切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10694阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 3>yb$ZU"-  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! :}FMauHh  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Jj*XnL*  
    function z = zernfun(n,m,r,theta,nflag) {[61LQ6V9  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. o?b$}Qrl  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 4 (& W>E  
    %   and angular frequency M, evaluated at positions (R,THETA) on the q El:2<  
    %   unit circle.  N is a vector of positive integers (including 0), and 0SwWLq  
    %   M is a vector with the same number of elements as N.  Each element jAfUz7@  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) h35x'`g7+r  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, (ST />")L  
    %   and THETA is a vector of angles.  R and THETA must have the same `22F@JYN  
    %   length.  The output Z is a matrix with one column for every (N,M) +IK~a9t  
    %   pair, and one row for every (R,THETA) pair. D0v!fF ~  
    % @ >%I\  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike HY~\e|o  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Ms=x~o'  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral ;3h[=hyS  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, q62TYg}  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized aDm$^yP  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ]BP"$rs  
    % K!7o#"GM  
    %   The Zernike functions are an orthogonal basis on the unit circle. Z`o}xV  
    %   They are used in disciplines such as astronomy, optics, and ,6~c0]/  
    %   optometry to describe functions on a circular domain. .wtb7U;7  
    % vo-n9Bj  
    %   The following table lists the first 15 Zernike functions.  MScjq  
    % WO/;o0{d\9  
    %       n    m    Zernike function           Normalization IfF<8~~E  
    %       -------------------------------------------------- eVjr/nm  
    %       0    0    1                                 1 t~)w921>  
    %       1    1    r * cos(theta)                    2 6c^2Nl8e  
    %       1   -1    r * sin(theta)                    2 H|tbwU)J  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) 67+ K ?!,  
    %       2    0    (2*r^2 - 1)                    sqrt(3) 5]:fkx  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) w{?nX6a@p  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) T#DJQ"$  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) ,v4Z[ (  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) q{ n~v>wU  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) q@~N?$>  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) !sfOde)$  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Mc>]ZAzr  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) *^bqpW2$q  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 9IIQon  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) S7P](F=n#  
    %       -------------------------------------------------- ;El"dqH   
    % J Xo_l  
    %   Example 1: , b ,`;I  
    % _ M8Q%  
    %       % Display the Zernike function Z(n=5,m=1) UO5^4  
    %       x = -1:0.01:1; 5JK{dis]k  
    %       [X,Y] = meshgrid(x,x); Wo&MHMP  
    %       [theta,r] = cart2pol(X,Y); 1 y$Bz?4  
    %       idx = r<=1; /0s1q  
    %       z = nan(size(X)); ^Jcs0c @\  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); \om$%FUP  
    %       figure B'"C?d<7  
    %       pcolor(x,x,z), shading interp t/yGMR=  
    %       axis square, colorbar A-aukJg9  
    %       title('Zernike function Z_5^1(r,\theta)') ;hA>?o_i(  
    % H2 5Mx>|d  
    %   Example 2: %L.,:mtq)  
    % ?;i O  
    %       % Display the first 10 Zernike functions 7FW!3~3A_  
    %       x = -1:0.01:1; Ytmt+9  
    %       [X,Y] = meshgrid(x,x); ~=aD*v<3d  
    %       [theta,r] = cart2pol(X,Y); |k$[+53A  
    %       idx = r<=1; ..UmbJJ.u  
    %       z = nan(size(X)); R!0O[i  
    %       n = [0  1  1  2  2  2  3  3  3  3]; %k_R;/fjW  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; }_u1'  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; u3(zixb  
    %       y = zernfun(n,m,r(idx),theta(idx)); w(U-6uA  
    %       figure('Units','normalized') }BlVLf%C  
    %       for k = 1:10 l3R`3@  
    %           z(idx) = y(:,k); F&<si:}KB  
    %           subplot(4,7,Nplot(k)) ogbLs)&+a  
    %           pcolor(x,x,z), shading interp " |[w.`  
    %           set(gca,'XTick',[],'YTick',[]) c}kZ x1  
    %           axis square ^8Tq0>n?  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) {"S"V  
    %       end 9F845M  
    % 75v 5/5zRn  
    %   See also ZERNPOL, ZERNFUN2. v: cO+dQ  
    5, R\tJCK  
    %   Paul Fricker 11/13/2006 \-a^8{.^E  
    vz #VW  
    N%v}$58Z  
    % Check and prepare the inputs: !(~eeE}|lM  
    % ----------------------------- v]& )+0  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) RMUR@o5N  
        error('zernfun:NMvectors','N and M must be vectors.') #56}RV1  
    end PVH^yWi n  
    kA1]o  
    if length(n)~=length(m) wkOo8@J\  
        error('zernfun:NMlength','N and M must be the same length.') 8u Tq0d6(  
    end }J73{  
    OJPx V~y  
    n = n(:); U+>!DtOYK  
    m = m(:); CMB:%  
    if any(mod(n-m,2)) }u:@:}8K  
        error('zernfun:NMmultiplesof2', ... _p<W  
              'All N and M must differ by multiples of 2 (including 0).') ,V'+16xW  
    end hNgbHzW  
    )8VrGg?  
    if any(m>n) EtvZk9d6h*  
        error('zernfun:MlessthanN', ... u&yAMWl  
              'Each M must be less than or equal to its corresponding N.') PeGA+0bm  
    end {R%v4#nk  
    `WQz_}TqB  
    if any( r>1 | r<0 ) {XH!`\  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 1wP#?p)c  
    end =cI -<0QSn  
    S&_Z,mT./  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 2 eo]D?}  
        error('zernfun:RTHvector','R and THETA must be vectors.') Vp{! Ft8>  
    end xS?[v&"2  
    j hf%ze  
    r = r(:); /?uA{/8  
    theta = theta(:); iU"jV*P]  
    length_r = length(r); ts%XjCN[  
    if length_r~=length(theta) oE \Cwd  
        error('zernfun:RTHlength', ... R#gt~]x6k  
              'The number of R- and THETA-values must be equal.') aNLRUdc.  
    end gEcRJ1Q;C  
    r'0IAJ-;  
    % Check normalization: C1&~Y.6m  
    % -------------------- kDI(Y=Fg  
    if nargin==5 && ischar(nflag) ,rj_P  
        isnorm = strcmpi(nflag,'norm'); Y '7f"W  
        if ~isnorm jkCa2!WQ'i  
            error('zernfun:normalization','Unrecognized normalization flag.') hr3RC+ y  
        end f'&30lF  
    else ziZLw$ )  
        isnorm = false; dz@L}b*  
    end HwfBbWHr'  
    L c4\i  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .<&o,D  
    % Compute the Zernike Polynomials Ey<vvZ  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9RA~#S|(T  
    C".nB12  
    % Determine the required powers of r: [Q+8Ku  
    % ----------------------------------- 0'8_:|5  
    m_abs = abs(m); /$ Gp<.z  
    rpowers = []; q)0?aL  
    for j = 1:length(n) ?^I\e{),c  
        rpowers = [rpowers m_abs(j):2:n(j)]; N fe  
    end -OV:y],-  
    rpowers = unique(rpowers); ^ [FK<9  
    EGpN@  
    % Pre-compute the values of r raised to the required powers, (Z(O7X(/  
    % and compile them in a matrix: XG_h\NIL  
    % ----------------------------- L&h@`NPO a  
    if rpowers(1)==0  dxHKXw  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Itq248+Ci  
        rpowern = cat(2,rpowern{:}); yQ$Q{,S9  
        rpowern = [ones(length_r,1) rpowern];  uP|Py.+  
    else 5?6U@??]  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); me-Tv7WL  
        rpowern = cat(2,rpowern{:}); 1,UeVw/  
    end J)(KGdk  
    Rdb[{Ruxb  
    % Compute the values of the polynomials: 99 W-sV  
    % -------------------------------------- 9vIqGz-o  
    y = zeros(length_r,length(n)); } U <T>0  
    for j = 1:length(n) #?=?<"*j  
        s = 0:(n(j)-m_abs(j))/2; W)F<<B,  
        pows = n(j):-2:m_abs(j); Y2lBQp8'|  
        for k = length(s):-1:1 2cv!85  
            p = (1-2*mod(s(k),2))* ... X}"Ic@8  
                       prod(2:(n(j)-s(k)))/              ... aC$-riP,?'  
                       prod(2:s(k))/                     ... Tfasry9'8  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... %LI[+#QE  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); 2AYV9egZ  
            idx = (pows(k)==rpowers); 9Q\CJ9  
            y(:,j) = y(:,j) + p*rpowern(:,idx); /~sNx  
        end &lbZTY}  
         rq#8}T>  
        if isnorm $y%X#:eLJ  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); yg}zK>j^vC  
        end BhAWIH8@C  
    end h?t#ABsVK  
    % END: Compute the Zernike Polynomials R#"LP7\  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% g2?kC^=z=  
    FKYPkFB  
    % Compute the Zernike functions: =f48[=  
    % ------------------------------ `O5 Hzb(}  
    idx_pos = m>0; U`)\|\NY  
    idx_neg = m<0; eXs^YPi  
    ,<Ag&*YE4  
    z = y; P:lmQHls+  
    if any(idx_pos) )I~U&sT\/  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); l]g /rs  
    end [p&n]T  
    if any(idx_neg) s R~D3-  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ] o!r K<  
    end fEv`iXZG  
    dUt$kB  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) d#tqa`@~  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. mB\)Q J.%  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated yr;~M{{4  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive z_i (o  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, D,3Kx ^  
    %   and THETA is a vector of angles.  R and THETA must have the same %>];F~z  
    %   length.  The output Z is a matrix with one column for every P-value, ~nP~6Q'wSH  
    %   and one row for every (R,THETA) pair. W?>C$_p C  
    % a- \M)}T  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike z`Jcpt  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) ?IN'Dc9&%-  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) Yg<L pjq5X  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 mRurGaR  
    %   for all p. =00c1v  
    % B5A/Iv)2  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 ;c/|LXc\  
    %   Zernike functions (order N<=7).  In some disciplines it is 2\4ammwT  
    %   traditional to label the first 36 functions using a single mode ?DGe}?pX  
    %   number P instead of separate numbers for the order N and azimuthal '!hA!eo>J  
    %   frequency M. x>]14 bLz  
    % +UM%6Z=+  
    %   Example: \4`:~c  
    % )X2 /_3  
    %       % Display the first 16 Zernike functions wB(X(nr  
    %       x = -1:0.01:1; < NRnE8:  
    %       [X,Y] = meshgrid(x,x); k#g` n3L  
    %       [theta,r] = cart2pol(X,Y); w *pTK +  
    %       idx = r<=1; ; _K3/:  
    %       p = 0:15; hl/) 1sOIR  
    %       z = nan(size(X)); sk%Xf,  
    %       y = zernfun2(p,r(idx),theta(idx)); q+Ec|Xd e  
    %       figure('Units','normalized') %&5PZmnW  
    %       for k = 1:length(p) De-hHY{>  
    %           z(idx) = y(:,k); Ueb&<tS  
    %           subplot(4,4,k) L-9 AJk>V  
    %           pcolor(x,x,z), shading interp )ep1`n-  
    %           set(gca,'XTick',[],'YTick',[])  5(\H:g\z  
    %           axis square {aVRvZH4  
    %           title(['Z_{' num2str(p(k)) '}']) sU$<v( `"  
    %       end ]3\%i2NM  
    % si,)!%b  
    %   See also ZERNPOL, ZERNFUN. }> ]`#s  
    FX  %(<M  
    %   Paul Fricker 11/13/2006 =j"bLX6;  
    FokSg[)5  
    hh[@q*C  
    % Check and prepare the inputs: Be~ '@  
    % ----------------------------- 'lMDlTU O  
    if min(size(p))~=1 Y6[ O s1  
        error('zernfun2:Pvector','Input P must be vector.') AX]cM)w  
    end 2PC:F9dh\  
    xE5VXYU  
    if any(p)>35 M{jJ>S{g  
        error('zernfun2:P36', ... pSl4^$2XR  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ;L@p|]fu  
               '(P = 0 to 35).']) v&)G~cz  
    end JKF/z@Vbe\  
     X@Bg_9\i  
    % Get the order and frequency corresonding to the function number: ;U&~tpd  
    % ---------------------------------------------------------------- |4j'KM;U  
    p = p(:); |%g)H,6c  
    n = ceil((-3+sqrt(9+8*p))/2); 3De(:c)@  
    m = 2*p - n.*(n+2); '!"rE1e  
    %D49A-R  
    % Pass the inputs to the function ZERNFUN: ~='}(Fg:  
    % ---------------------------------------- 9]^q!~u  
    switch nargin F|&%Z(@a  
        case 3 GD1L6kVd1  
            z = zernfun(n,m,r,theta); (XNd]G  
        case 4 B.4Or]  
            z = zernfun(n,m,r,theta,nflag); o&)v{q  
        otherwise N5 b^  
            error('zernfun2:nargin','Incorrect number of inputs.') 8xt8kf*k  
    end GQ0(lS  
    ^8=e8O  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) uBw[|,yn2*  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. MM*9Q`cB  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of kvN<o-B  
    %   order N and frequency M, evaluated at R.  N is a vector of w19OOD  
    %   positive integers (including 0), and M is a vector with the R(s[JH(&  
    %   same number of elements as N.  Each element k of M must be a {8556>\~  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) kbSl.V%)  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is n5Mhp:zc,  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix `o0ISJeKp  
    %   with one column for every (N,M) pair, and one row for every rX22%~1  
    %   element in R. ,U~in)\ U  
    % $S^rKp#  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- } x Kv N  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is Mehp]5*  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to 24*3m&fA*K  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 8l<~zIoO  
    %   for all [n,m]. 75iudki  
    % \[ W`hhJ  
    %   The radial Zernike polynomials are the radial portion of the @9lGU#  
    %   Zernike functions, which are an orthogonal basis on the unit (!a\23  
    %   circle.  The series representation of the radial Zernike :4)lmIu  
    %   polynomials is A:\_ \B%<  
    % [$M l;K  
    %          (n-m)/2 o\qeX|.70  
    %            __ }tJMnq/m($  
    %    m      \       s                                          n-2s MEOfVh  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r ~ujg250.L  
    %    n      s=0 = gcZRoL  
    % _MTvNs  
    %   The following table shows the first 12 polynomials. $#_^uWN-M  
    % I*KJq?R  
    %       n    m    Zernike polynomial    Normalization y2PxC. -  
    %       --------------------------------------------- qnzNJ_ `R  
    %       0    0    1                        sqrt(2) 'cY @Dqg1  
    %       1    1    r                           2 W$` WkR  
    %       2    0    2*r^2 - 1                sqrt(6) }mS Q!"f:  
    %       2    2    r^2                      sqrt(6) Xy9'JVV6  
    %       3    1    3*r^3 - 2*r              sqrt(8) (kx>\FIK*  
    %       3    3    r^3                      sqrt(8) !v*#E{r"g=  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) ~]BR(n  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) crJNTEz  
    %       4    4    r^4                      sqrt(10) V/)3d  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) R%JEx3)0m  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) mG%cE(j*D  
    %       5    5    r^5                      sqrt(12) ^.M_1$-  
    %       --------------------------------------------- nb@<UbabW}  
    % P.~sNd oJ  
    %   Example: G~NhBA9  
    % 8g/r8u~  
    %       % Display three example Zernike radial polynomials WX+@<y}%  
    %       r = 0:0.01:1; tAb3ejCo?  
    %       n = [3 2 5]; JV! }"[  
    %       m = [1 2 1]; r?x~`C  
    %       z = zernpol(n,m,r); 72y!cK6  
    %       figure mHc2v==X\-  
    %       plot(r,z) Kt_HJ!  
    %       grid on )' 2vUt`_7  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') mW)"~sA  
    % ~5Rh7   
    %   See also ZERNFUN, ZERNFUN2. bL5dCQxty  
    &0mhO+g   
    % A note on the algorithm. .\)p3pC)  
    % ------------------------ XB%`5wwd  
    % The radial Zernike polynomials are computed using the series u[!Ex=9W  
    % representation shown in the Help section above. For many special Y C}$O2  
    % functions, direct evaluation using the series representation can s'@@q  
    % produce poor numerical results (floating point errors), because Pv@;)s(-  
    % the summation often involves computing small differences between _"'-f l98*  
    % large successive terms in the series. (In such cases, the functions 1xwq:vFC.  
    % are often evaluated using alternative methods such as recurrence [92bGR{  
    % relations: see the Legendre functions, for example). For the Zernike .gI9jRdKw  
    % polynomials, however, this problem does not arise, because the gOk^("@  
    % polynomials are evaluated over the finite domain r = (0,1), and yAc}4*;T/  
    % because the coefficients for a given polynomial are generally all |nO }YU\E  
    % of similar magnitude. q{.~=~  
    % t aOsC! Bp  
    % ZERNPOL has been written using a vectorized implementation: multiple 3lNw*M|")  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] P q( )2B  
    % values can be passed as inputs) for a vector of points R.  To achieve !i6 aA1'  
    % this vectorization most efficiently, the algorithm in ZERNPOL &S# bLE  
    % involves pre-determining all the powers p of R that are required to \y/+H  
    % compute the outputs, and then compiling the {R^p} into a single t{/ EN)J  
    % matrix.  This avoids any redundant computation of the R^p, and J15$P8J  
    % minimizes the sizes of certain intermediate variables. $E@ke:  
    % to 3i!b  
    %   Paul Fricker 11/13/2006 upH%-)%'  
    u"a$/  
    j! cB  
    % Check and prepare the inputs: JGk,u6K7  
    % ----------------------------- U 0S}O(Ptr  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) k<S!|  
        error('zernpol:NMvectors','N and M must be vectors.') =j~}];I  
    end Th*mm3D6  
    HjN )~<j  
    if length(n)~=length(m) <kor;exeJ  
        error('zernpol:NMlength','N and M must be the same length.') {EupB?  
    end ~9ILN~91  
    r,dxW5v.  
    n = n(:); Qod2m$>wp}  
    m = m(:); b;Im +9&  
    length_n = length(n); 3'2}F%!Mv  
    L9U<E $%#  
    if any(mod(n-m,2)) kL qFh<  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') <`m.Vbvm"  
    end 'C*NyHc  
    P^LOrLmo8  
    if any(m<0) B[MZ Pv)  
        error('zernpol:Mpositive','All M must be positive.') mwTn}h3N  
    end ]R{=|  
    cWM|COXL+  
    if any(m>n) K+mtuB]yr  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') wh:`4Yw  
    end }Mo9r4}  
    0?t!tugG  
    if any( r>1 | r<0 ) _>:g&pS/  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') Vt4}!b(O  
    end ig/716r|  
    U^0vLyqW^5  
    if ~any(size(r)==1) w } 2|Do$5  
        error('zernpol:Rvector','R must be a vector.') AjANuyUaP  
    end FZmYv%J  
    uf)W? `e~  
    r = r(:); ddHIP`wb  
    length_r = length(r); l7J_s?!j  
    [I4FU7mpH  
    if nargin==4 %dT%r=%Y  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); 0I?3@Nz6  
        if ~isnorm |_2ANWHz  
            error('zernpol:normalization','Unrecognized normalization flag.') xD?{Hw>QT#  
        end .Um%6a-  
    else ::T<de7  
        isnorm = false; =3SL& :8  
    end {Rj'=%h  
    |PJW2PN  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )Y&De)=  
    % Compute the Zernike Polynomials ?s"v0cg+  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #1bgV  
    F<(x z=  
    % Determine the required powers of r: Eq<#pX6  
    % ----------------------------------- 0RSa{iS*A  
    rpowers = []; H@j^,  
    for j = 1:length(n) t2Y~MyT/  
        rpowers = [rpowers m(j):2:n(j)]; WNYLQ=;  
    end \+AH>I;vO  
    rpowers = unique(rpowers); };!c]/,  
    610k#$  
    % Pre-compute the values of r raised to the required powers, 49zp@a  
    % and compile them in a matrix: %<muVRkB\  
    % ----------------------------- iRVLo~  
    if rpowers(1)==0 1aT$07G0  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); *-Yw0Y[E  
        rpowern = cat(2,rpowern{:}); zuPH3Q={  
        rpowern = [ones(length_r,1) rpowern]; oV!9B-<  
    else [1UqMkXtf  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); >SGSn/AJi  
        rpowern = cat(2,rpowern{:}); GQZUC\cB  
    end u ?Xku8 1l  
    x/S%NySG  
    % Compute the values of the polynomials: HYH!;  
    % -------------------------------------- ha),N<'  
    z = zeros(length_r,length_n); -)I_+N  
    for j = 1:length_n E37@BfpO3  
        s = 0:(n(j)-m(j))/2; 2Ls<OO  
        pows = n(j):-2:m(j); PYf`a`dH  
        for k = length(s):-1:1 )yK!qu  
            p = (1-2*mod(s(k),2))* ... -?'CUm*Od  
                       prod(2:(n(j)-s(k)))/          ... g:clSN,  
                       prod(2:s(k))/                 ... dCK -"#T!  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... ^9RBG#ud  
                       prod(2:((n(j)+m(j))/2-s(k))); C/Z"W@7#;  
            idx = (pows(k)==rpowers); .eAC!R  
            z(:,j) = z(:,j) + p*rpowern(:,idx); *3K"Kc2  
        end Mww]l[1'EL  
         D/Wuan?yPN  
        if isnorm +J4t0x  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); u~kwNN9t3  
        end o|W? a#_\  
    end ~z}au"k  
    F1=+<]!  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    851
    光币
    831
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  04guud }  
    `X<`j6zaG  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 4^[}]'w  
    gJ5wAK+?  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)