非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 r#LoBfM;^A
function z = zernfun(n,m,r,theta,nflag) \Ku6gEy
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. g(m3
&
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N Z[:fqvXQ
% and angular frequency M, evaluated at positions (R,THETA) on the E`%Ewt$Z
% unit circle. N is a vector of positive integers (including 0), and .n]P6t
% M is a vector with the same number of elements as N. Each element qg?O+-+
% k of M must be a positive integer, with possible values M(k) = -N(k) 8_WFSF^
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, ]p>6r*/nw
% and THETA is a vector of angles. R and THETA must have the same vy\;#X!
% length. The output Z is a matrix with one column for every (N,M) Av[L,4A
% pair, and one row for every (R,THETA) pair. @(2DfrC
% |Q2H^dU'rQ
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike vhiP8DQ
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), RbUBKMZU
% with delta(m,0) the Kronecker delta, is chosen so that the integral /pzEL
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, 44_7gOZ
% and theta=0 to theta=2*pi) is unity. For the non-normalized $$+6=r}
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. z1A[rbe=4w
% ,W"Q)cL
% The Zernike functions are an orthogonal basis on the unit circle. >!:uVS
% They are used in disciplines such as astronomy, optics, and !Tuc#yFw
% optometry to describe functions on a circular domain. o<2H~2/
% _
h\wH;
% The following table lists the first 15 Zernike functions. * Zb-YA
% Zn&S7a>7
% n m Zernike function Normalization l(|@ dp
% -------------------------------------------------- D/C,Q|Ya6
% 0 0 1 1 g@]G
[(
% 1 1 r * cos(theta) 2 c%Ht;
sK`*
% 1 -1 r * sin(theta) 2 `ZL~k
% 2 -2 r^2 * cos(2*theta) sqrt(6) }WXO[ +l
% 2 0 (2*r^2 - 1) sqrt(3) t.B%7e
% 2 2 r^2 * sin(2*theta) sqrt(6) ]0<T,m Z
% 3 -3 r^3 * cos(3*theta) sqrt(8) z;`o>Ja2
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) !l1UpJp
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) 6u^MfOc
% 3 3 r^3 * sin(3*theta) sqrt(8) i_8q!CL@{
% 4 -4 r^4 * cos(4*theta) sqrt(10) & %4x
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) qv|geBW
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) Nq
%@(K
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) sE7!U|
% 4 4 r^4 * sin(4*theta) sqrt(10) </0@7
% -------------------------------------------------- LO{{3No
% tEP~`$9
% Example 1: "C 7-^R#
% @#[<5ld
% % Display the Zernike function Z(n=5,m=1) $OU,| D
% x = -1:0.01:1; z$OKn#%T
% [X,Y] = meshgrid(x,x); 4A(kM}uRB
% [theta,r] = cart2pol(X,Y); Stqlp<xy
% idx = r<=1; ;A)w:"m
% z = nan(size(X)); R<aF;Rvb5
% z(idx) = zernfun(5,1,r(idx),theta(idx)); =jZ}@L/+
% figure Z>1\|j
% pcolor(x,x,z), shading interp t.Hte/,k
% axis square, colorbar h3y0bV[g=
% title('Zernike function Z_5^1(r,\theta)') D.?Rc'yD
% &`hx
% Example 2: "@IrBi6
% FTvFtdY
% % Display the first 10 Zernike functions sCG[gshq
% x = -1:0.01:1; Kp[ F@A#
% [X,Y] = meshgrid(x,x); -Bymt[
% [theta,r] = cart2pol(X,Y); mZLrU<)Y
% idx = r<=1; rMkoE7n
% z = nan(size(X)); Bu4J8eLx
% n = [0 1 1 2 2 2 3 3 3 3]; 8z\v|-%Z
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; \]pRu"
% Nplot = [4 10 12 16 18 20 22 24 26 28]; 8nn%wps
% y = zernfun(n,m,r(idx),theta(idx)); c zTr_>
% figure('Units','normalized') U_!Wg|
% for k = 1:10 L|hsGm\
% z(idx) = y(:,k); &qfnCM0Y
% subplot(4,7,Nplot(k)) \[</|]'[
% pcolor(x,x,z), shading interp ZZ/F}9!=
% set(gca,'XTick',[],'YTick',[]) R_iQLBrd
% axis square ?2h)w=dO
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) KG:CVIW
Y
% end *h59Vaoc
% U1zcJl^
% See also ZERNPOL, ZERNFUN2. !Cse,6/Z
:=
OdjfhY
% Paul Fricker 11/13/2006 ~Y=v@] 2/
.ET@J`"M
LRNgpjE}
% Check and prepare the inputs: @&!`.Y oy
% ----------------------------- ^~iu),gu
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) -P"9KnsO
error('zernfun:NMvectors','N and M must be vectors.') ]z5`!e)L
end sp%EA=: E
1&\ A#
if length(n)~=length(m) C>\0
"}iD
error('zernfun:NMlength','N and M must be the same length.') \ZSZ(p#1
end r)S tp`p
I9JiH,+
n = n(:); t
As@0`x9
m = m(:); ,khB*h14;h
if any(mod(n-m,2)) fZM)>
error('zernfun:NMmultiplesof2', ... '~-JR>
'All N and M must differ by multiples of 2 (including 0).') 3/+r*lv>X
end H(}Jt!/:
? [~ "$
if any(m>n) !ho~@sc{W
error('zernfun:MlessthanN', ... ;+pS-Zb
6
'Each M must be less than or equal to its corresponding N.') %"#%/>U4
end )tc"4lp-
Gwl]sMJ
if any( r>1 | r<0 ) g5THkxp
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 1;O%8sp&
end n/ ]<Bc?
or2BG&W
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) |^z?(?w
error('zernfun:RTHvector','R and THETA must be vectors.') y*i_Ec\h
end k
4|*t}o7
Vaj4p""\F
r = r(:); Cso!VdCX
theta = theta(:); *dB^B5
length_r = length(r); ]xJ5}/
if length_r~=length(theta) >cVEr+r9t
error('zernfun:RTHlength', ... AawK/tfs
'The number of R- and THETA-values must be equal.') mc{gcZIm
end qIm?F>>@
kJ^)7_3
% Check normalization: )C
\ %R
% -------------------- R4xoc;b
if nargin==5 && ischar(nflag) \?n4d#=$o
isnorm = strcmpi(nflag,'norm'); 2L=+z1%I
if ~isnorm tCkKJ)m
error('zernfun:normalization','Unrecognized normalization flag.') if|j)h&
end "S#}iYp
else [=Qv?am
isnorm = false; Y\CR*om!W
end /]0-|Kg+R
"rnZ<A}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% P<Wtv;Z1Z
% Compute the Zernike Polynomials >FrF"u:kM
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% EN
OaC
5f.G^A: _X
% Determine the required powers of r: 1_chO?&,I
% ----------------------------------- y^M~zOe
m_abs = abs(m); 'A#`,^]uLF
rpowers = []; z:Sr@!DZ
for j = 1:length(n) Z0fl]3p
rpowers = [rpowers m_abs(j):2:n(j)]; M$|r8%z1
end ^F5Q(A
rpowers = unique(rpowers); a'sa{>
["5Z=4
% Pre-compute the values of r raised to the required powers, a(!_3i@
% and compile them in a matrix: kpxWi=y
% ----------------------------- !8cS1(a
if rpowers(1)==0 D{b*,F:&@)
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); aSu6SU
rpowern = cat(2,rpowern{:}); BQ&G7V
rpowern = [ones(length_r,1) rpowern]; `5VEGSP]
else wi{qN___
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); B@R3j
rpowern = cat(2,rpowern{:}); B/P E{ /
end P!;%DI!<b
%Se@8d8
% Compute the values of the polynomials: nEtG(^N
% -------------------------------------- 1M%'Xe7
y = zeros(length_r,length(n)); SONv]));
for j = 1:length(n) T]&%
KQ
s = 0:(n(j)-m_abs(j))/2; )3W`>7>
pows = n(j):-2:m_abs(j); Fpz)@0K;
for k = length(s):-1:1 *pu ,|
p = (1-2*mod(s(k),2))* ... NGA8JV/U
prod(2:(n(j)-s(k)))/ ... -\Y"MwIED
prod(2:s(k))/ ... Z/y&;N4
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... =Gka;,n
prod(2:((n(j)+m_abs(j))/2-s(k))); P>*B{fi^
idx = (pows(k)==rpowers); a4zq`n|3U
y(:,j) = y(:,j) + p*rpowern(:,idx); ?*2DR:o>@
end M qy5>f)
0?]Y^:
if isnorm v()
wngn
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); o\n9(ao
end k!{0ku}]
end &$\B&Hp@
% END: Compute the Zernike Polynomials ,\HZIl[8
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% p2v+sWO
]n8
5.DF
% Compute the Zernike functions: rQ_!/J[9
% ------------------------------ 5xHP5+&
idx_pos = m>0; `s0`kp
idx_neg = m<0; pN-l82]'
; O6Ez-"
z = y; yvPcD5s5
if any(idx_pos) 9VEx0mkdd
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); f)~j'e
end h92'~X36
if any(idx_neg) C\~!2cy
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); YQ\c0XG
end J}$St|1y
17-D\
+}
% EOF zernfun