非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 Jj*XnL*
function z = zernfun(n,m,r,theta,nflag) {[61LQ6V9
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. o?b$}Qrl
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N 4(& W>E
% and angular frequency M, evaluated at positions (R,THETA) on the q El:2 <
% unit circle. N is a vector of positive integers (including 0), and 0SwWLq
% M is a vector with the same number of elements as N. Each element jAfUz7@
% k of M must be a positive integer, with possible values M(k) = -N(k) h35x'`g7+r
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, (ST/>")L
% and THETA is a vector of angles. R and THETA must have the same `22F@JYN
% length. The output Z is a matrix with one column for every (N,M) +IK~a9t
% pair, and one row for every (R,THETA) pair. D0v!fF~
% @ >%I\
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike HY~\e|o
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), Ms=x~o'
% with delta(m,0) the Kronecker delta, is chosen so that the integral ;3h[=hyS
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, q62TYg}
% and theta=0 to theta=2*pi) is unity. For the non-normalized aDm$^yP
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. ]BP"$rs
% K!7o#"GM
% The Zernike functions are an orthogonal basis on the unit circle. Z`o}xV
% They are used in disciplines such as astronomy, optics, and ,6~c0]/
% optometry to describe functions on a circular domain. .wtb7U;7
% vo-n9Bj
% The following table lists the first 15 Zernike functions. MScjq
% WO/;o0{d\9
% n m Zernike function Normalization IfF<8~~E
% -------------------------------------------------- eVjr/nm
% 0 0 1 1 t~)w921>
% 1 1 r * cos(theta) 2 6c^2Nl8e
% 1 -1 r * sin(theta) 2 H|tbwU)J
% 2 -2 r^2 * cos(2*theta) sqrt(6) 67+ K
?!,
% 2 0 (2*r^2 - 1) sqrt(3) 5]:fkx
% 2 2 r^2 * sin(2*theta) sqrt(6) w{?nX6a@p
% 3 -3 r^3 * cos(3*theta) sqrt(8) T#DJQ"$
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) ,v4Z[ (
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) q{n~v>wU
% 3 3 r^3 * sin(3*theta) sqrt(8) q@~N?$>
% 4 -4 r^4 * cos(4*theta) sqrt(10) !sfOde)$
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) Mc>]ZAz r
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) *^bqpW2$q
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 9IIQon
% 4 4 r^4 * sin(4*theta) sqrt(10) S7P](F=n#
% -------------------------------------------------- ;E l"dqH
% J Xo_l
% Example 1: , b
,`;I
% _M8Q%
% % Display the Zernike function Z(n=5,m=1)
UO5^4
% x = -1:0.01:1; 5JK{dis]k
% [X,Y] = meshgrid(x,x); Wo&MHMP
% [theta,r] = cart2pol(X,Y); 1y$Bz?4
% idx = r<=1; /0s1q
% z = nan(size(X)); ^Jcs0c
@\
% z(idx) = zernfun(5,1,r(idx),theta(idx)); \om$%FUP
% figure B'"C?d<7
% pcolor(x,x,z), shading interp t/yGMR=
% axis square, colorbar A-aukJg9
% title('Zernike function Z_5^1(r,\theta)') ;hA>?o_i(
% H2 5Mx>|d
% Example 2: %L.,:m tq)
% ? ;i O
% % Display the first 10 Zernike functions 7FW!3~3A_
% x = -1:0.01:1; Ytm t+9
% [X,Y] = meshgrid(x,x); ~=aD*v<3d
% [theta,r] = cart2pol(X,Y); |k$[+53A
% idx = r<=1; ..UmbJJ.u
% z = nan(size(X)); R!0O[i
% n = [0 1 1 2 2 2 3 3 3 3]; %k_R;/fjW
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; }_u1'
% Nplot = [4 10 12 16 18 20 22 24 26 28]; u3(zixb
% y = zernfun(n,m,r(idx),theta(idx)); w(U-6uA
% figure('Units','normalized') }BlVLf%C
% for k = 1:10 l3R`3@
% z(idx) = y(:,k); F&<si:}KB
% subplot(4,7,Nplot(k)) ogbLs)&+a
% pcolor(x,x,z), shading interp "
|[w.`
% set(gca,'XTick',[],'YTick',[]) c}kZx1
% axis square ^8Tq0>n?
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) {" S"V
% end 9F845M
% 75v 5/5zRn
% See also ZERNPOL, ZERNFUN2. v:
cO+dQ
5, R\tJCK
% Paul Fricker 11/13/2006 \-a^8{.^E
vz#VW
N%v}$58Z
% Check and prepare the inputs: !(~eeE}|lM
% ----------------------------- v] &
)+0
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) RMUR@o5N
error('zernfun:NMvectors','N and M must be vectors.') #56}RV1
end PVH^yWi
n
kA1]o
if length(n)~=length(m) wkOo8@J\
error('zernfun:NMlength','N and M must be the same length.') 8u
Tq0d6(
end }J73{
OJPxV~y
n = n(:); U+>!DtOYK
m = m(:); CMB:%
if any(mod(n-m,2)) }u:@:}8K
error('zernfun:NMmultiplesof2', ... _p <W
'All N and M must differ by multiples of 2 (including 0).') ,V'+16xW
end hNgbHzW
)8VrGg?
if any(m>n) EtvZk9d6h*
error('zernfun:MlessthanN', ... u&yAMWl
'Each M must be less than or equal to its corresponding N.') PeGA+0bm
end {R%v4#nk
`WQz_}TqB
if any( r>1 | r<0 ) {XH!`\
error('zernfun:Rlessthan1','All R must be between 0 and 1.') 1wP#?p)c
end =cI -<0QSn
S&_Z,mT./
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) 2eo]D?}
error('zernfun:RTHvector','R and THETA must be vectors.') Vp{! Ft8>
end xS?[v&"2
j hf%ze
r = r(:); /?uA{/8
theta = theta(:); iU"jV*P]
length_r = length(r); ts%XjCN[
if length_r~=length(theta) oE\Cwd
error('zernfun:RTHlength', ... R#gt~]x6k
'The number of R- and THETA-values must be equal.') aNLRUdc.
end gEcRJ1Q;C
r'0IAJ-;
% Check normalization: C1&~Y.6m
% -------------------- kDI(Y=Fg
if nargin==5 && ischar(nflag) ,rj_P
isnorm = strcmpi(nflag,'norm'); Y'7f"W
if ~isnorm jkCa2!WQ'i
error('zernfun:normalization','Unrecognized normalization flag.') hr3RC+ y
end f'&30lF
else ziZLw$)
isnorm = false; dz@L}b*
end HwfBbWHr'
Lc 4\i
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% .<&o, D
% Compute the Zernike Polynomials Ey<vvZ
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9RA~#S|(T
C".nB12
% Determine the required powers of r: [Q+8Ku
% ----------------------------------- 0'8_:|5
m_abs = abs(m); /$
Gp<.z
rpowers = []; q)0?aL
for j = 1:length(n) ?^I\e{),c
rpowers = [rpowers m_abs(j):2:n(j)]; Nfe
end -OV:y],-
rpowers = unique(rpowers); ^ [FK<9
EGpN@
% Pre-compute the values of r raised to the required powers, (Z(O7X(/
% and compile them in a matrix: XG_h\NIL
% ----------------------------- L&h@`NPO a
if rpowers(1)==0 dxHKXw
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); Itq248+Ci
rpowern = cat(2,rpowern{:}); yQ$Q{,S9
rpowern = [ones(length_r,1) rpowern]; uP|Py.+
else 5?6U@??]
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); me-Tv7WL
rpowern = cat(2,rpowern{:}); 1,UeVw/
end J)(KG dk
Rdb[{Ruxb
% Compute the values of the polynomials: 99W-sV
% -------------------------------------- 9vIqGz-o
y = zeros(length_r,length(n)); }U <T>0
for j = 1:length(n) #?=?<"*j
s = 0:(n(j)-m_abs(j))/2;
W)F<<B,
pows = n(j):-2:m_abs(j); Y2lBQp8'|
for k = length(s):-1:1 2cv!85
p = (1-2*mod(s(k),2))* ... X}"Ic@8
prod(2:(n(j)-s(k)))/ ... aC$-riP,?'
prod(2:s(k))/ ... Tfasry9'8
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... %LI[+#QE
prod(2:((n(j)+m_abs(j))/2-s(k))); 2AYV9egZ
idx = (pows(k)==rpowers); 9Q\CJ9
y(:,j) = y(:,j) + p*rpowern(:,idx); /~sNx
end &lbZTY}
rq#8}T>
if isnorm $y%X#:eLJ
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); yg}zK>j^vC
end BhAWIH8@C
end h?t#ABsVK
% END: Compute the Zernike Polynomials R#"LP7\
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% g2?kC^=z=
FKYPkFB
% Compute the Zernike functions: =f48[=
% ------------------------------ `O5 Hzb(}
idx_pos = m>0; U`)\|\NY
idx_neg = m<0; eXs^YPi
,<Ag&*YE4
z = y; P:lmQHls+
if any(idx_pos) )I~U&sT\/
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); l]g
/rs
end [p& n]T
if any(idx_neg) sR~D3-
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); ]o!rK<
end fEv`iXZG
dUt$kB
% EOF zernfun