfun:NMvectors','N and M must be vectors.') ,%w_E[2
end 1&\_|2
}QU9+<Z[r
if length(n)~=length(m) G(~d1%(
error('zernfun:NMlength','N and M must be the same length.') `re]Q0IO
end .+t{o[
{mY<R`Ee
n = n(:); _iLXs
m = m(:); kSv?p1\@&P
if any(mod(n-m,2)) LzB)o\a
error('zernfun:NMmultiplesof2', ... Tw/kD)u{
'All N and M must differ by multiples of 2 (including 0).') 'g$~ij ;x
end JR|yg=E
oUIa/}}w5
if any(m>n) :{pvA;f
error('zernfun:MlessthanN', ... *[*LtyCQt4
'Each M must be less than or equal to its corresponding N.') BQ{Gp 2N
end 3Bee6N>
}jBr[S5
if any( r>1 | r<0 ) lEIX,amwa
error('zernfun:Rlessthan1','All R must be between 0 and 1.') &Y%Kr`.h
end pN6!IxN$
/ tM<ois*
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) v|t_kNX;v*
error('zernfun:RTHvector','R and THETA must be vectors.') #F@53N
end 8+{WH/}y8
^)<>5.%1''
r = r(:); [X0Wfb}{
theta = theta(:); {>tgNW>)
length_r = length(r); ]|18tVXc
if length_r~=length(theta) _m;0%]+
error('zernfun:RTHlength', ... %Js3Y9AL C
'The number of R- and THETA-values must be equal.') ;29q
end ;ZPAnd:pb
o\vIYQ
% Check normalization: G,9osTt/
% --------------------
Z+`mla
if nargin==5 && ischar(nflag) YNA %/
isnorm = strcmpi(nflag,'norm'); hV#+joT8i
if ~isnorm #~*fZ|sq+3
error('zernfun:normalization','Unrecognized normalization flag.') uy)iB'st&
end {LYA?w^GT
else ,uqSq
isnorm = false; ?1?D[7$
end !^cQPX2<
ugcWFB5|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% !31v@v:)
% Compute the Zernike Polynomials lTW5>%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8.HqQ:?&2t
v/=O:SM}
% Determine the required powers of r: a97A{7I&
% ----------------------------------- vT"T*FKh:
m_abs = abs(m); ?&EPZq