《现代经典
光学》从现代的视角描述了经典光学,也可称为“半经典光学”。书中内容大都与经典光学相关,包含了相关的现象、仪器和技术,以及一些常见的主题:
衍射、干涉、
薄膜和全息光学,也涉及了高斯
光束.
激光腔、cD阅读器和共焦
显微镜。涉及少量的
量子光学。《现代经典光学》内容丰富、新颖,讲解透彻,各章最后均附有相关习题,书末附有部分习题的解答,可供高年级本科生及低年级研究生参阅,也可作为相关领域研究人员的参考书。
*.!5327 《现代经典光学》作者为牛津
大学物理系的Geoffrey Brooker。
>f(M5v(D\ 《牛津大学研究生教材系列》介绍了物理学的主要领域的知识和柑关应用,旨在引导读者进入相关领域的前沿。丛书坚持深入浅出的写作风格,用丰富的示例、图表、总结加深读者埘内容的理解。书中附有习题供读者练习。
#2;8/"v
:Jo[bm
ksF4m_E>YB 市场价:¥78.00
UoHNKB73 优惠价:¥58.50 免费送货,货到付款!
90gKGyxF
.cB>ab& rN`-ak 1 Electromagnetism and basic optics
eOJ_L]y- 1.1 Introduction
h`4!Qv 1.2 The Maxwell eqiations
M\r=i>(cu 1.3 Linear isotropic media
oo]g=C$n 1.4 Plane electromagnetic waves
ek` 6 Uf 1.5 Energy flow
ORFi0gFbA 1.6 Scalar wave amplitudes
n_4BNOZ~ 1.7 Dispersive media
60r0O5=|Fl 1.8 Electrical transmission lines
6o~g3{Ow 1.9 Elementary(ray)optics
C@ "l" 1.9.1 The thin lens
/`g~lww2O 1.9.2 Sign conventions
D{^CJ :n 1.9.3 Refraction at a spherical surface
;TboS-Y 1.9.4 The thick lens
6<No_x |_ 1.10 Rays and waves
.B{:<;sa Problems
?6 "B4%7b D'Uv7Mis 2 Fourier series and Fourier transforms
;upYam" 2.1 Introduction
qm"AatA 2.2 Fourier series:spectrum of a periodic waveform
I|_U|H!` 2.3 Fourier series:a mathematical reshape
spTIhZ 2.4 The Fourier transform:spectrum of a non-periodic waveform
GSVLZF'+ 2.5 The analytic signal
q1Ehl
S 2.6 The Dirac δ-function
Y/qs\c+ 2.7 Frequency and angular frequency
rvPmd%nk- 2.8 The power spectrum
SeBl*V 2.9 Examples of Fourier transforms
mg<S7+ 2.9.1 A single rectangular pulse
#xt-65^ 2.9.2 The double pulse
_ECH( 2.9.3 A δ-function pulse
LT]YYn($ 2.9.4 A regular array of δ-functions
x{1S!A^ 2.9.5 A random array of δ-functions
8jz7t:0 2.9.6 An infinite sinewave
q6eD{/4a1 2.10 Convolution and the convolution theorem
QaSRD/,M 2.11 Examples of convoltion
+4V"&S|& 2.12 Sign choices with Fourier transforms
E|x t\* problems
e]D TK*W~ QQQN}!xPj 3 Diffraction
iy [W:<c7j 3.1 Introduction
=qS\+ 3.2 Monochromatic spherical wave
<UbLds{+Uo 3.3 The Kirchhoff diffraction integral
Mi7LyIu 3.4 The Kirchhoff boundary conditions
`\Te, 3.5 Simplifying the Kirchhoff inregral
`ex>q 3.6 Complementary screens:the Babinet principle
BP8jReX^ 3.7 The Fraunhofer condition I:provisional
dQ_yb+< 3.8 Fraunhofer diffraction in'one dimension'
X"S")BQ
q 3.9 Fraunhofer diffraction in'two dimensions'
i:x<Vi 3.10 Two ways of looking at diffraction
5N$O 3.11 Examples of Fraunhofer diffraction
Z!I#Z2X 3.12 Fraunhofer diffraction and Fourier transforms
\{a 64 3.13 The Fraunhofer condition Ⅱ:Rayleigh distance and Fresnel number
d ZxrIWx 3.14 The Fraunhofer condition Ⅲ:object and image
hh<ryuZ 3.15 The Fresnel case of diffraction
ABU~V+'2 3.16 Fraunhofer diffraction and optical resolution
}W
nvz;]B 3.17 Surfaces whose fields are related by a Fourier transform
8Wx7%@^O 3.18 Kirchhoff boundary conditions:a harder look
(`&E^t Problems
A<[BR*n ;bkvdn} 4 Diffraction gratings
b.QL\$a
& 4.1 Introduction
Y#rd'
8 4.2 A basic transmission grating
a+P^?N 4.3 The multiple-element pattern
Pk)H(, 4.4 Reflection grating
(gF{S*` 4.5 Blazing
{3K`yDF 4.6 Grating spectrometric instruments
$uYfy< 4.7 Spectroscopic resolution
5`{u! QE 4.8 Making gratings
oZw #]Q@ 4.9 Tricks of the trade
R|-!5J4h 4.9.1 Normal spectrum
^) 5*?8# 4.9.2 Correct illumination
<MgC7S2I 4.9.3 Shortening exposure times with a spectrograph
>5j&Q