切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 11767阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 VqV6)6   
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! q\*",xZxwz  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 r#LoBfM;^A  
    function z = zernfun(n,m,r,theta,nflag) \Ku6 gEy  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. g(m3 &  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Z[:fqvXQ  
    %   and angular frequency M, evaluated at positions (R,THETA) on the E`%Ewt$Z  
    %   unit circle.  N is a vector of positive integers (including 0), and .n]P6t  
    %   M is a vector with the same number of elements as N.  Each element qg?O+-+  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) 8_WFSF^  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, ]p>6r*/nw  
    %   and THETA is a vector of angles.  R and THETA must have the same vy\;#X!  
    %   length.  The output Z is a matrix with one column for every (N,M) Av[L,4A  
    %   pair, and one row for every (R,THETA) pair. @(2DfrC  
    % |Q2H^dU'rQ  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike vhiP8DQ  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), RbUBKMZ U  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral /pzEL  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 44_7gOZ  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized $$+6=r}  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. z1A[rbe=4w  
    % ,W"Q)cL  
    %   The Zernike functions are an orthogonal basis on the unit circle. >!:uVS  
    %   They are used in disciplines such as astronomy, optics, and !Tuc#yFw  
    %   optometry to describe functions on a circular domain. o<2H~2/  
    % _ h\wH;  
    %   The following table lists the first 15 Zernike functions. * Zb-YA  
    % Zn&S7a>7  
    %       n    m    Zernike function           Normalization l(|@ dp  
    %       -------------------------------------------------- D/C,Q|Ya6  
    %       0    0    1                                 1 g@]G [(  
    %       1    1    r * cos(theta)                    2 c%Ht; sK`*  
    %       1   -1    r * sin(theta)                    2 `ZL~k  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) }WXO[ +l  
    %       2    0    (2*r^2 - 1)                    sqrt(3) t. B %7e  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) ]0<T,m Z  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) z;`o>Ja2  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) !l1UpJp  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) 6u^M fOc  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) i_8q!CL@{  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) & %4x  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) qv|geBW  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) N q %@(K  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) sE7!U|  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) </0@7  
    %       -------------------------------------------------- LO{{3No  
    % tEP~`$9  
    %   Example 1: "C 7-^R#  
    % @#[<5ld  
    %       % Display the Zernike function Z(n=5,m=1) $OU,| D  
    %       x = -1:0.01:1; z$OKn#%T  
    %       [X,Y] = meshgrid(x,x); 4A(kM}uRB  
    %       [theta,r] = cart2pol(X,Y); Stqlp<xy  
    %       idx = r<=1; ;A)w:"m  
    %       z = nan(size(X)); R<aF;Rvb5  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); =jZ}@L/+  
    %       figure Z>1\|j  
    %       pcolor(x,x,z), shading interp t.Hte/,k  
    %       axis square, colorbar h3y0bV[g=  
    %       title('Zernike function Z_5^1(r,\theta)') D.?Rc'y D  
    % &`hx   
    %   Example 2: "@Ir Bi6  
    % FTvFtdY  
    %       % Display the first 10 Zernike functions sCG[gshq  
    %       x = -1:0.01:1; Kp[ F@A#  
    %       [X,Y] = meshgrid(x,x); -Bymt[  
    %       [theta,r] = cart2pol(X,Y); mZLrU<)Y  
    %       idx = r<=1; rMkoE7n  
    %       z = nan(size(X)); Bu4J8eLx  
    %       n = [0  1  1  2  2  2  3  3  3  3]; 8z\v|-%Z  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; \]pRu"  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; 8nn%wps  
    %       y = zernfun(n,m,r(idx),theta(idx)); c zTr_>  
    %       figure('Units','normalized') U_!Wg|  
    %       for k = 1:10 L|hsGm\  
    %           z(idx) = y(:,k); &qfnCM0Y  
    %           subplot(4,7,Nplot(k)) \[</|]'[  
    %           pcolor(x,x,z), shading interp ZZ/F}9!=  
    %           set(gca,'XTick',[],'YTick',[]) R_iQLBrd  
    %           axis square ?2h)w=dO  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) KG:CVIW Y  
    %       end *h59Vaoc  
    % U1zcJ l^  
    %   See also ZERNPOL, ZERNFUN2. !Cse,6/Z  
    := OdjfhY  
    %   Paul Fricker 11/13/2006 ~Y=v@] 2/  
    .ET@J`"M  
    LRNgpjE}  
    % Check and prepare the inputs: @&!`.Y oy  
    % ----------------------------- ^~iu),gu  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) -P"9KnsO  
        error('zernfun:NMvectors','N and M must be vectors.') ]z5`!e)L  
    end sp%EA=: E  
    1&\ A#  
    if length(n)~=length(m) C>\0 "}iD  
        error('zernfun:NMlength','N and M must be the same length.') \ZSZ(p#1  
    end r)S tp`p  
    I9JiH,+  
    n = n(:); t As@0`x9  
    m = m(:); ,khB*h14;h  
    if any(mod(n-m,2)) fZM)>  
        error('zernfun:NMmultiplesof2', ... '~-JR>  
              'All N and M must differ by multiples of 2 (including 0).') 3/+r*lv>X  
    end H(}Jt!/:  
    ?[~"$  
    if any(m>n) !ho~@sc{W  
        error('zernfun:MlessthanN', ... ;+pS-Zb 6  
              'Each M must be less than or equal to its corresponding N.') %"#%/>U4  
    end )tc"4lp -  
    Gwl]sMJ  
    if any( r>1 | r<0 ) g5THkxp  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 1;O%8sp&  
    end n/ ]<Bc?  
    or2BG&W  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) |^ z?(?w  
        error('zernfun:RTHvector','R and THETA must be vectors.') y*i_Ec\h  
    end k 4|*t}o7  
    Vaj4p""\F  
    r = r(:); Cso!VdCX  
    theta = theta(:); *dB^B5  
    length_r = length(r); ]xJ5}/  
    if length_r~=length(theta) >cVEr+r9t  
        error('zernfun:RTHlength', ... AawK/tfs  
              'The number of R- and THETA-values must be equal.') mc{gcZIm  
    end qIm?F>> @  
    kJ^)7_3  
    % Check normalization: )C \ %R  
    % -------------------- R4xoc;b  
    if nargin==5 && ischar(nflag) \?n4d#=$o  
        isnorm = strcmpi(nflag,'norm'); 2L=+z1%I  
        if ~isnorm tCkKJ)m  
            error('zernfun:normalization','Unrecognized normalization flag.') if|j)h&  
        end "S#}iYp  
    else [=Qv?am  
        isnorm = false; Y\CR*om!W  
    end /]0-|Kg+R  
    "rnZ<A}  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% P<Wtv;Z1Z  
    % Compute the Zernike Polynomials >FrF"u:kM  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% EN OaC  
    5f.G^A: _X  
    % Determine the required powers of r: 1_chO?&,I  
    % ----------------------------------- y^M ~zOe  
    m_abs = abs(m); 'A#`,^]uLF  
    rpowers = []; z:Sr@!DZ  
    for j = 1:length(n) Z0fl]3p  
        rpowers = [rpowers m_abs(j):2:n(j)]; M$|r8%z1  
    end ^F5Q(A  
    rpowers = unique(rpowers); a' sa{>  
    ["5Z =4  
    % Pre-compute the values of r raised to the required powers, a(!_ 3i@  
    % and compile them in a matrix: kpxWi=y  
    % ----------------------------- !8cS1(a  
    if rpowers(1)==0 D{b*,F:&@)  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); aSu6SU  
        rpowern = cat(2,rpowern{:}); BQ&G7V  
        rpowern = [ones(length_r,1) rpowern]; `5VEGSP]  
    else wi{qN___  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); B@R3j  
        rpowern = cat(2,rpowern{:}); B/P E{ /  
    end P!;%DI!<b  
    %Se@8d8  
    % Compute the values of the polynomials: nEtG(^N  
    % -------------------------------------- 1M%'Xe7  
    y = zeros(length_r,length(n)); SONv] ));  
    for j = 1:length(n) T]&% KQ  
        s = 0:(n(j)-m_abs(j))/2; )3W`>7>  
        pows = n(j):-2:m_abs(j); Fpz)@0K;  
        for k = length(s):-1:1 *pu ,|  
            p = (1-2*mod(s(k),2))* ... NGA8JV/U  
                       prod(2:(n(j)-s(k)))/              ... -\Y"MwIED  
                       prod(2:s(k))/                     ... Z/y&;N4  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... =Gka;,n  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); P>*B{fi^  
            idx = (pows(k)==rpowers); a4zq`n|3U  
            y(:,j) = y(:,j) + p*rpowern(:,idx); ?*2DR:o>@  
        end Mqy5>f)  
         0?]Y^:  
        if isnorm v() wngn  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); o\n9(ao  
        end k!{0ku}]  
    end &$\B&Hp@  
    % END: Compute the Zernike Polynomials  ,\HZIl[8  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% p2v+sWO  
    ]n8 5.DF  
    % Compute the Zernike functions: rQ_!/J[9  
    % ------------------------------ 5xHP5+&  
    idx_pos = m>0; `s0`kp  
    idx_neg = m<0; pN-l82]'  
    ; O6Ez-"  
    z = y; yvPcD5s5  
    if any(idx_pos) 9VEx0mkdd  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); f)~j'e  
    end h92'~X36  
    if any(idx_neg) C\ ~!2cy  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); YQ\c0XG  
    end J}$St|1y  
    17-D\ +}  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) @-L4<=$J  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. <)D)j[  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated =vd9mb-  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive P(n_eIF-f  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, 'Gr}<B$A3  
    %   and THETA is a vector of angles.  R and THETA must have the same [iT*L)R4  
    %   length.  The output Z is a matrix with one column for every P-value, xsPY#  
    %   and one row for every (R,THETA) pair.  BZ'63  
    % /o$C=fDF  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike EFd9n  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) T-;|E^  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) '@jP$6T&  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 /Dmuvb|A  
    %   for all p. |8DMj s()*  
    % d*M:P jG@  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 T>$S&U  
    %   Zernike functions (order N<=7).  In some disciplines it is rw9m+q  
    %   traditional to label the first 36 functions using a single mode Rxl )[\A*  
    %   number P instead of separate numbers for the order N and azimuthal *$+:Cbe-F  
    %   frequency M. )BJ Z{E*  
    % V2v}F=  
    %   Example: \dB)G<_  
    % >[$j(k^  
    %       % Display the first 16 Zernike functions {.,-lFb\  
    %       x = -1:0.01:1; ./Y5Vk#Rp\  
    %       [X,Y] = meshgrid(x,x); I(bxCiRV  
    %       [theta,r] = cart2pol(X,Y); +\Zr\fOe|%  
    %       idx = r<=1; Q5kf-~Jx+  
    %       p = 0:15; SU8vz/\%y  
    %       z = nan(size(X)); rV5QKz6'  
    %       y = zernfun2(p,r(idx),theta(idx)); eu^B  
    %       figure('Units','normalized') Xb/W[rcs  
    %       for k = 1:length(p) vrGx<0$  
    %           z(idx) = y(:,k); 9'{i |xG  
    %           subplot(4,4,k) n'i~1pM,?  
    %           pcolor(x,x,z), shading interp 54^2=bp  
    %           set(gca,'XTick',[],'YTick',[]) _e9S"``  
    %           axis square !_a@autj  
    %           title(['Z_{' num2str(p(k)) '}']) xDsB%~  
    %       end 4ayZ.`aK  
    % /'g/yBY  
    %   See also ZERNPOL, ZERNFUN. )C1ihm!7\  
    ML)5nJD  
    %   Paul Fricker 11/13/2006 1( nK|  
    oiKY2.yW  
    @i9eH8lT  
    % Check and prepare the inputs: 0v"h /  
    % ----------------------------- r;~2NxMF/  
    if min(size(p))~=1 u3VSS4RG%  
        error('zernfun2:Pvector','Input P must be vector.') MlVVST  
    end 01br l^5K  
    r ?e''r  
    if any(p)>35 5Mb5t;4b  
        error('zernfun2:P36', ... Vs:x3)m5j  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... UpoTXA D}k  
               '(P = 0 to 35).']) c]OK)i-{l  
    end Wh7}G   
    8s@k0T<O  
    % Get the order and frequency corresonding to the function number: 2Jl$/W 3  
    % ---------------------------------------------------------------- IT5a/;J  
    p = p(:); !^h{7NmP[  
    n = ceil((-3+sqrt(9+8*p))/2); k04CSzE"%  
    m = 2*p - n.*(n+2); @/yQ4Gr  
    o;^k"bo6   
    % Pass the inputs to the function ZERNFUN: :jP4GCxU|  
    % ---------------------------------------- j 56Dt_  
    switch nargin @qaK5  
        case 3 ^5,B6  
            z = zernfun(n,m,r,theta); q>^x ,:L  
        case 4 4Ww.CkRG  
            z = zernfun(n,m,r,theta,nflag); ndB [f  
        otherwise ^5-8'9w  
            error('zernfun2:nargin','Incorrect number of inputs.') wgV?1S>Z  
    end hp< NVST  
    c c^I9g~  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) ex}6(;7)O  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. /E|Ac&Qk  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of <lxE^M  
    %   order N and frequency M, evaluated at R.  N is a vector of ~,: FZ1wh  
    %   positive integers (including 0), and M is a vector with the x*}*0).  
    %   same number of elements as N.  Each element k of M must be a l^"HcP6  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) PL6f**{-  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is Fb:Z.  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix <:gNx%R  
    %   with one column for every (N,M) pair, and one row for every Kz`g Q|S  
    %   element in R. =yy7P[D  
    % <6(&w9WY  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- hiM nU  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is N-Jp; D  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to D$OUy}[2`.  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 rcx'`CIJ  
    %   for all [n,m]. gWZzOH*  
    % M6mJ'Q482  
    %   The radial Zernike polynomials are the radial portion of the < `/22S"  
    %   Zernike functions, which are an orthogonal basis on the unit e>a4v8  
    %   circle.  The series representation of the radial Zernike *>%tx k:)  
    %   polynomials is S.$/uDwo  
    % q8 _8rp-@  
    %          (n-m)/2 qx+ .v2G  
    %            __ LE1#pB3TG  
    %    m      \       s                                          n-2s |5h~&kA  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r sBuOKT/j  
    %    n      s=0 @|hn@!YK  
    % FWJhi$\:D]  
    %   The following table shows the first 12 polynomials. -%g&O-i\  
    % |[lmW%  
    %       n    m    Zernike polynomial    Normalization 1[&V6=n  
    %       --------------------------------------------- %x2_njDd  
    %       0    0    1                        sqrt(2) },W<1*|  
    %       1    1    r                           2 1q Jz;\wU  
    %       2    0    2*r^2 - 1                sqrt(6) j$u=7Z&E  
    %       2    2    r^2                      sqrt(6) #@cOyxUt  
    %       3    1    3*r^3 - 2*r              sqrt(8) hfBZ:es+  
    %       3    3    r^3                      sqrt(8) lz-t+LD@ST  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) q]qKU`m!Q`  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) (X?'}Ur  
    %       4    4    r^4                      sqrt(10) " Om4P|  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) |sIr}}  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) MMYV8;c  
    %       5    5    r^5                      sqrt(12) 9jC>OZ0s  
    %       --------------------------------------------- z|5Sy.H>  
    % GOII B  
    %   Example: A3Lfh6O  
    % i7UE9Nyl*  
    %       % Display three example Zernike radial polynomials M'"@l $[QM  
    %       r = 0:0.01:1; 9:\YEs"  
    %       n = [3 2 5]; cp&- 6 w+  
    %       m = [1 2 1]; ZI0C%c.~  
    %       z = zernpol(n,m,r); y`n'>F11  
    %       figure 5jb/[i^V  
    %       plot(r,z) <.HDv:  
    %       grid on ktu{I  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') @2>j4Sc  
    % 2Y`C\u  
    %   See also ZERNFUN, ZERNFUN2. 3S97hn{|=  
    ~$PQ8[=  
    % A note on the algorithm. ha%3%O8Z  
    % ------------------------ vj?6,Ae  
    % The radial Zernike polynomials are computed using the series "{&?t}rj+  
    % representation shown in the Help section above. For many special Z|h&Zd1z  
    % functions, direct evaluation using the series representation can \en}8r9cy  
    % produce poor numerical results (floating point errors), because :*`5|'G}  
    % the summation often involves computing small differences between M2.Pf s  
    % large successive terms in the series. (In such cases, the functions wy1xZQ<5  
    % are often evaluated using alternative methods such as recurrence f'2Ufd|J|  
    % relations: see the Legendre functions, for example). For the Zernike O6[,K1,  
    % polynomials, however, this problem does not arise, because the x<S?"  
    % polynomials are evaluated over the finite domain r = (0,1), and c~0hu*&  
    % because the coefficients for a given polynomial are generally all )U~,q>H+ %  
    % of similar magnitude. =y>g:}G7  
    % >\x   
    % ZERNPOL has been written using a vectorized implementation: multiple xD#r5  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] *s"dCc  
    % values can be passed as inputs) for a vector of points R.  To achieve h dw~AGO#  
    % this vectorization most efficiently, the algorithm in ZERNPOL w[A$bqz   
    % involves pre-determining all the powers p of R that are required to <![]=~z $  
    % compute the outputs, and then compiling the {R^p} into a single 20O\@}2q2M  
    % matrix.  This avoids any redundant computation of the R^p, and BM@:=>ypQ  
    % minimizes the sizes of certain intermediate variables. B}(+\Q$I  
    % C_RxJWka  
    %   Paul Fricker 11/13/2006 ^F*G  
    )Hp{8c  
    )Yc jx~   
    % Check and prepare the inputs: BfcpB)N&.K  
    % ----------------------------- I`~ofq?r  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 9qHbV 9,M  
        error('zernpol:NMvectors','N and M must be vectors.') Do3g^RD#  
    end {5$.:Y  
    ]4$t'wI.  
    if length(n)~=length(m) ?0{8fGM4  
        error('zernpol:NMlength','N and M must be the same length.') ep<O?7@j-G  
    end K_fQFuj+  
    L ~,x~sLd  
    n = n(:); mihR *8p  
    m = m(:); (}E ] g  
    length_n = length(n); <Ag`pZ<s  
    S:*.,zC  
    if any(mod(n-m,2)) A`NkgVq5:  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') rfl-(_3  
    end aBH!K   
    g.& n X/  
    if any(m<0) {GTOHJ2  
        error('zernpol:Mpositive','All M must be positive.') 4490l"  
    end OMi_')J  
    Y6>@zznk  
    if any(m>n) Ic%c%U=i  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') $rb #k{  
    end SnK#YQCDt  
    0#gu7n|J  
    if any( r>1 | r<0 ) oi@/H\7j  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') <3[,bTIk  
    end Wsz-#kc\[  
    +zU[rhMk'  
    if ~any(size(r)==1) K>"]*#aBv  
        error('zernpol:Rvector','R must be a vector.') OwdA6it^f  
    end O>5xFz'm  
    -2{NIF^H  
    r = r(:); XS L*e  
    length_r = length(r); }.nHT0l  
    0Y%u[i/  
    if nargin==4 doIcO,Q  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); oVG/[e|c'  
        if ~isnorm pyW&`(]S  
            error('zernpol:normalization','Unrecognized normalization flag.') XZ8#8Di8  
        end #6'x-Z_  
    else  !e+^}s  
        isnorm = false; +A 4};]W|  
    end /$q9 Kxb  
    ^#-i%V%  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -HE@wda  
    % Compute the Zernike Polynomials )_m#|U?Rex  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4x`.nql  
    =JqKdLH  
    % Determine the required powers of r: cgQ4JY/6  
    % ----------------------------------- C J@G8>  
    rpowers = []; l7+[Zn/v *  
    for j = 1:length(n) 7Fg-}lJAC  
        rpowers = [rpowers m(j):2:n(j)]; -<Wv7FNpD  
    end u%o2BLx  
    rpowers = unique(rpowers); lURL;h  
    0Gq}x;8H&  
    % Pre-compute the values of r raised to the required powers, 1>KZ1Kf  
    % and compile them in a matrix: _P^ xX'v  
    % ----------------------------- wM]j#  
    if rpowers(1)==0 Z=L~W,0'  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); o7qZy |\4S  
        rpowern = cat(2,rpowern{:}); D2060ze  
        rpowern = [ones(length_r,1) rpowern]; >~nc7j u  
    else ^Yz.}a##w2  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); I6q]bQ="  
        rpowern = cat(2,rpowern{:}); ,%bG]5  
    end /2<1/[#  
    Id<3'ky<N  
    % Compute the values of the polynomials: Tlz $LI  
    % -------------------------------------- VGHy|5K$  
    z = zeros(length_r,length_n); Po ,zTz   
    for j = 1:length_n myR}~Cj;q  
        s = 0:(n(j)-m(j))/2; 6 4fB$  
        pows = n(j):-2:m(j); H{XD>q.  
        for k = length(s):-1:1 lZt{L0  
            p = (1-2*mod(s(k),2))* ... wDL dmrB  
                       prod(2:(n(j)-s(k)))/          ... xE[CNJ%t^,  
                       prod(2:s(k))/                 ... B{In "R8  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... J:N4F.o&K  
                       prod(2:((n(j)+m(j))/2-s(k))); +&U{>?.u  
            idx = (pows(k)==rpowers); ,h#U<CnP#  
            z(:,j) = z(:,j) + p*rpowern(:,idx); ^GyGh{@,f  
        end C6!P8qX  
         T%opkyP>=  
        if isnorm b8>2Y'X  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); l'K3)yQEJ  
        end zUe)f~4  
    end qv+8wJ((  
    hj8S".A_  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    857
    光币
    847
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    2763
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  ^jO$nPDd  
    ?|i6]y=D  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 I92c!`{  
    -zeodv7  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)