切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11400阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 cc2oFn  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! \/x)BE,  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 >y06s{[  
    function z = zernfun(n,m,r,theta,nflag) EBL,E:_)  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. !Bd* L~D  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N J%O4IcE  
    %   and angular frequency M, evaluated at positions (R,THETA) on the LN3dp?;_{  
    %   unit circle.  N is a vector of positive integers (including 0), and NV:XPw/  
    %   M is a vector with the same number of elements as N.  Each element o YI=p3l  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) s*~jvL  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Ag-?6v  
    %   and THETA is a vector of angles.  R and THETA must have the same @tv];t  
    %   length.  The output Z is a matrix with one column for every (N,M) + x ;ML  
    %   pair, and one row for every (R,THETA) pair. g7}z &S ;_  
    % vL=--#  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike 8,H5G`  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), [|;Zxb:  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral /&!d  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, RnBmy^l"  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized F6GZZKj  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. e'?d oP  
    % \F+o=  
    %   The Zernike functions are an orthogonal basis on the unit circle. QVRokI`BF  
    %   They are used in disciplines such as astronomy, optics, and Ccd7|L1  
    %   optometry to describe functions on a circular domain. "KI,3g _V  
    % ://# %SE  
    %   The following table lists the first 15 Zernike functions. eN?P) ,  
    % J)yy}[Fx  
    %       n    m    Zernike function           Normalization :iNAXy  
    %       -------------------------------------------------- U!I_i*:U  
    %       0    0    1                                 1 \gzwsT2&  
    %       1    1    r * cos(theta)                    2 't%%hw-m}  
    %       1   -1    r * sin(theta)                    2 w3bH|VnU8;  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) pA,EUh| H  
    %       2    0    (2*r^2 - 1)                    sqrt(3) >0+|0ba  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) &'ETx"  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) [oN> :  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) $\@ V4  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Q]g4gj  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) >]Yha}6h  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) #IrP"j^  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) '%RK KA  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) gsR9M%mv  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) aE cg_es  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) AW;) _|xM  
    %       -------------------------------------------------- sv6U%qV  
    % HXV73rDA  
    %   Example 1: f]A6Mx6  
    % Y&!]I84]  
    %       % Display the Zernike function Z(n=5,m=1) <^q"31f  
    %       x = -1:0.01:1; #bZ=R  
    %       [X,Y] = meshgrid(x,x); `8.32@rUB.  
    %       [theta,r] = cart2pol(X,Y); .&}4  
    %       idx = r<=1; g!Yh=kA'N  
    %       z = nan(size(X)); = hX-jP  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); Qp.!U~  
    %       figure a<"& RnG(  
    %       pcolor(x,x,z), shading interp z*~ PYAt  
    %       axis square, colorbar nK'8Mo  
    %       title('Zernike function Z_5^1(r,\theta)') }=m?gF%3  
    % vMdhNOU  
    %   Example 2: fX$4TPy(h  
    % <H@!Xw;  
    %       % Display the first 10 Zernike functions {ro!OuA  
    %       x = -1:0.01:1; Ci9wF (<k  
    %       [X,Y] = meshgrid(x,x); 5{/Pn%5  
    %       [theta,r] = cart2pol(X,Y); PZg]zz=V4  
    %       idx = r<=1; }ZVv  
    %       z = nan(size(X)); f#Cdx"  
    %       n = [0  1  1  2  2  2  3  3  3  3]; _v=WjN  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; 9x^ /kAB  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; Afhx`J1KO  
    %       y = zernfun(n,m,r(idx),theta(idx)); la|l9N^,  
    %       figure('Units','normalized') L\b_,'I  
    %       for k = 1:10 \lIHC{V\  
    %           z(idx) = y(:,k); Dlf=N$BL7d  
    %           subplot(4,7,Nplot(k)) d*(Bs $De  
    %           pcolor(x,x,z), shading interp  KP-z  
    %           set(gca,'XTick',[],'YTick',[]) Bo\v-97  
    %           axis square U105u.#7  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 35kbE'  
    %       end il%tu<E#J~  
    % Yn2^nT=8  
    %   See also ZERNPOL, ZERNFUN2. j?hyN@ns  
    iSLf:  
    %   Paul Fricker 11/13/2006 9QZwUQ  
    Y'*h_K  
    c!wB'~MS#  
    % Check and prepare the inputs: $v@$oPmMj  
    % ----------------------------- /_\W*@ E  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) uOqDJM'RM  
        error('zernfun:NMvectors','N and M must be vectors.') pcTXTy 28  
    end 7t Kft  
    ,;pX.Ob U  
    if length(n)~=length(m) IMrOPwjc  
        error('zernfun:NMlength','N and M must be the same length.') ?ML<o>OKg  
    end ~cj:AIF  
    MJpTr5Vs  
    n = n(:); ibUPd."W  
    m = m(:); Xtnmh)'K~#  
    if any(mod(n-m,2)) 9],"AjD  
        error('zernfun:NMmultiplesof2', ... 2#}IGZ`Yp/  
              'All N and M must differ by multiples of 2 (including 0).')  grA L4  
    end i j;'4GzQL  
    9sU,.T  
    if any(m>n) jAHn`Bxz  
        error('zernfun:MlessthanN', ... sc>)X{eb  
              'Each M must be less than or equal to its corresponding N.') n8aiGnd=v  
    end bO3KaOC8N  
    -vAG5x/,  
    if any( r>1 | r<0 ) }mZ*f y0t  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') jt?%03iuk  
    end ,?~,"IQyi[  
    |sM#g1D@  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) GhA~PjZS  
        error('zernfun:RTHvector','R and THETA must be vectors.') Vzm7xl [  
    end 2DdLqZY#  
    &Sp:?I-  
    r = r(:); 4<Y[L'UaA@  
    theta = theta(:); |noTIAI  
    length_r = length(r); =DwH*U /YR  
    if length_r~=length(theta) ]r5Xp#q2  
        error('zernfun:RTHlength', ... d0E5;3tQ  
              'The number of R- and THETA-values must be equal.') UpBYL?+L  
    end 0LuY"(LR  
    vAxtN RS  
    % Check normalization: $& gidz/w  
    % -------------------- \9Zfu4WR  
    if nargin==5 && ischar(nflag) U<byR!qLie  
        isnorm = strcmpi(nflag,'norm'); e}w!]  
        if ~isnorm K%_JQ0`  
            error('zernfun:normalization','Unrecognized normalization flag.') vjS7nR"T  
        end rn*VL(Yd(  
    else W7> _nK+g?  
        isnorm = false; ,W;8!n0  
    end 1nG"\I5N}  
    (XWs4R.mkb  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 8Wp1L0$B  
    % Compute the Zernike Polynomials c3-bn #  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @cNI|T  
    !XceiQu  
    % Determine the required powers of r: 6 VDF@V$E  
    % -----------------------------------  ]^%3Y  
    m_abs = abs(m); f89<o#bm7h  
    rpowers = []; Mt0|`=64  
    for j = 1:length(n) |8ZAE%/d  
        rpowers = [rpowers m_abs(j):2:n(j)]; u{G6xuPWf  
    end g;@PEZk1  
    rpowers = unique(rpowers); wO N Qlt  
    { )K(}~VD  
    % Pre-compute the values of r raised to the required powers, "E#%x{d  
    % and compile them in a matrix: 5@5="lNjS  
    % ----------------------------- l>q.BG  
    if rpowers(1)==0 kp"cHJNx  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); W0hLh<Go  
        rpowern = cat(2,rpowern{:}); -2 ?fg   
        rpowern = [ones(length_r,1) rpowern]; ypVr"fWB  
    else 2V 'Tt3  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); |3@]5f&  
        rpowern = cat(2,rpowern{:}); "5bk82."  
    end (>23[;.0  
    ktb. fhO  
    % Compute the values of the polynomials: '(*D3ysU  
    % -------------------------------------- n_hD  
    y = zeros(length_r,length(n)); K*[wr@)u  
    for j = 1:length(n) g`8|jg0]`I  
        s = 0:(n(j)-m_abs(j))/2; Stpho4+/y  
        pows = n(j):-2:m_abs(j); D1 z3E;:  
        for k = length(s):-1:1 dRmTE  
            p = (1-2*mod(s(k),2))* ...  _>l,%n  
                       prod(2:(n(j)-s(k)))/              ... aleIy}"  
                       prod(2:s(k))/                     ... 9X~^w_cdk  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... SQK6BEjE8  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); zwS'AN'A  
            idx = (pows(k)==rpowers); iV=#'yY  
            y(:,j) = y(:,j) + p*rpowern(:,idx); Zup?nP2GkT  
        end !j@ 8:j0WY  
         x&wUPo{  
        if isnorm @ck2j3J/  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); 4g9VE;Gd  
        end &gfQZxT  
    end <j' #mUzd  
    % END: Compute the Zernike Polynomials gS ]'^Sr  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% }, H,ky  
    b04~z&Xv  
    % Compute the Zernike functions: Oh: -Y]m=  
    % ------------------------------ {3>^nMv@e  
    idx_pos = m>0; `JCC-\9T_  
    idx_neg = m<0; }PJ:9<G y  
    I/l]Yv!  
    z = y; tKs0]8tc  
    if any(idx_pos) S3m+(N"&  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); E {MSi"  
    end <LE>WfmC  
    if any(idx_neg) bH&H\ Mx_k  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); \l~h#1|%;s  
    end sAxn ; `  
    V SxLBwXf  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) %<klz)!t  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. @ 9uwcM1F  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated R~b$7jpd  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive "^\4xI  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, SE\`JGA[  
    %   and THETA is a vector of angles.  R and THETA must have the same v1: 5 r  
    %   length.  The output Z is a matrix with one column for every P-value, g7F>o76M  
    %   and one row for every (R,THETA) pair. QwiC2}/  
    % Uhf -}Jdw  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 3,GSBiK3}  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) 6Z3v]X  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) +VJl#sc/;  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 &EMm<(.]a  
    %   for all p. X'5te0v`3  
    % hZy"@y3Yq  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 %n( s;/_  
    %   Zernike functions (order N<=7).  In some disciplines it is 3 . @W.GG8  
    %   traditional to label the first 36 functions using a single mode 5d)G30  
    %   number P instead of separate numbers for the order N and azimuthal {W-PYHZ;  
    %   frequency M. P iN3t]2  
    % tqHXzmsjW  
    %   Example: |YH1q1l  
    % sbRg=k&Ns  
    %       % Display the first 16 Zernike functions Yd@9P 2C  
    %       x = -1:0.01:1; <1"6`24  
    %       [X,Y] = meshgrid(x,x); l|DOsI'r  
    %       [theta,r] = cart2pol(X,Y); *yB!^O  
    %       idx = r<=1; 7Kn=[2J5k'  
    %       p = 0:15; L Nj|t)Ov  
    %       z = nan(size(X)); 3vy5JTCz~  
    %       y = zernfun2(p,r(idx),theta(idx)); 9Y7 tI3  
    %       figure('Units','normalized') /%.K`BMN  
    %       for k = 1:length(p) sg3%n0Ms.W  
    %           z(idx) = y(:,k); 7JujU.&{6  
    %           subplot(4,4,k) '+`CwB2  
    %           pcolor(x,x,z), shading interp @x)z" )>  
    %           set(gca,'XTick',[],'YTick',[]) 1 @/+ c  
    %           axis square > vgqf>)kk  
    %           title(['Z_{' num2str(p(k)) '}']) |/q*Fg[f  
    %       end qoEOM%dAqV  
    % !OiP<8 ,H  
    %   See also ZERNPOL, ZERNFUN. L,R9jMx?_  
    Y yI|^f8C  
    %   Paul Fricker 11/13/2006 /6>2,S8Ar  
    l9n 8v\8,o  
    $BG9<:p  
    % Check and prepare the inputs: Y#uf 2>J  
    % ----------------------------- nuvz!<5\{  
    if min(size(p))~=1 4p F%G  
        error('zernfun2:Pvector','Input P must be vector.') /H\ZCIu/7  
    end A M# '(k(  
    F7mzBrz  
    if any(p)>35 ?Hq`*I?b9  
        error('zernfun2:P36', ... :kgwKuhL  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... Xc'yz 2B  
               '(P = 0 to 35).']) (!;4Y82#  
    end i<-#yL5  
    K2NnA  
    % Get the order and frequency corresonding to the function number: 7n %QP  
    % ---------------------------------------------------------------- 5Pn$@3  
    p = p(:); lQoa[#q  
    n = ceil((-3+sqrt(9+8*p))/2); d!,V"*S  
    m = 2*p - n.*(n+2); mz>"4-]  
    7qu hp\  
    % Pass the inputs to the function ZERNFUN: U%2pbGU  
    % ---------------------------------------- Pf]L`haGN  
    switch nargin ?9/%K45  
        case 3 @aI`ru+a  
            z = zernfun(n,m,r,theta); C}wmoYikV  
        case 4 I/fERnHM/+  
            z = zernfun(n,m,r,theta,nflag); 7 pp[kv;!G  
        otherwise &EZ28k"x  
            error('zernfun2:nargin','Incorrect number of inputs.') _bFX(~37z?  
    end AuSL?kZ4|Y  
    ln9U>*<  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) HP"5*C5D  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. NgQ {'H[Y  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of pv;}Sv$ ]-  
    %   order N and frequency M, evaluated at R.  N is a vector of D<C ZhYJ  
    %   positive integers (including 0), and M is a vector with the [iB`- dE,  
    %   same number of elements as N.  Each element k of M must be a Qgf\gTF$r+  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) P]1`=-  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is #|xK> ;  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix d%\en&:la  
    %   with one column for every (N,M) pair, and one row for every Tgc)'8A;BN  
    %   element in R. !Zlvz%X  
    % /a(xUm@.  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly-  NDm3kMa  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is FlgK:=Fmj  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to =;`+^  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 9g|o17  
    %   for all [n,m]. K9 :I8E<  
    % c"H*9u:  
    %   The radial Zernike polynomials are the radial portion of the +'x|VPY.PG  
    %   Zernike functions, which are an orthogonal basis on the unit k[&+Iy  
    %   circle.  The series representation of the radial Zernike ok  iI:  
    %   polynomials is q!t_qX7u  
    % 58ev (f  
    %          (n-m)/2 -[^aWNqyJ  
    %            __ uF/l,[0v  
    %    m      \       s                                          n-2s E0o=  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r L?23Av0W  
    %    n      s=0 %n SLe~b  
    % YP5V~-O/  
    %   The following table shows the first 12 polynomials. gR )xw)!  
    % 37Q9goMov  
    %       n    m    Zernike polynomial    Normalization %lF}!  
    %       --------------------------------------------- ^`!5!|  
    %       0    0    1                        sqrt(2) 'x$>h)t]  
    %       1    1    r                           2 aq@/sMn  
    %       2    0    2*r^2 - 1                sqrt(6) q$Gf9&ZO  
    %       2    2    r^2                      sqrt(6) :U$<h  
    %       3    1    3*r^3 - 2*r              sqrt(8) * _)xlpy  
    %       3    3    r^3                      sqrt(8) ou0(C `  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) F]:@?}8R  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) {R5Q{]dK3  
    %       4    4    r^4                      sqrt(10) TyI"fP  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) o4^rE<vJ  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) <DxUqCE  
    %       5    5    r^5                      sqrt(12) :7 Ro9z8  
    %       --------------------------------------------- Y_ b;1RN  
    % EZ15  
    %   Example: RP?UKOc  
    % @zSI@Oq_  
    %       % Display three example Zernike radial polynomials Lnc _)RF  
    %       r = 0:0.01:1; eo.y,Uh  
    %       n = [3 2 5]; ?j6?KR@#  
    %       m = [1 2 1]; zZ@]Kq;.s  
    %       z = zernpol(n,m,r); ;nW#Dn9  
    %       figure 6`Zx\bPDm  
    %       plot(r,z) n&DRh.@  
    %       grid on Lf`LFPKb  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') Ou/JN+2A  
    % ? BtWM4Id8  
    %   See also ZERNFUN, ZERNFUN2. J$JXY@mBSC  
    M@ t,P?  
    % A note on the algorithm. o&g-0!"  
    % ------------------------ wDJbax?  
    % The radial Zernike polynomials are computed using the series KV v0bE  
    % representation shown in the Help section above. For many special n#8N{ya5x1  
    % functions, direct evaluation using the series representation can " lar~  
    % produce poor numerical results (floating point errors), because 6EfGJq  
    % the summation often involves computing small differences between +0lvQVdp}  
    % large successive terms in the series. (In such cases, the functions -b'93_ZTu:  
    % are often evaluated using alternative methods such as recurrence j5QS/3  
    % relations: see the Legendre functions, for example). For the Zernike 8#b>4 Dx  
    % polynomials, however, this problem does not arise, because the }g6:9%ZMu  
    % polynomials are evaluated over the finite domain r = (0,1), and [+dOgyK  
    % because the coefficients for a given polynomial are generally all vl+vzAd  
    % of similar magnitude. g|L" |Q  
    % unn2MP'  
    % ZERNPOL has been written using a vectorized implementation: multiple 0kEz i  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] lW}"6@0,  
    % values can be passed as inputs) for a vector of points R.  To achieve 94Wf ]  
    % this vectorization most efficiently, the algorithm in ZERNPOL vd+yU9  
    % involves pre-determining all the powers p of R that are required to lrQ +G@#  
    % compute the outputs, and then compiling the {R^p} into a single }H2<w-,+  
    % matrix.  This avoids any redundant computation of the R^p, and doM}vh)6  
    % minimizes the sizes of certain intermediate variables. QJ1_LJ4)a  
    % $42%H#  
    %   Paul Fricker 11/13/2006 ~{MmUp rS  
    $7 1(g$6#  
    Q(Uj5aX  
    % Check and prepare the inputs: e}e|??'(\  
    % ----------------------------- ;`ZGiax  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) aI @&x  
        error('zernpol:NMvectors','N and M must be vectors.') cEzWIS?pp\  
    end =pHWqGOD  
    _c| aRRW  
    if length(n)~=length(m) P5{|U"Y_  
        error('zernpol:NMlength','N and M must be the same length.') u`GzYG-L  
    end haj\Dm  
    @k.j6LKbc  
    n = n(:); zSs5F_  
    m = m(:); ;yh}$)^9  
    length_n = length(n); NY]`1yy  
    T^'NC8v  
    if any(mod(n-m,2)) ZLK@x.=  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') V *2 =S  
    end CH h]v.V  
    +Fu=9j/,j  
    if any(m<0) eO<:X|9T  
        error('zernpol:Mpositive','All M must be positive.') 4E&= qC]S  
    end z>_jC+  
    $'M:H_T  
    if any(m>n) ("HT0 &#a  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') {-X8MisI  
    end e*[M*u  
    [Tv!Pc  
    if any( r>1 | r<0 ) 3'(w6V  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') RJMrSz$  
    end W/Rb7q4v  
    []e*Io&[  
    if ~any(size(r)==1) ep]tio_  
        error('zernpol:Rvector','R must be a vector.') Mq7d*Bgb  
    end mRI W9V  
    !wl3}]q  
    r = r(:); O{" A3f  
    length_r = length(r); {. r/tV5IH  
    n~/#~VTVe  
    if nargin==4 [[fhfV+H  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); =1D* JU  
        if ~isnorm Epm'u[wV  
            error('zernpol:normalization','Unrecognized normalization flag.') G~Oj}rn  
        end  imE5 $;  
    else T""y)%  
        isnorm = false; | ?Js)i  
    end ^s'ozCk 0  
    -:txmM T  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% HRF4 Ro  
    % Compute the Zernike Polynomials EFl[u+ 1tx  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ,nMc. G3  
    ,^JP0Vc*  
    % Determine the required powers of r: Q^q G=  
    % ----------------------------------- ?&Y3Fr)%  
    rpowers = []; 'WH@Zk/l  
    for j = 1:length(n) 9gMNS6D'b  
        rpowers = [rpowers m(j):2:n(j)]; l\l\T<wa,  
    end AuZ?~I1  
    rpowers = unique(rpowers); .^s%Nh2jM  
    qcxq-HS2'  
    % Pre-compute the values of r raised to the required powers, a.F6!?  
    % and compile them in a matrix: h[d|y_)f  
    % ----------------------------- C3`2{1  
    if rpowers(1)==0 38P_wf~ \  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); @vf{_g<  
        rpowern = cat(2,rpowern{:}); Q$iGpTL  
        rpowern = [ones(length_r,1) rpowern]; ,wmPK;j  
    else JnX@eBNV  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); MS Ui_|7  
        rpowern = cat(2,rpowern{:}); !:3NPjhf1Y  
    end ;D_6u(IC4:  
    ~Ra1Zc$o:  
    % Compute the values of the polynomials: gM|X":j  
    % -------------------------------------- ,cm;A'4]  
    z = zeros(length_r,length_n); [!>2[bbl  
    for j = 1:length_n g<~[k?~J  
        s = 0:(n(j)-m(j))/2; !ViHC}:   
        pows = n(j):-2:m(j); 3"'|Ql.H  
        for k = length(s):-1:1 >u5}5OP7  
            p = (1-2*mod(s(k),2))* ... whP>'9t.w  
                       prod(2:(n(j)-s(k)))/          ... jr" ~  
                       prod(2:s(k))/                 ... 8}p5MG  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... D@H'8C\  
                       prod(2:((n(j)+m(j))/2-s(k))); *>.~f<V  
            idx = (pows(k)==rpowers); )|/t}|DIx  
            z(:,j) = z(:,j) + p*rpowern(:,idx); {rOz[E9vm  
        end nZQZ!Vfj  
         D00rO4~6D%  
        if isnorm o <LA2 q`T  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); yo V"?W>!  
        end cd}TDd(H%  
    end J.":oD  
    j^Zp BNL  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    在线guapiqlh
    发帖
    856
    光币
    846
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ?=4J  
    +Tu:zCv.  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 =~HX/]zF  
    T_gW't>   
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)