《现代经典
光学》从现代的视角描述了经典光学,也可称为“半经典光学”。书中内容大都与经典光学相关,包含了相关的现象、仪器和技术,以及一些常见的主题:
衍射、干涉、
薄膜和全息光学,也涉及了高斯
光束.
激光腔、cD阅读器和共焦
显微镜。涉及少量的
量子光学。《现代经典光学》内容丰富、新颖,讲解透彻,各章最后均附有相关习题,书末附有部分习题的解答,可供高年级本科生及低年级研究生参阅,也可作为相关领域研究人员的参考书。
~S#Le 《现代经典光学》作者为牛津
大学物理系的Geoffrey Brooker。
y kwS-e 《牛津大学研究生教材系列》介绍了物理学的主要领域的知识和柑关应用,旨在引导读者进入相关领域的前沿。丛书坚持深入浅出的写作风格,用丰富的示例、图表、总结加深读者埘内容的理解。书中附有习题供读者练习。
0ir]
x>Q\j>^ 3|l+&LF!IC 市场价:¥78.00
45q-x_ 优惠价:¥58.50 免费送货,货到付款!
QUwSnotgU
j^mAJ5 kk
)9!7 1 Electromagnetism and basic optics
cZPv6c_w 1.1 Introduction
?%{v1( 1.2 The Maxwell eqiations
gb(a` 1.3 Linear isotropic media
GUJx?V/[ 1.4 Plane electromagnetic waves
Yfs60f 1.5 Energy flow
tNG0ft%a 1.6 Scalar wave amplitudes
,J!G-?:@n 1.7 Dispersive media
fiES6VL 1.8 Electrical transmission lines
@y2{LUJe 1.9 Elementary(ray)optics
Mx4
<F "9 1.9.1 The thin lens
R>BnUIu 1.9.2 Sign conventions
U#G0 1.9.3 Refraction at a spherical surface
Zu,rf9LMj 1.9.4 The thick lens
oGu-:X=`9 1.10 Rays and waves
v#8{pr Problems
~K&ko8 +pkX$yz 2 Fourier series and Fourier transforms
4&Y{kNF 2.1 Introduction
wG ua"@IE 2.2 Fourier series:spectrum of a periodic waveform
S bc 2.3 Fourier series:a mathematical reshape
T;-&3 2.4 The Fourier transform:spectrum of a non-periodic waveform
iqRk\yq< 2.5 The analytic signal
,73J# 2.6 The Dirac δ-function
^M0e 0 2.7 Frequency and angular frequency
ocotO 2.8 The power spectrum
)Gi!wm>zvN 2.9 Examples of Fourier transforms
& w&JE]$ 5 2.9.1 A single rectangular pulse
?h2!Z{[0b 2.9.2 The double pulse
?suxoP% 2.9.3 A δ-function pulse
V\5ZRLawP 2.9.4 A regular array of δ-functions
jgQn^ 2.9.5 A random array of δ-functions
;G|5kvE> 2.9.6 An infinite sinewave
\7n ;c 2.10 Convolution and the convolution theorem
kc
Q~}uFB 2.11 Examples of convoltion
^_0zO$z, 2.12 Sign choices with Fourier transforms
(P%{Tab problems
3MPmLV#f 0hVw=KDO9: 3 Diffraction
F=?0:2P0bD 3.1 Introduction
P-[6'mw` 3.2 Monochromatic spherical wave
*~YU0o 3.3 The Kirchhoff diffraction integral
cv})^E$x 3.4 The Kirchhoff boundary conditions
,UNCBnv1 3.5 Simplifying the Kirchhoff inregral
v0+mh] 3.6 Complementary screens:the Babinet principle
#&u9z5ywM 3.7 The Fraunhofer condition I:provisional
I?<5
% 3.8 Fraunhofer diffraction in'one dimension'
J$Uj@M 3.9 Fraunhofer diffraction in'two dimensions'
Kx==vq%39 3.10 Two ways of looking at diffraction
lgWEB3f
. 3.11 Examples of Fraunhofer diffraction
%#kml{I 3.12 Fraunhofer diffraction and Fourier transforms
xF.n=z 3.13 The Fraunhofer condition Ⅱ:Rayleigh distance and Fresnel number
lR3`4bHA 3.14 The Fraunhofer condition Ⅲ:object and image
XRARgWj 3.15 The Fresnel case of diffraction
|h}/#qhR 3.16 Fraunhofer diffraction and optical resolution
P_6JweN 3.17 Surfaces whose fields are related by a Fourier transform
Wwo'pke
3.18 Kirchhoff boundary conditions:a harder look
@#m@ . Problems
]@LeyT'cY :E`/z@I 4 Diffraction gratings
' b1k0 9' 4.1 Introduction
>d2U=Yk! 4.2 A basic transmission grating
h]WPWa)M 4.3 The multiple-element pattern
T)4pLN
E 4.4 Reflection grating
>8%<ML 4.5 Blazing
TC[(mf:8 4.6 Grating spectrometric instruments
m
ioNMDG 4.7 Spectroscopic resolution
gkkT<hEV= 4.8 Making gratings
uknX py)) 4.9 Tricks of the trade
SWwL.-+E] 4.9.1 Normal spectrum
`_"F7Czn 4.9.2 Correct illumination
EH1GdlhA 4.9.3 Shortening exposure times with a spectrograph
PiQsVk 4.9.4 Vacuum instruments
8);G'7O 4.9.5 Double monochromator
GS_+KR\ 4.9.6 An inventor's paradise
E^'f'\m 4.10 Beyond the simple theory
jgpSFb<9F Problems
<cig^B{nX L F<{/c9, 5 The Fabry-Perot
'tyblj C 5.1 Introduction
f%ThS42 5.2 Elementary theory
gs/ i%O 5.3 Basic apparatus
4gKu8G 5.4 The meaning of finesse
#^FDG1= 5.5 Free spectral range and resolution
ou V%*<Ki 5.5.1 Free spectral range
>`{B 5.5.2 Resolution
=o_Ua^mr 5.6 Analysis of an étalon fringe pattern
`_;sT8 5.7 Flatness and parallelism of Fabry-Perot plates
d-%bRGo/ 5.8 Designing a Fabry-Perot to do a job
L'A9TW2 5.9 Practicalities of spectroscopy using a Fabry-Perot
WlJ=X$ 5.10 The Fabry-Perot as a source of ideas
HgY [Q}7s Problems
VAD9mS^~ r.z= 6 Thin films
9Ub##5$[, 6.1 Introduction
YmwUl> @{ 6.2 Basic calculation for one layer
kMS&"/z 6.3 Matrix elimination of'middle'amplitudes
PoB-:G6 6.4 Reflected and transmitted Waves
(D5sJ$&E@\ 6.5 Impedance concepts
qz_'v{uAj 6.6 High-reflectivity mirrors
uT :Yh6 6.7 Anti-reflection coatings
.Tm m 6.8 Interference filters
!v fbgK 6.9 Practicalities of thin-film deposition
.dwy+BzS Problems
A.YXK%A% IoAG !cS 7 Ray matrices and Gaussian beams
NpPuh9e{ 7.1 Introduction
iY[+BI: 7.2 Matrix methods in ray optics
6<hE]B) 7.3 Matrices for translation and refraction
'r0kX|| 7.4 Reflections
U\'HB.P\ 7.5 Spherical waves
=Ts5\1sc> 7.6 Gaussian beams
3u,C I! 7.7 Properties of a Gaussian beam
#Ch*a.tI@ 7.8 Sign conventions
|^09ny| 7.9 Propagation of a Gaussian beam
:MPfCiAv 7.10 Electric and magnetic fields
.91@T. Problems
rGDx9KR4K! w,)O*1't 8 Optical cavities
R\T1R"1 8.1 Introduction
u5Tu~ 8.2 Gauss-Hermite beams
ATG;*nIP 8.3 Cavity resonator
'W_u1l/ 8.4 Cavity modes
Mil+> X0 8.5 The condition for a low-loss mode
Kg;u.4.-M 8.6 Finding the mode shape for a cavity
l^k/Y
] 8.7 Longitudinal modes
E;MelK<8( 8.8 High-loss cavities
0d|DIT#>? 8.9 The symmetrical confocal cavity
BB9+d"Sq 8.10 The confocal Fabry-Perot
G4;5$YGG 8.11 Choice of cavity geometry for a laser
Rt+ak} 8.12 Selection of a desired transverse mode
eYQPK?jo 8.13 Mode matching
uB1>.Pvxb Problems
CK=TD`$w ;R[w}#Sm 9 Coherence:qualitative
tv 7"4$T 9.1 Introduction
eHl)/=' 9.2 Terminology
)45#lE3TH 9.3 Young fringes:tolerance to frequency range
$a#-d; 9.4 Young fringes:tolerance to collimation
X/BcS[a 9.5 Coherence area
t9eEcqMg 9.6 The Michelson stellar interferometer
sS{!z@\Lf 9.7 Aperture synthesis
mMOjV_ 9.8 Longitudinal and transverse coherence
dJ(<zz+;b 9.9 Interference of two parallel plane waves
1=L5=uz1d: 9.10 Fast and slow detectors
nh'TyUd! 9.11 Coherence time and coherence length
"$krK7Z 9.12 A Michelson interferometer investigating longitudinal coherence
UFzC8 9.13 Fringe visibility
/6{P
?)]pE 9.14 Orders of magnitude
93VbB[w~7F 9.15 Discussion
OpD%lRl 9.15.1 What of lasers?
+4g H=6 9.15.2 The Young slits:another look
'ju'O#A9 9.15.3 Fast and slow detectors:another look
{oftZXwf 9.15.4 Grating monochromator:another look
s1>d)2lX 9.15.5 Polarized and unpolarized light
/~1Ew Problems
@L ,4JPk Q+7+||RW 10 Coherence:correlation functions
N?s`a;Q[= 10.1 Introduction
[/Sk+ID 10.2 Correlation function:definition
Ib(G!oO:E- 10.3 Autocorrelation and the Michelson interferometer
/T<))@$ 10.4 Normalized autocorrelation function
=/e$Rp 10.5 Fringe visibility
`lcQ
Yd<,4 10.6 The Wiener-Khintchine theorem
9<Ks2W.N 10.7 Fourier transform spectroscopy
Qf($F,)K 10.8 Partial coherence:transverse
p#0L@!, 10.9 The van Cittert-Zernike theorem
]o?r(1 10.10 Intensity correlation
=Cc]ugl7- 10.11 Chaotic light and laser light
AL{iQxQ6 10.12 The Hanbury Brown-Twiss experiment
uGpLh0 10.13 Stellar diameters measured by intensity correlation
zQ#2BOx1 10.14 Classical and quantum optics
u?rs6A[h# Problems
nrV!<nNBk #h}a 11 Optical practicalities:étendue,interferometry,fringe localization
4TRF -f 11.1 Introduction
\7PC2IsT3 11.2 Energy flow:étendue and radiance
n{I1ZlEeh 11.3 Conservation of étendue and radiance
kB9@
&t+ 11.4 Longitudinal and transverse modes
`-w, 6 11.5 étendue and coherence area
Mx Dqp; 11.6 Field modes and entropy
L/?jtF:o 11.7 Radianee of some optical sources
x~QZVL=: 11.7.1 Radiance of a black body
jG`,k*eUrJ 11.7.2 Radiance of a gas-discharge lamp
a0&L,7mu<' 11.7.3 Radiance of a light-emitting diode (
LED)
kgHZaQnD 11.8 étendue and interferometers
Ou`;HN;[ 11.9 大Etendue and spectrometers
az[# q 11.10 A design study:a Fourier-transform spectrometer
O>"T* 11.11 Fringe locahzation
FQ"ED:lks Problems
~gdnD4[G zF@[S 12 Image formation:diffraction theory
H`s[=Y,m 12.1 Introduction
z|8zNt Ug 12.2 Image formation with transversely Coherent illumination informal
u'T?e+= 12.3 Image formation:ideal optical system
wGw<z[:f 12.4 Image formation:imperfect optical system
L{0\M`B- 12.5 Microscope resolution:Abbe theory
22/"0=2g 12.5.1 Abbe theory:introduction
++ZP
X'| 12.5.2 Abbe theory:explanation
hmB`+?,z* 12.6 Improving the basic microscope
SLz;5%CPV 12.7 Phase contrast
y~'%PUN 12.8 Dark-ground illumination
uO>pl37@ 12.9 Schlieren
/r8sL)D+ 12.10 Apodizing
qpjiQ,\:b 12.11 Holography
udS&$/&GH 12.12 The point spread function
t?H
sfN 12.13 Optical transfer function;modulation transfer function
GX=U6n> Problems
L d{`k 13 Holography
`CRF E5 13.1 Introduction
[A'e7Do%' 13.2 Special case:plane-wave obiect beam and plane-wave reference beam
WRrg5&._q 13.3 The intensity of the reference beam
nlZJ}xZ 13.4 The response of a photographic emulsion
t&i