《现代经典
光学》从现代的视角描述了经典光学,也可称为“半经典光学”。书中内容大都与经典光学相关,包含了相关的现象、仪器和技术,以及一些常见的主题:
衍射、干涉、
薄膜和全息光学,也涉及了高斯
光束.
激光腔、cD阅读器和共焦
显微镜。涉及少量的
量子光学。《现代经典光学》内容丰富、新颖,讲解透彻,各章最后均附有相关习题,书末附有部分习题的解答,可供高年级本科生及低年级研究生参阅,也可作为相关领域研究人员的参考书。
]d#Lfgo 《现代经典光学》作者为牛津
大学物理系的Geoffrey Brooker。
,#G>& 《牛津大学研究生教材系列》介绍了物理学的主要领域的知识和柑关应用,旨在引导读者进入相关领域的前沿。丛书坚持深入浅出的写作风格,用丰富的示例、图表、总结加深读者埘内容的理解。书中附有习题供读者练习。
vywd&7gK
vJ*IUy u|m>h(O 市场价:¥78.00
5m,{?M` 优惠价:¥58.50 免费送货,货到付款!
l?CUd7P(a
Y40Hcc+Fx 7_r$zEP6 1 Electromagnetism and basic optics
-^=sxi,V 1.1 Introduction
0T,Qn{ 1.2 The Maxwell eqiations
C2GF
N1i 1.3 Linear isotropic media
5>.)7D% 1.4 Plane electromagnetic waves
8>.l4:` 1.5 Energy flow
4^1B'>I 1.6 Scalar wave amplitudes
&Mz3CC6 1.7 Dispersive media
/H+br_D9 1.8 Electrical transmission lines
g0 ec- 1.9 Elementary(ray)optics
6Q]c]cCu 1.9.1 The thin lens
+RexQE 1.9.2 Sign conventions
xEBiBskd 1.9.3 Refraction at a spherical surface
2`(-l{3 1.9.4 The thick lens
Uq/#\7/rL 1.10 Rays and waves
\tFg10 Problems
%1ofu,% S -j<O&h~C 2 Fourier series and Fourier transforms
]_NN,m>z 2.1 Introduction
l1^/Q~u 2.2 Fourier series:spectrum of a periodic waveform
XWvT(+J 2.3 Fourier series:a mathematical reshape
8%s^>.rG 2.4 The Fourier transform:spectrum of a non-periodic waveform
UeB8|z 2.5 The analytic signal
j""I,$t 2.6 The Dirac δ-function
Dt,b\6 2.7 Frequency and angular frequency
}^uUw& 2.8 The power spectrum
E@\e37e 2.9 Examples of Fourier transforms
@xR7>-$0p 2.9.1 A single rectangular pulse
WrhC
q6 2.9.2 The double pulse
6'y+Ev$9 2.9.3 A δ-function pulse
zAEq)9Y"l' 2.9.4 A regular array of δ-functions
%Kd&A* 2.9.5 A random array of δ-functions
xlVQ[Mt 2.9.6 An infinite sinewave
"?_adot5v 2.10 Convolution and the convolution theorem
G)\s{qk 2.11 Examples of convoltion
)@.bkzW 2.12 Sign choices with Fourier transforms
9`}Wp2 problems
UJG)-x iMRb`
\KH 3 Diffraction
[^r0red 3.1 Introduction
jR7 , b5 3.2 Monochromatic spherical wave
f!;i$Oif 3.3 The Kirchhoff diffraction integral
rDkAeX0 3.4 The Kirchhoff boundary conditions
-jsNAQ 3.5 Simplifying the Kirchhoff inregral
n k]tq3.[ 3.6 Complementary screens:the Babinet principle
\3dMA_5 3.7 The Fraunhofer condition I:provisional
Kx9Cx5B 3.8 Fraunhofer diffraction in'one dimension'
PT4Xr=z = 3.9 Fraunhofer diffraction in'two dimensions'
@`2<^-r\ 3.10 Two ways of looking at diffraction
jI@0jxF 3.11 Examples of Fraunhofer diffraction
3#R~>c2 3.12 Fraunhofer diffraction and Fourier transforms
"~x\bSY 3.13 The Fraunhofer condition Ⅱ:Rayleigh distance and Fresnel number
#.p^S0\pw 3.14 The Fraunhofer condition Ⅲ:object and image
8[(eV. 3.15 The Fresnel case of diffraction
:@w
;no>=* 3.16 Fraunhofer diffraction and optical resolution
6Uq@v8mh 3.17 Surfaces whose fields are related by a Fourier transform
)
Ph. 3.18 Kirchhoff boundary conditions:a harder look
=O~1L m; Problems
{snLiCl GL&ri!, 4 Diffraction gratings
~/1kCZB 4.1 Introduction
j>~^jz: 4.2 A basic transmission grating
\{J gjd 4.3 The multiple-element pattern
iRo UM.% 4.4 Reflection grating
M= !Fb 4.5 Blazing
6}mbj=E` 4.6 Grating spectrometric instruments
-xq)brG 4.7 Spectroscopic resolution
B1m@ 4.8 Making gratings
r AMnM>` 4.9 Tricks of the trade
'5wa"/ ?w 4.9.1 Normal spectrum
V1Dwh@iS 4.9.2 Correct illumination
dA>t 4.9.3 Shortening exposure times with a spectrograph
#6'oor X 4.9.4 Vacuum instruments
K^t M$l\ 4.9.5 Double monochromator
{EbR
= 4.9.6 An inventor's paradise
G T#hqt'1x 4.10 Beyond the simple theory
I z~#G6]M Problems
e8gJ }8Fj 6XUcJ0 5 The Fabry-Perot
@uz&]~+` 5.1 Introduction
,GXwi|Y 5.2 Elementary theory
WwbExn< 5.3 Basic apparatus
@B5@3zYs 5.4 The meaning of finesse
`kIzT!HX 5.5 Free spectral range and resolution
yXS ~PG 5.5.1 Free spectral range
.:Bjs* 5.5.2 Resolution
Zoj.F 5.6 Analysis of an étalon fringe pattern
{g\Yy(r
5.7 Flatness and parallelism of Fabry-Perot plates
1B=vrGq 5.8 Designing a Fabry-Perot to do a job
3;~1rw=$< 5.9 Practicalities of spectroscopy using a Fabry-Perot
*MW)APw= 5.10 The Fabry-Perot as a source of ideas
Qi2yaEB Problems
%1SA!1>j 1i#uKKwE 6 Thin films
l5Z=aW Q 6.1 Introduction
-h^FSW($-R 6.2 Basic calculation for one layer
n[n0iz1- 6.3 Matrix elimination of'middle'amplitudes
l_iucN 6.4 Reflected and transmitted Waves
4>>{}c!nf 6.5 Impedance concepts
WK0?$[|=r 6.6 High-reflectivity mirrors
SSycQ4[{o 6.7 Anti-reflection coatings
D|Wekhm 6.8 Interference filters
kW\=Z1\# 6.9 Practicalities of thin-film deposition
^DXERt&3 Problems
pl
Ii +oBf\!{cW 7 Ray matrices and Gaussian beams
2_;.iH
6 7.1 Introduction
TYWajcch 7.2 Matrix methods in ray optics
fJLlz$H 7.3 Matrices for translation and refraction
\+fP& 7.4 Reflections
'?t]iRCeI7 7.5 Spherical waves
"5Oog< 7.6 Gaussian beams
2,puu2F 7.7 Properties of a Gaussian beam
LdI) 7.8 Sign conventions
6[wej$u 7.9 Propagation of a Gaussian beam
yxQxc5/X) 7.10 Electric and magnetic fields
,=B
"%=S Problems
E:xpma1Qf .3qaaXeH 8 Optical cavities
dG.s8r*?M 8.1 Introduction
15VOQE5Fl` 8.2 Gauss-Hermite beams
v3[Z]+ ] 8.3 Cavity resonator
0z&3jWWY@ 8.4 Cavity modes
Sd'
uXX@ 8.5 The condition for a low-loss mode
8U0y86q>)E 8.6 Finding the mode shape for a cavity
(S0MqX* 8.7 Longitudinal modes
.x$+R%5U 8.8 High-loss cavities
4pV.R5: 8.9 The symmetrical confocal cavity
~/Aw[>_; 8.10 The confocal Fabry-Perot
;4 R1 8.11 Choice of cavity geometry for a laser
IGEf*! 8.12 Selection of a desired transverse mode
6xr$ 8.13 Mode matching
bM_Y(TgJ Problems
;5=J'8f i96Pel 9 Coherence:qualitative
9H2^4D8 9.1 Introduction
Zw| IY9D 9.2 Terminology
);}k@w
fw) 9.3 Young fringes:tolerance to frequency range
L{bcmo\U 9.4 Young fringes:tolerance to collimation
s6OnHX\it7 9.5 Coherence area
oaHg6PT! 9.6 The Michelson stellar interferometer
If\u^c 9.7 Aperture synthesis
~IZ'zuc 9.8 Longitudinal and transverse coherence
Me yQ`% 9.9 Interference of two parallel plane waves
A|CW4f, 9.10 Fast and slow detectors
Zq2dCp% 9.11 Coherence time and coherence length
n*CH,fih: 9.12 A Michelson interferometer investigating longitudinal coherence
g)!B};AA 9.13 Fringe visibility
~;aSX1
9.14 Orders of magnitude
Hhr/o~?;}# 9.15 Discussion
%'"#X?jk1 9.15.1 What of lasers?
`/f9
mn 9.15.2 The Young slits:another look
w3 PE.A"Q 9.15.3 Fast and slow detectors:another look
"u Xl 9.15.4 Grating monochromator:another look
WSn^P~vC 9.15.5 Polarized and unpolarized light
kwMuL>5 Problems
= PcmJG] 'M|W nR 10 Coherence:correlation functions
\U4O*lq 10.1 Introduction
kCL)F\v"iT 10.2 Correlation function:definition
[5:,+i 10.3 Autocorrelation and the Michelson interferometer
&1%W-&bc6 10.4 Normalized autocorrelation function
6%JKY+n^ 10.5 Fringe visibility
f*Xonb 10.6 The Wiener-Khintchine theorem
N$M#3Y; 10.7 Fourier transform spectroscopy
{0q;:7Bt 10.8 Partial coherence:transverse
El Z'/l*\ 10.9 The van Cittert-Zernike theorem
F}DdErd!f 10.10 Intensity correlation
Rs_@L}U.. 10.11 Chaotic light and laser light
X |.'_6l. 10.12 The Hanbury Brown-Twiss experiment
jx!)N> 10.13 Stellar diameters measured by intensity correlation
24:;vcb 10.14 Classical and quantum optics
L=iaL[zdJ Problems
v/c8P\ sD1L
P 11 Optical practicalities:étendue,interferometry,fringe localization
muQH!Q 11.1 Introduction
VW<s_ 11.2 Energy flow:étendue and radiance
CCDoiTu!4 11.3 Conservation of étendue and radiance
im>Sxu@ 11.4 Longitudinal and transverse modes
Z_QSVH68A 11.5 étendue and coherence area
k
sJz44 11.6 Field modes and entropy
XrYMv
WT 11.7 Radianee of some optical sources
02Ur'| 11.7.1 Radiance of a black body
T [N:X0 11.7.2 Radiance of a gas-discharge lamp
>T%Jlj3ZG 11.7.3 Radiance of a light-emitting diode (
LED)
@X>k@M 11.8 étendue and interferometers
i5?)E7- 11.9 大Etendue and spectrometers
Ox8dnPcx 11.10 A design study:a Fourier-transform spectrometer
$)mq 11.11 Fringe locahzation
5z~Ji77! Problems
p/:)Z_ S6B(g_D| 12 Image formation:diffraction theory
K$\az%NE 12.1 Introduction
?cG+rC% 12.2 Image formation with transversely Coherent illumination informal
b=9(gZ 9 12.3 Image formation:ideal optical system
)-Zpr1kD 12.4 Image formation:imperfect optical system
tV9W4`Z2q 12.5 Microscope resolution:Abbe theory
o$'Fz[U 12.5.1 Abbe theory:introduction
IPbdX@FeV 12.5.2 Abbe theory:explanation
9bPQD{Qb 12.6 Improving the basic microscope
(ivV [ 12.7 Phase contrast
s{NEP/QQJ 12.8 Dark-ground illumination
zid?yuP 12.9 Schlieren
Y$--Hp4 12.10 Apodizing
*;7& 12.11 Holography
gd_w;{WP 12.12 The point spread function
mq[(yR 12.13 Optical transfer function;modulation transfer function
t^&:45~Q Problems
2}'qu) 13 Holography
| H2{%! 13.1 Introduction
kI<C\*N 13.2 Special case:plane-wave obiect beam and plane-wave reference beam
Bg-C:Ok2' 13.3 The intensity of the reference beam
-DlKFN 13.4 The response of a photographic emulsion
k)'hNk"x 13.5 The theory of holography
$G"PZ7 13.6 Formatiol of an image
FZ #ngrT 13.7 What if we break a hologram in half?
,cWO Ak 13.8 Replay with changed optical geometry
82~UI'f \ 13.9 The effect of a thick photographic emulsion
0'TqW9P 13.10 Phase holograms
6.6~w\fR8 13.11 Gabor's holograms
^v}Z5,aN 13.12 Practicalities
i`gsT[JQRX 13.13 Applications of holography
h76#HUBr! Problems
wHBkaPO! E(4ti]'4 14 Optical fibres
W:3u$LTf*f 14.1 Introduction
~{n_rKYV 14.2 Fibre optics:basics
:u'X
~ID[ 14.3 Transverse modes
'<