切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8819阅读
    • 5回复

    [推荐]MATLAB入门教程-MATLAB的基本知识 [复制链接]

    上一主题 下一主题
    离线cc2008
     
    发帖
    1007
    光币
    4408
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2008-10-21
    1-1、基本运算与函数     JbB}y'c4}=  
    zI~owK)%Z  
    在MATLAB下进行基本数学运算,只需将运算式直接打入提示号(>>)之後,并按入Enter键即可。例如:   RE.r4uOJg  
    #YDr%>j  
    >> (5*2+1.3-0.8)*10/25   *m%]zj0bo  
    lnE+Au'  
    ans =4.2000   1<ro7A4hK  
    nW "q  
    MATLAB会将运算结果直接存入一变数ans,代表MATLAB运算後的答 案(Answer)并显示其数值於萤幕上。 )otb>w5  
    L6>pGx  
    小提示: ">>"是MATLAB的提示符号(Prompt),但在PC中文视窗系统下,由於编码方式不同,此提示符号常会消失不见,但这并不会影响到MATLAB的运算结果。   PA6=wfc  
    qyHZ M}/  
    我们也可将上述运算式的结果设定给另一个变数x:   |*RYq2y  
    p;?*}xa  
    x = (5*2+1.3-0.8)*10^2/25   3:%QB9qc]'  
    1b8p~-LsU  
    x = 42   m\/ Tj0e  
    yfU<UQ!1  
    此时MATLAB会直接显示x的值。由上例可知,MATLAB认识所有一般常用到的加(+)、减(-)、乘(*)、除(/)的数学运算符号,以及幂次运算(^)。   MxzLK%am  
    v#=`%]mL  
    小提示: MATLAB将所有变数均存成double的形式,所以不需经过变数宣告(Variable declaration)。MATLAB同时也会自动进行记忆体的使用和回收,而不必像C语言,必须由使用者一一指定.这些功能使的MATLAB易学易用,使用者可专心致力於撰写程式,而不必被软体枝节问题所干扰。     {brMqE>P#  
    >:=|L%]s;\  
    若不想让MATLAB每次都显示运算结果,只需在运算式最後加上分号(;)即可,如下例: ]d[ge6  
    ND<!4!R^  
    y = sin(10)*exp(-0.3*4^2);   ,3I^?5  
    `V[!@b:  
    若要显示变数y的值,直接键入y即可:   E&Qi@Ty  
    >=iy2~Fz,  
    >>y   K;7f?52  
    ^$%Z! uz  
    y =-0.0045   RFh"&0[  
    B12$I:x`  
    在上例中,sin是正弦函数,exp是指数函数,这些都是MATLAB常用到的数学函数。 EkT."K  
    C@N1ljXJT  
    下表即为MATLAB常用的基本数学函数及三角函数:   k%[3Q>5iM  
    y]%w)4PS  
    小整理:MATLAB常用的基本数学函数 +l^LlqA  
    R{,ooxH\J  
    abs(x):纯量的绝对值或向量的长度 CukC6u b  
    UN"(5a8.  
    angle(z):复 数z的相角(Phase angle) 7^} Ll@  
    ?)'~~ @NkH  
    sqrt(x):开平方 ( *G\g=D  
    K.gEj*@  
    real(z):复数z的实部 *%Qn{x  
     n6F/Ac:  
    imag(z):复数z的虚 部 C1T_9}L-A  
    !~_zm*CqbZ  
    conj(z):复数z的共轭复数 1GEK:g2B  
    !h&g7do]Z  
    round(x):四舍五入至最近整数 s=?aox7  
    iAY!oZR(WT  
    fix(x):无论正负,舍去小数至最近整数 hP J4Oj1O  
    0=wK:Ex  
    floor(x):地板函数,即舍去正小数至最近整数 Ba\6?K  
    &iN--~}!$  
    ceil(x):天花板函数,即加入正小数至最近整数 1 4 LI5T  
    8\<jyJ  
    rat(x):将实数x化为分数表示 `k\grr.J  
    qDWsvx]  
    rats(x):将实数x化为多项分数展开 KlK`;cr?  
    _DRrznaw  
    sign(x):符号函数 (Signum function)。   \Mv":Lm1  
    WS& kx~oQ  
    当x<0时,sign(x)=-1;   c41: !u^  
    /8@m<CW2Y  
    当x=0时,sign(x)=0;   bIt=v)%$  
    OPpjuIRv  
    当x>0时,sign(x)=1。   W{XkV Ke1a  
    %/kyT%1  
    > 小整理:MATLAB常用的三角函数 vUC!fIG  
    - ~O'vLG  
    sin(x):正弦函数 {#IPf0O  
    M8w5Ob  
    cos(x):馀弦函数 Ql?^ B SqG  
    `h;k2Se5  
    tan(x):正切函数 A`O<6   
    .AV)'j#6P  
    asin(x):反正弦函数 @|bP+8oU  
    \^*< y-jL  
    acos(x):反馀弦函数 t?;T3k[RM  
    O?bK%P]ay  
    atan(x):反正切函数 Z.Rb~n&  
    fYebB7Pv  
    atan2(x,y):四象限的反正切函数 ~ aZedQc  
    <<MjC5  
    sinh(x):超越正弦函数 T0j2a &Pv  
    v}Wmd4Y'  
    cosh(x):超越馀弦函数 {u7##Vrgt8  
    n)8Yj/5  
    tanh(x):超越正切函数 6FfOH<\z6i  
    ETv9k g  
    asinh(x):反超越正弦函数 zIQzmvf  
    v4?iOD  
    acosh(x):反超越馀弦函数 (.K\Jg'Y6j  
    F-n"^.7  
    atanh(x):反超越正切函数   %XhfXd'  
    'p)Q68;&  
    变数也可用来存放向量或矩阵,并进行各种运算,如下例的列向量(Row vector)运算: ]/]ju$l9Z  
    )J/HkOj"V  
    x = [1 3 5 2];   ;mm!0]V  
    a7H0!9^h  
    y = 2*x+1   OQ_stE2i  
    bv?0.{Z  
    y = 3 7 11 5   c yQ(fIYl  
    {}e^eJ  
    小提示:变数命名的规则   e xR^/|BR  
    "5DJu ~  
    1.第一个字母必须是英文字母 2.字母间不可留空格 3.最多只能有19个字母,MATLAB会忽略多馀字母   n1(?|aJ#1  
    \Z)1 ?fq  
    我们可以随意更改、增加或删除向量的元素:   Qqs"?Z,P  
    5#:pT  
    y(3) = 2 % 更改第三个元素   1r`i]1<H  
    q/@dR{-  
    y =3 7 2 5   mAqD jRV1  
    _[Gb)/@mM  
    y(6) = 10 % 加入第六个元素   (4~WWU (iT  
    hsce:TB  
    y = 3 7 2 5 0 10   /dHs &SU,  
    =7[)'  
    y(4) = [] % 删除第四个元素,   5P^U_  
    sn\;bq  
    y = 3 7 2 0 10   <3 @}Lj  
    Unl?fXI  
    在上例中,MATLAB会忽略所有在百分比符号(%)之後的文字,因此百分比之後的文字均可视为程式的注解(Comments)。MATLAB亦可取出向量的一个元素或一部份来做运算:   -R+zeu(e'  
    ,j;PRJ  
    x(2)*3+y(4) % 取出x的第二个元素和y的第四个元素来做运算   Rmh*TQu  
    a4GWuozl  
    ans = 9   #0 y <a:}R  
    SPy3~Db-o  
    y(2:4)-1 % 取出y的第二至第四个元素来做运算   ?#[)C=p]z  
    &/F_*=VE  
    ans = 6 1 -1   `bgb*Yaod  
    4!%]fg}Um  
    在上例中,2:4代表一个由2、3、4组成的向量 &{^eU5  
    >Gd.&flSj  
    w$Ux?y- L  
    'Tf9z+0;  
    若对MATLAB函数用法有疑问,可随时使用help来寻求线上支援(on-line help):help linspace   9 pKm*n&  
    #a}N"*P  
    小整理:MATLAB的查询命令 n E :'Zxj  
    R8sck)k'}  
    help:用来查询已知命令的用法。例如已知inv是用来计算反矩阵,键入help inv即可得知有关inv命令的用法。(键入help help则显示help的用法,请试看看!) lookfor:用来寻找未知的命令。例如要寻找计算反矩阵的命令,可键入 lookfor inverse,MATLAB即会列出所有和关键字inverse相关的指令。找到所需的命令後 ,即可用help进一步找出其用法。(lookfor事实上是对所有在搜寻路径下的M档案进行关键字对第一注解行的比对,详见後叙。)   ~Yk"Hos  
    q(9%^cV6  
    将列向量转置(Transpose)後,即可得到行向量(Column vector):   '"O&J}s;  
    ??xlA-E  
    z = x'   mY2:m(9"5  
    )h"Fla  
    z = 4.0000   Bhuw(KeB  
    jn=ug42d  
       5.2000   aPBX=;(  
    wa?+qiWnrl  
       6.4000   PZ]5Hf1"  
    }brr ) )  
       7.6000   K+ehr  
    zGs|DB  
       8.8000   FN{/.?w(  
    *FPg#a+  
       10.0000     "Gh#`T0#a  
    Y^eX@dE FR  
    不论是行向量或列向量,我们均可用相同的函数找出其元素个数、最大值、最小值等:   EVz9WY  
    f)gGH'yOQ  
    length(z) % z的元素个数   .ev\M0Dt  
    rgR?wXW]jE  
    ans = 6   O)<r>vqe}  
    ' o=E!?  
    max(z) % z的最大值   2]Fu 1  
    gE=Wcb!  
    ans = 10   Vu|dV\N0*  
    c,BAa*]K  
    min(z) % z的最小值   vl~%o@*_  
    Qv!rUiXq  
    ans =   4   |0w~P s  
    u[[/w&UV.,  
    小整理:适用於向量的常用函数有: h#R&=t1,^  
    PJwEA  
    min(x): 向量x的元素的最小值 #_p  
    _h~p:=  
    max(x): 向量x的元素的最大值 N[ Q#R~Hn<  
    Em9my2oE  
    mean(x): 向量x的元素的平均值 A:xb!= 2  
    o}!&y?mp  
    median(x): 向量x的元素的中位数 >C^/,/%v  
    jaa/k@OG  
    std(x): 向量x的元素的标准 =F[lg?g  
    wz@/5c/u  
    diff(x): 向量x的相邻元素的差 >0M:&NMda  
    ahoh9iJ  
    sort(x): 对向量x的元素进行排序(Sorting) z@n+7p`w  
    -&7=uRQk  
    length(x): 向量x的元素个数 u;(K34!)  
    aKOf;^@  
    norm(x): 向量x的欧氏(Euclidean)长度 y3AL)  
    JOgmF_(>Z  
    sum(x): 向量x的元素总和 hgif]?:C<  
    SNxz*`@4  
    prod(x): 向量x的元素总乘积 s #`cX0L)  
    @2|G|C/]O}  
    cumsum(x): 向量x的累计元素总和 A ' )(SGSc  
    =%)})  
    cumprod(x): 向量x的累计元素总乘积 )_F(H)*  
    nYgx9Q"<om  
    dot(x, y): 向量x和y的内 积 Q%$i@JH`m  
    _we3jzMW  
    cross(x, y): 向量x和y的外积 (大部份的向量函数也可适用於矩阵,详见下述。)   _32/WQF6  
    +E)e1 :8  
    sFD!7 ;  
    6|i`@|#  
    .8%vd  
    y!BB7cK6  
    若要输入矩阵,则必须在每一列结尾加上分号(;),如下例:   L c{!FG>  
    (O Qi%/Oy  
    A = [1 2 3 4; 5 6 7 8; 9 10 11 12];     LP8o7%sv!  
    UT % #K%  
    A =     yh4jRe?f  
    $<14JEU  
    1  2  3  4     -^y1iN'D  
    *SXSF95  
    5  6  7  8     ^Y#@$c  
    W3aXW,P.V  
    9  10 11  12   kS[Dy$AB/2  
    s%hU*^ 8  
    同样地,我们可以对矩阵进行各种处理:   7-(>"75Q|  
    /;[}=JL<Q  
    A(2,3) = 5 % 改变位於第二列,第三行的元素值   4h(jw   
    v5P*<U Ax  
    A =     fWqv3nY^  
    4$qNcMdz  
    1  2  3  4   |:\$n}K  
    Ae3,W  
    5  6  5  8     1+VY><=n  
    Cbazwq  
    9  10 11  12     Hs.6;|0%  
    KC#kss  
    B = A(2,1:3) % 取出部份矩阵B   cYE./1D a  
    70d] d+M|  
    B = 5 6 5   xNocGtS  
    7=; D0SS  
    A = [A B'] % 将B转置後以行向量并入A   7j4ej|Fjo  
    qZ `nZi  
    A =     J~M H_N  
    U#OWUZ  
    1  2  3   4  5     #_JA5W+E  
    wE-Ji<1HJ  
    5  6  5   8  6     z +y;y&P  
    cH+h=E=  
    9  10 11  12  5   u4`mQ6  
    N`y}Gs  
    A(:, 2) = [] % 删除第二行(:代表所有列)   [u,hc/PL  
    TXZ(mj?  
    A =     ^=aml   
    ~R"]LbeY  
    1  3  4  5     jsK|D{m?  
    ~| 4U@  
    5  5  8  6     Aqx3!  
    >DPds~k  
    9  11 12  5   UIC\CP d  
    Z[DetRc-  
    A = [A; 4 3 2 1] % 加入第四列     6M O|s1zk  
    D!l [3  
    A =     JUe K"|fA  
    jh<TdvF2$  
    1  3   4   5     8@9hU`H8l  
    u|]mcZ,ZW  
    5  5   8   6     +#de8/x  
    oi33{#%t  
    9  11  12  5   +1E?He:iQ  
    GoGohsj  
    4  3   2   1   +0oyt?  
    yv6Zo0s<J  
    A([1 4], :) = [] % 删除第一和第四列(:代表所有行)   F[o+p|nF  
    s0~05{  
    A =     _mIa8K;  
    Fi?U)T+%+  
    5  5   8   6     sw3:HNG=  
    M~d+HE   
    9  11  12  5   kR`6s  
    | o;j0  
    这几种矩阵处理的方式可以相互叠代运用,产生各种意想不到的效果,就看各位的巧思和创意。   L@gQ L  
    D[>XwL  
    小提示:在MATLAB的内部资料结构中,每一个矩阵都是一个以行为主(Column-oriented )的阵列(Array)因此对於矩阵元素的存取,我们可用一维或二维的索引(Index)来定址。举例来说,在上述矩阵A中,位於第二列、第三行的元素可写为A(2,3) (二维索引)或A(6)(一维索引,即将所有直行进行堆叠後的第六个元素)。   e]dPF[?7  
    P;HVLflu  
    此外,若要重新安排矩阵的形状,可用reshape命令:   tu?Z@W/  
    +l[Z2mW  
    B = reshape(A, 4, 2) % 4是新矩阵的列数,2是新矩阵的行数   L V[66<T  
    I>YtWY|ed  
    B =   ?34EJ !  
    fY)4]=L  
    5   8     Zh@4_Z9n!  
    rE bx%u7Q  
    9   12     l1+w2rd1  
    Q5`+eQ?_\  
    5   6   &F<J#cfe8  
    6\)8mK  
    11  5   lzr>WbM{{p  
    BM=V,BZy  
    小提示: A(:)就是将矩阵A每一列堆叠起来,成为一个行向量,而这也是MATLAB变数的内部储存方式。以前例而言,reshape(A, 8, 1)和A(:)同样都会产生一个8x1的矩阵。   )$9C`d[  
    OTNZ!U/)j  
    MATLAB可在同时执行数个命令,只要以逗号或分号将命令隔开:   x 1%J1?Fp  
    oneSgJ  
    x = sin(pi/3); y = x^2; z = y*10, 3H\b N4  
    Sug~FV?k$e  
    z =     8vX*SrM  
    ^cPo{xf  
    7.5000   u$Pf.#  
    i SAidK,  
    若一个数学运算是太长,可用三个句点将其延伸到下一行:   l7D4`i<F  
    VAF:Z  
    z = 10*sin(pi/3)* ...   Un8#f+odR  
    NejsI un%  
    sin(pi/3);   V!kQuQJ>  
    Us@ {w`T  
    若要检视现存於工作空间(Workspace)的变数,可键入who:   SS45<!i y  
    3 4A&LBwC  
    who   mNBpb}  
    r=P$iG'&  
    Your variables are:   V5hlG =V  
    RB$ 8^#  
    testfile x   tx|"v|&e2  
    k?|zIu  
    这些是由使用者定义的变数。若要知道这些变数的详细资料,可键入:   x=)30y3*;  
    a dz;N;rIY  
    whos   n/-p;#R  
    4?*"7t3  
    Name Size Bytes Class   -f|+  
    q=E}#[EgY  
    A 2x4 64 double array   gn e #v  
    v&CO#vK5.  
    B 4x2 64 double array   3MBz  
    w'!}(Z5X?  
    ans 1x1 8 double array   pRk'GR]`  
    iK6<^,]'  
    x 1x1 8 double array   -SC2Zgi)A  
    }v(H E%~}  
    y 1x1 8 double array   Cn./Naq  
    Z+"E*  
    z 1x1 8 double array   g:HbmXOBpj  
    x"C93ft[  
    Grand total is 20 elements using 160 bytes   %.atWX`b  
    )l!&i?h%  
    使用clear可以删除工作空间的变数:   ^) b7m  
    U0|j^.)  
    clear A   y 4,T  
    b09#+CH?  
    A   <x%my4M  
    EJ &ZZg  
    ??? Undefined function or variable 'A'.   as!|8JE`  
    $Bwvw)(%  
    另外MATLAB有些永久常数(Permanent constants),虽然在工作空间中看不 到,但使用者可直接取用,例如:   yn ?U7`V  
    ~E:/oV:4 >  
    pi   ['N#aDh.?  
    .n|3A3:  
    ans = 3.1416   Rp@}9qijb  
    YWBP'Mo  
    下表即为MATLAB常用到的永久常数。   0?4^.N n3  
    !PP?2Ax  
    小整理:MATLAB的永久常数 i或j:基本虚数单位 bl=*3qB  
    )dN,b( w9  
    eps:系统的浮点(Floating-point)精确度 s7)# NT2  
    <812V8<!  
    inf:无限大, 例如1/0 nan或NaN:非数值(Not a number) ,例如0/0 nrD=[kc!w  
    C` 1\$U~%  
    pi:圆周率 p(= 3.1415926...) ~zOU/8n ,F  
    ;uo|4?E:\(  
    realmax:系统所能表示的最大数值   [r< Y0|l,m  
    Hd@T8 D*A  
    realmin:系统所能表示的最小数值 +P6  
    /7HIL?r  
    nargin: 函数的输入引数个数 );.<Yf{c  
     S~5 =1b  
    nargin: 函数的输出引数个数   N@`9 ~JS  
    [.#$hOsNR  
    1-2、重复命令   t-ReT_D|;  
    bA9dbe  
    最简单的重复命令是for?圈(for-loop),其基本形式为:     Ei(`gp  
    '~6CGqU*  
    for 变数 = 矩阵;     >a] s  
    MS^hsUj}  
    运算式;     ?B31 t9  
    U?m?8vhR6(  
    end   6nk|*HPz  
    GISI8W^  
    其中变数的值会被依次设定为矩阵的每一行,来执行介於for和end之间的运算式。因此,若无意外情况,运算式执行的次数会等於矩阵的行数。   ewlc ^`  
    BO cEL%+  
    举例来说,下列命令会产生一个长度为6的调和数列(Harmonic sequence):   2!& ;ZcT,  
    7&U+f:-w  
    x = zeros(1,6); % x是一个16的零矩阵   KqIe8bi^G  
    Vh-h{  
    for i = 1:6,   5suSR;8  
    -`<N,  
    x(i) = 1/i;   V\lF:3C  
    3G0\i!*t  
    end     !{=%l+^.  
    ,T>2zSk  
    在上例中,矩阵x最初是一个16的零矩阵,在for?圈中,变数i的值依次是1到6,因此矩阵x的第i个元素的值依次被设为1/i。我们可用分数来显示此数列:     HOI`F3#XI  
    *} 4;1OVT  
    format rat % 使用分数来表示数值   [~H`9Ab=  
    ;iI2K/ 3  
    disp(x)   @ShJ:  
    :z5I bas:  
    1 1/2 1/3 1/4 1/5 1/6   Z`h_oK#y15  
    R}mWHB_h"  
    for圈可以是多层的,下例产生一个16的Hilbert矩阵h,其中为於第i列、第j行的元素为     pv.),Iv-68  
    ^rb7`s#G  
    h = zeros(6);   24k}~"We  
    Gi_X+os  
    for i = 1:6,   ;Cpm3a t  
    g}`CdVQ2M<  
    for j = 1:6,   9 CSz<[  
    lt2& uYgp  
    h(i,j) = 1/(i+j-1);     f*f9:xUY  
     ]@ 0V  
    end     ~$9"|  
    b<MMli  
    end     [-}%B0S**  
    5w%9b  
    disp(h)     6q7Y`%j  
    \shoLp   
    1 1/2 1/3 1/4 1/5 1/6   Xq$0% WjG  
    nr6[rq  
    1/2 1/3 1/4 1/5 1/6 1/7   D#(L@ {vC  
    qoq<dCt3  
    1/3 1/4 1/5 1/6 1/7 1/8   E 4(muhY  
    U}5KAi 9Z  
    1/4 1/5 1/6 1/7 1/8 1/9     hIHO a  
    $9b6,Y_-  
    1/5 1/6 1/7 1/8 1/9 1/10     qt)mUq;>  
    ?7dDQI7^(  
    1/6 1/7 1/8 1/9 1/10 1/11   2Nszxvq,  
    g9`ytWmM  
    小提示:预先配置矩阵 在上面的例子,我们使用zeros来预先配置(Allocate)了一个适当大小的矩阵。若不预先配置矩阵,程式仍可执行,但此时MATLAB需要动态地增加(或减小)矩阵的大小,因而降低程式的执行效率。所以在使用一个矩阵时,若能在事前知道其大小,则最好先使用zeros或ones等命令来预先配置所需的记忆体(即矩阵)大小。   pfIvBU?  
    jtJU 5Q  
    L^Af3]]2  
    !T1i_  
    在下例中,for?圈列出先前产生的Hilbert矩阵的每一行的平方和:     U4/$4.'NQ  
    p_N=V. w  
    for i = h,   TMs\#  
    X> KsbOZ  
    disp(norm(i)^2); % 印出每一行的平方和   e6/} M3B  
    CF4y$aC#  
    end   @J)vuGS  
    4 df1)<}U-  
    ?^0Z(<Arz  
    }gt~{9?c  
    1299/871   L32ki}2  
    &}?e:PEy  
    282/551     1 1'Tt!  
    'f!Jh<i  
    650/2343   XP1_{\  
    s!\L1E  
    524/2933   ;W"[,#2TM  
    (/BkwbJyE  
    559/4431    EZFWxR/  
    hWJc A.A  
    831/8801   p5hP}Z4r  
    8t"DQ Y-R  
    在上例中,每一次i的值就是矩阵h的一行,所以写出来的命令特别简洁。   we? #)9Q<  
    vUNE! j  
    令一个常用到的重复命令是while?圈,其基本形式为:   Rx<F^J  
    C$; ~=  
    while 条件式;   ]y$C6iUY*  
    gA*zFhGVS7  
    运算式;   )<&QcO_  
    Cm>F5$l{  
    end   4]R3*F  
    :-8u*5QK]`  
    也就是说,只要条件示成立,运算式就会一再被执行。例如先前产生调和数列的例子,我们可用while?圈改写如下:     vUA,`  
    W_EN4p~J  
    x = zeros(1,6); % x是一个16的零矩阵   c`Cn9bX  
    .j.=|5nVo4  
    i = 1;   BcWReyO<M  
    ,%^0 4sl  
    while i <= 6,     pQi -  
    .?TVBbc%5  
    x(i) = 1/i;     bHNaaif}P  
    x@)u:0  
    i = i+1;     .BvV[`P  
    S7*:eo  
    end   I1jF`xQ&0  
    3{=4q  
    format short 8Sa<I .l  
    d+;~x*  
    j7zQ&ANF  
    x$*OglaS  
    1-3、逻辑命令   FS0SGBo  
    +{Ttv7l_2  
    最简单的逻辑命令是if, ..., end,其基本形式为:   *,u{~(thR  
    xOH@V4z:  
    if 条件式;     4P5wEqU.<  
    c`cPGEv  
    运算式;     R<U <Y'Y  
    UWp(3FQ  
    end     Vow+,,oh  
    xe' *%3-v)  
    if rand(1,1) > 0.5,     j~0hAKHG  
    (nm&\b~j  
    disp('Given random number is greater than 0.5.');   ;pJ7k23(  
    ,==lgM2V>  
    end     MG|NH0k  
    FqySnrJQ  
    Given random number is greater than 0.5. (msJ:SG  
    D KOdqTW  
    Pt$7U[N  
    +9t@eHJT1  
    1-4、集合多个命令於一个M档案     #+$z`C`  
    y!j1xnzki  
    若要一次执行大量的MATLAB命令,可将这些命令存放於一个副档名为m的档案,并在 MATLAB提示号下键入此档案的主档名即可。此种包含MATLAB命令的档案都以m为副档名,因此通称M档案(M-files)。例如一个名为test.m的M档案,包含一连串的MATLAB命令,那麽只要直接键入test,即可执行其所包含的命令:   tfO _b5g  
    :HC{6W`$  
    pwd % 显示现在的目录   LdcP0G\"VG  
    a[!':-R`s  
    ans =     ^B<jMt  
    PeOgXg)L`z  
    D:\MATLAB5\bin   Y (Q8P{@(  
    e>/PW&Z8Z  
    cd c:\data\mlbook % 进入test.m所在的目录   ;,D7VxWhY  
    :gmVX}  
    type test.m % 显示test.m的内容   pLRHwL.  
    Y) Z>Bi  
    % This is my first test M-file.   |dvcDx0|K  
    'yl`0,3wV  
    % Roger Jang, March 3, 1997   %H54^Z<y  
    Wjp<(aY[  
    fprintf('Start of test.m!\n');   ~b e&T:7.  
    Z"A:^jZ<s  
    for i = 1:3,   1K!7FiqY  
    XS>4efCJ  
    fprintf('i = %d ---> i^3 = %d\n', i, i^3);     |e!Sm{#!  
    K:y>wyzl  
    end   j&F&wRD%r  
    nG2RBeJV  
    fprintf('End of test.m!\n');   K/altyj`  
    |b|p0Z%7{  
    test % 执行test.m   6d,"GT  
    18~j>fN  
    Start of test.m!   F$.M2*9  
    M C>{I3  
    i = 1 ---> i^3 = 1   I3A](`  
    rkV ZP!7!  
    i = 2 ---> i^3 = 8   tUzuel*  
    xi^_C!*J  
    i = 3 ---> i^3 = 27   ^#;2 Pd>  
    Da.vyp  
    End of test.m!   p!=/a)4X  
    a XwFQ,  
    小提示:第一注解行(H1 help line) test.m的前两行是注解,可以使程式易於了解与管理。特别要说明的是,第一注解行通常用来简短说明此M档案的功能,以便lookfor能以关键字比对的方式来找出此M档案。举例来说,test.m的第一注解行包含test这个字,因此如果键入lookfor test,MATLAB即可列出所有在第一注解行包含test的M档案,因而test.m也会被列名在内。   h)sc-e  
    rLp0VKPe  
    严格来说,M档案可再细分为命令集(Scripts)及函数(Functions)。前述的test.m即为命令集,其效用和将命令逐一输入完全一样,因此若在命令集可以直接使用工作空间的变数,而且在命令集中设定的变数,也都在工作空间中看得到。函数则需要用到输入引数(Input arguments)和输出引数(Output arguments)来传递资讯,这就像是C语言的函数,或是FORTRAN语言的副程序(Subroutines)。举例来说,若要计算一个正整数的阶乘 (Factorial),我们可以写一个如下的MATLAB函数并将之存档於fact.m:   .iw+ #  
    y2)~ljR  
    function output = fact(n)   Hc}(+wQN%  
    T2k5\r8  
    % FACT Calculate factorial of a given positive integer.   =r`>tWs  
    8L0#<"'0  
    output = 1;     g8^$,  
    rN OwB2e  
    for i = 1:n,     W;2y.2*  
    =>&d[G[m!  
    output = output*i;     jQc$>M<"o  
    o d!TwGX  
    end     Ta~Ei=d^  
    M>-x\[n+  
    其中fact是函数名,n是输入引数,output是输出引数,而i则是此函数用到的暂时变数。要使用此函数,直接键入函数名及适当输入引数值即可:   zvE]4}VL?  
    V;9.7v  
    y = fact(5)   s3oK[:/  
    iX}EJD{f  
    y = 120   q^EG'\<^  
    .7{,u1N'  
    (当然,在执行fact之前,你必须先进入fact.m所在的目录。)在执行fact(5)时, k |M  
    -K PbA`j+  
    MATLAB会跳入一个下层的暂时工作空间(Temperary workspace),将变数n的值设定为5,然後进行各项函数的内部运算,所有内部运算所产生的变数(包含输入引数n、暂时变数i,以及输出引数output)都存在此暂时工作空间中。运算完毕後,MATLAB会将最後输出引数output的值设定给上层的变数y,并将清除此暂时工作空间及其所含的所有变数。换句话说,在呼叫函数时,你只能经由输入引数来控制函数的输入,经由输出引数来得到函数的输出,但所有的暂时变数都会随着函数的结束而消失,你并无法得到它们的值。   ,9=5.+AJ  
    wTqgH@rGtR  
    小提示:有关阶乘函数 前面(及後面)用到的阶乘函数只是纯粹用来说明MATLAB的函数观念。若实际要计算一个正整数n的阶乘(即n!)时,可直接写成prod(1:n),或是直接呼叫gamma函数:gamma(n-1)。   F@[l&`7  
    A+>+XA'  
    MATLAB的函数也可以是递?式的(Recursive),也就是说,一个函数可以呼叫它本身。 U",kAQY  
    Ak&eGd$d  
    举例来说,n! = n*(n-1)!,因此前面的阶乘函数可以改成递式的写法:   k]w;(<  
    XNsMXeO]&  
    function output = fact(n)   Ee^2stc-  
    whr[rWt@>  
    % FACT Calculate factorial of a given positive integer recursively.   ] vQn*T"^  
    0rooL<~fa  
    if n == 1, % Terminating condition   EQ\/I( =l  
    *}Vg]3$4  
    output = 1;   Iy'a2@   
    ZE#A?5lb  
    return;   5V8WSnO  
    Nn>Oq+:  
    end   p{NVJ^! +  
    _I+QInD;)  
    output = n*fact(n-1);     V& _  
    ;X*I,g.+H  
    在写一个递函数时,一定要包含结束条件(Terminating condition),否则此函数将会一再呼叫自己,永远不会停止,直到电脑的记忆体被耗尽为止。以上例而言,n==1即满足结束条件,此时我们直接将output设为1,而不再呼叫此函数本身。   qJj"WU5  
    ?31#:Mg6g+  
    ch!/k  
    qYF150  
    1-5、搜寻路径   w a2?%y_G  
    c7Jfo x V  
    在前一节中,test.m所在的目录是d:\mlbook。如果不先进入这个目录,MATLAB就找不到你要执行的M档案。如果希望MATLAB不论在何处都能执行test.m,那麽就必须将d:\mlbook加入MATLAB的搜寻路径(Search path)上。要检视MATLAB的搜寻路径,键入path即可:   SN' j?-  
    `B-jwVrN(  
    path     rUmaKh?v|X  
    \W4|.[  
    MATLABPATH   f@rR2xZoQ  
    ~x4]^XS  
    d:\matlab5\toolbox\matlab\general   C/_Z9LL?F  
    8Q4yllv4  
    d:\matlab5\toolbox\matlab\ops   b9X"p*'p  
    b"k1N9  
    d:\matlab5\toolbox\matlab\lang   ;2*hN (  
    g:8k,1y5  
    d:\matlab5\toolbox\matlab\elmat     O4t0 VL$  
    _X;xW#go  
    d:\matlab5\toolbox\matlab\elfun     z>}H[0[#  
    8Mg wXH  
    d:\matlab5\toolbox\matlab\specfun     'ioX,KD  
    1L3 +KD~  
    d:\matlab5\toolbox\matlab\matfun     POB6#x  
    ~T">)Y~+xI  
    d:\matlab5\toolbox\matlab\datafun   3e,"B S)+  
    Q!.JV. (  
    d:\matlab5\toolbox\matlab\polyfun   K-<<s  
    .|UIZwW0  
    d:\matlab5\toolbox\matlab\funfun   3'2>3Y/7Bb  
    +@G#Z3;l!  
    d:\matlab5\toolbox\matlab\sparfun   \ ]v>#VXr_  
    '8Wu9 phT  
    d:\matlab5\toolbox\matlab\graph2d   s`#g<_{X  
    "d"6.ND  
    d:\matlab5\toolbox\matlab\graph3d   8GlRO4yd  
    oDW)2*8yF  
    d:\matlab5\toolbox\matlab\specgraph     q!f'?yFYK  
    [$]qJ~kz  
    d:\matlab5\toolbox\matlab\graphics   `]F}O \H  
    ]Ub"NLYV  
    d:\matlab5\toolbox\matlab\uitools   }-/oL+j  
    <*_DC)&7 9  
    d:\matlab5\toolbox\matlab\strfun   b,hRk1  
    yo^M>^P\N  
    d:\matlab5\toolbox\matlab\iofun   Jo'~oZ$  
    F,}7rhY(U^  
    d:\matlab5\toolbox\matlab\timefun   ~`yO@f;D  
    Fa0Fl}L  
    d:\matlab5\toolbox\matlab\datatypes   '/2)I8  
    ^i[bo3  
    d:\matlab5\toolbox\matlab\dde   <P@ "VwUX  
    Mh "iyDGA  
    d:\matlab5\toolbox\matlab\demos   P1_6:USBM  
    H"NBjVRU%  
    d:\matlab5\toolbox\tour     7x=-1wbi  
    VW\xuP  
    d:\matlab5\toolbox\simulink\simulink   SDu%rr7sQ  
    z?<Xx?Kk  
    d:\matlab5\toolbox\simulink\blocks   <IBWA0A=8a  
    A=96N@m6  
    d:\matlab5\toolbox\simulink\simdemos     HC!5AJ&+}v  
    @Ta0v:Y  
    d:\matlab5\toolbox\simulink\dee   g|Xjw Ti8$  
    IE:;`e:\D  
    d:\matlab5\toolbox\local   Ve\.7s  
    lk4U/:  
    此搜寻路径会依已安装的工具箱(Toolboxes)不同而有所不同。要查询某一命令是在搜寻路径的何处,可用which命令:     fA)4'7UT  
    TUN6`/"  
    which expo   D4jZh+_|S  
    Esdv+f}4;  
    d:\matlab5\toolbox\matlab\demos\expo.m   wd*V,ZN7  
    nTv^][  
    很显然c:\data\mlbook并不在MATLAB的搜寻路径中,因此MATLAB找不到test.m这个M档案:   |33_="  
    o*5b]XWw  
    which test   `3^%ft~l  
    Z{^Pnit  
    c:\data\mlbook\test.m   o0kKf+[  
    LS/ZZAN u  
    要将d:\mlbook加入MATLAB的搜寻路径,还是使用path命令:   Pd+Wb3  
    7V%b!R}  
    path(path, 'c:\data\mlbook');     ?$@E}t8g\  
    ,l#f6H7p  
    此时d:\mlbook已加入MATLAB搜寻路径(键入path试看看),因此MATLAB已经"看"得到 R^6]v`j;  
    W~& QcSWqD  
    test.m:   Bq~?!~\?.  
    04c`7[  
    which test   ZMEYF!j N  
    lm8<0*;,  
    c:\data\mlbook\test.m   ts &sr  
    >P}6/L  
    现在我们就可以直接键入test,而不必先进入test.m所在的目录。   ^S:I38gR#q  
    OzV|z/R2'  
    小提示:如何在其启动MATLAB时,自动设定所需的搜寻路径? 如果在每一次启动MATLAB後都要设定所需的搜寻路径,将是一件很麻烦的事。有两种方法,可以使MATLAB启动後 ,即可载入使用者定义的搜寻路径:   ]]hsLOM]  
    2OwO|n  
    1.MATLAB的预设搜寻路径是定义在matlabrc.m(在c:\matlab之下,或是其他安装MATLAB 的主目录下),MATLAB每次启动後,即自动执行此档案。因此你可以直接修改matlabrc.m ,以加入新的目录於搜寻路径之中。   fBLR  
    m!WDXt  
    2.MATLAB在执行matlabrc.m时,同时也会在预设搜寻路径中寻找startup.m,若此档案存在,则执行其所含的命令。因此我们可将所有在MATLAB启动时必须执行的命令(包含更改搜寻路径的命令),放在此档案中。   (m() r0:@  
    eC='[W<a.  
    每次MATLAB遇到一个命令(例如test)时,其处置程序为:   ]t-B-(D  
    XZ 4H(Cj  
    1.将test视为使用者定义的变数。 $aY:Z_s  
    _]M :  
    2.若test不是使用者定义的变数,将其视为永久常数 。 @<$_X1)s  
    Y'?{yx{  
    3.若test不是永久常数,检查其是否为目前工作目录下的M档案。 b?:SCUI  
    eY\!}) 5  
    4.若不是,则由搜寻路径寻找是否有test.m的档案。 =c#;c+a  
    l8 XY  
    5.若在搜寻路径中找不到,则MATLAB会发出哔哔声并印出错误讯息。   \eCQL(_  
    g7r0U6Y  
    以下介绍与MATLAB搜寻路径相关的各项命令。   ]g]~!":  
    b/UjKNf@  
    *40Z }1ng  
    txix =  
    pW5PF)([  
    yb-/_{Y  
    1-6、资料的储存与载入   D n}TO*  
    }/VSIS@Z  
    有些计算旷日废时,那麽我们通常希望能将计算所得的储存在档案中,以便将来可进行其他处理。MATLAB储存变数的基本命令是save,在不加任何选项(Options)时,save会将变数以二进制(Binary)的方式储存至副档名为mat的档案,如下述:   -O6\!Wo=-  
    R ]y9>5 'U  
    save:将工作空间的所有变数储存到名为matlab.mat的二进制档案。 E#`JH  
    u4~( 0  
    save filename:将工作空间的所有变数储存到名为filename.mat的二进制档案。 save filename x y z :将变数x、y、z储存到名为filename.mat的二进制档案。   70E@h=oQ  
    Dl_SEf6b  
    以下为使用save命令的一个简例:   CW@G(R  
    HE*P0Y f=  
    who % 列出工作空间的变数   C44*qiG.  
    J:2Su1"ODh  
    Your variables are:   4(p,@e31  
    .GuZV'  
    B h j y    o[>p  
    D}K/5iU]a  
    ans i x z   UY&DXIPM  
    Cz#3W8jV  
    save test B y % 将变数B与y储存至test.mat   etL)T":XV  
    fZt3cE\  
    dir % 列出现在目录中的档案   ~f[91m!+  
    1~9AQ[]w8  
    . 2plotxy.doc fact.m simulink.doc test.m ~$1basic.doc   /[Sy;wn  
    YbE1yOJ&m  
    .. 3plotxyz.doc first.doc temp.doc test.mat   `*Jw[Bnh8  
    E']Gh  
    1basic.doc book.dot go.m template.doc testfile.dat   %M;{+90p>t  
    cP[]\r+Kj  
    delete test.mat % 删除test.mat   W'<cAg?  
    0:k ~  lz  
    以二进制的方式储存变数,通常档案会比较小,而且在载入时速度较快,但是就无法用普通的文书软体(例如pe2或记事本)看到档案内容。若想看到档案内容,则必须加上-ascii选项,详见下述:   *,oZ]!   
    fSzX /r  
    save filename x -ascii:将变数x以八位数存到名为filename的ASCII档案。 O:(%m  
    z,/y2H2  
    Save filename x -ascii -double:将变数x以十六位数存到名为filename的ASCII档案。   dIDs~  
    eO=!(  
    另一个选项是-tab,可将同一列相邻的数目以定位键(Tab)隔开。   V39)[FH}  
    o!M*cyq  
    小提示:二进制和ASCII档案的比较 在save命令使用-ascii选项後,会有下列现象:save命令就不会在档案名称後加上mat的副档名。 x_|:3I  
    e,Fe,5E&g  
    因此以副档名mat结尾的档案通常是MATLAB的二进位资料档。 ]<\; -i)  
     kn|z  
    若非有特殊需要,我们应该尽量以二进制方式储存资料。     ^9I^A!w=  
    kEs=N(  
    load命令可将档案载入以取得储存之变数:   N3g?gb"Ex)  
    9C)w'\u9+  
    load filename:load会寻找名称为filename.mat的档案,并以二进制格式载入。若找不到filename.mat,则寻找名称为filename的档案,并以ASCII格式载入。load filename -ascii:load会寻找名称为filename的档案,并以ASCII格式载入。   @DYkWivLu  
     \ l8$1p  
    若以ASCII格式载入,则变数名称即为档案名称(但不包含副档名)。若以二进制载入,则可保留原有的变数名称,如下例:   \^%5!  
    9=Rj9%  
    clear all; % 清除工作空间中的变数   \|9KOulr  
    r.;(Kx/M  
    x = 1:10;   hDs.4MZC`  
    `)R@\@jt  
    save testfile.dat x -ascii % 将x以ASCII格式存至名为testfile.dat的档案   ~+Da`Wp  
    #%g~fh  
    load testfile.dat % 载入testfile.dat   q7% eLJ  
    xj!_]XJ^w  
    who % 列出工作空间中的变数   5PlTf?Ao  
    6">jf #pE  
    Your variables are:   c~UYs\  
    RU'DUf  
    testfile x   J8yi#A>+  
    ^R4eW|H  
    注意在上述过程中,由於是以ASCII格式储存与载入,所以产生了一个与档案名称相同的变数testfile,此变数的值和原变数x完全相同。   ,/g\;#:{@]  
    ~ ]q^Akq  
    1-7、结束MATLAB    Cz_chK4  
    {1 94u %'  
    有三种方法可以结束MATLAB:   lYu1m  
    hrRX=  
    1.键入exit Y">;2Pt;  
    8}W06k>)%  
    2.键入quit Lay+)S.ta[  
    Xsc5@O!  
    3.直接关闭MATLAB的命令视窗(Command window)
     
    分享到
    离线zhengzhijian
    发帖
    15
    光币
    15
    光券
    0
    只看该作者 1楼 发表于: 2009-12-02
    总算是看懂了一点点
    离线zhengzhijian
    发帖
    15
    光币
    15
    光券
    0
    只看该作者 2楼 发表于: 2009-12-02
    离线gougouben
    发帖
    65
    光币
    5
    光券
    0
    只看该作者 3楼 发表于: 2009-12-02
    好东西啊,matlab算是用起来比较简便的软件了啊
    离线凯风自北
    发帖
    17
    光币
    12
    光券
    0
    只看该作者 4楼 发表于: 2014-03-17
    谢楼主分享
    发帖
    43
    光币
    2
    光券
    0
    只看该作者 5楼 发表于: 2016-03-23
    多谢 好人