切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 6219阅读
    • 3回复

    [分享]共焦腔中高斯光束的特性与参数 [复制链接]

    上一主题 下一主题
    在线cyqdesign
     
    发帖
    29054
    光币
    95805
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2008-07-07
      稳定腔的激光器所发出的激光,将以高斯光束的形式在空间传输。共焦腔中产生的光束具有特殊的结构。它既不同于点光源所发射的球面波,又不同于普通平行光束的平面波,而是一种特殊的高斯光束(亦 称高斯球面波)。下面重点介绍共焦腔中高斯光束的特性与参数。 %;e/7`>Ma  
    >c9a0A  
    一、期模高斯光束 XLAN Np%E  
    m\$\ 09  
      由波动光学理论可以证明沿某一方向(设为z轴)传播的高斯光束的电矢量表示式为: AI,(z;{P  
    Q.]}]QE   
      e00(xyz)=(a0/w(z))e-(r2/w2(z)e-i[k(z +r2/2r(z)-ф(z)](18-9) 式中a0为常数因子。 1jN-4&  
    4zJtOK?r"  
      a0/w(z)是z轴上(x=0,y=0)各点的电矢量振幅。w(z)称为z点的光斑尺寸,它是z的函数:  P5 K' p5}#  
      w(z)=w0[1+(zλ/πw02)2]1/2  (18-10)  TYJ:!  
    3E>frR\!I  
      w0是z=0处的w(z)值,它是高斯光束的一个特征参数,称最小光斑尺寸,也称为光束的“腰 粗”。r(z)是在z处波阵面的曲率半径,是z的函数: KcK>%%  
    mH Ic f{RG  
      r(z)=z[1+(πw0?2/λz)2]    (18-11)  HRiL.DS  
    fRtUvC-#H  
      ф(z)是与z有关的位相因子:  O9EKRt  
      ф(z)=tg-1λz/πw02    (18-12) JcbwDlUb  
    >S'17D  
    二、高斯光束的特点 uoHNn7W  
    %kB8'a3  
      1.z=0处的情况。将z=0代入式(18-11) 则有limr(z)=∞ 所以有 r2/2r(z)=0 又由(18-12)式 ф=0  ~v]!+`_J  
    5e$~)fL  
      所以有e(x,y,0)=(a0/w0)e(r2/w2(18-13)  "\}@gV#r$A  
    Md0 s K  
      (18-13)式说明,光波电矢量的振幅分布是高斯函数,通常就称振幅的这种分布为高斯分布。当r=0(即光斑中心)处振幅a有最大值 即a(000)=a0/w0 当r=w0时有  6`]$qSTS  
    epU:  
      a(r,0)=1/ea0/w0=1/ea(0,0,0)  \8<BLmf4U  
    zipS ]YD  
      即电矢量振幅下降到极大值1/e;而当r继续增大时,e值继续下降而趋向于零。可见光斑中心最亮,向外逐渐减弱。所以通常以电矢量振幅下降到中心值1/e(或光强为中心值的1/e2)处的光斑半径w0作为光斑大小的量度,称“腰粗”。 (N&lHLy  
    B>GE 9y5  
      从上述分析可知,高斯光束在光腰处波阵面是一平面。这一点与平面波相同,但光强分布是一种特殊的高斯分布。这一点又不同于通常讨论的均匀平面波。也正由于这一点差别,决定了它沿z方向传播时不再保持平面波特性,而是以高斯球面波的特殊形式传播。 ,Fi>p0bz  
    9G+V;0Q  
      2.z>0处情况。(18-9)式高斯光束电矢量表示式表明其等相面为球面。其球面的曲率半径,从(18-11)式,有 qIY~dQ|  
      r(z)=z[1+(πw02/λz)2]>z ?Rj~f{%g  
    ``OD.aY^s  
      即波阵面的曲率半径大于z,且r(z)随z而异,也就是作为波阵面的球面的曲率中心不在原点。 &|!7Z4N  
      其电矢量的振幅分布为: L ]w/P|  
      a(x,y,z)=a0/w(z)e-r2/w2(z)  (18-14) sFQ^2PwbS  
    ^4,a8`  
      (18-14)式仍为高斯分布,即中心最强,同时按高斯函数形式向外逐渐减弱。但此时光斑尺寸为: ~-PjW#J%  
      w(z)=w0[1+(zλ/πw02)2]1/2>w0 IRn2 |  
    r8,romE$  
      3.光束发散角。从式(18-11)可见,高斯光束的光斑尺寸w(z),随z增大而加大,表示光束逐渐发散,通常以发散角2θ来描述光束的发散度。其表示为: 9nH?l{As   
      2θ=2dw(z)/dz=2λ2z/πw0[π2w04+λ2z2]-1/2  (18-15) {%IExPJ  
    /)dFK~  
      当z=0时(束腰处) 2θ=0br>  当z=πw02/λ时,2θ=21/2λ/πw0 xA9:*>+>  
      当z→∞时,2θ=2λ/πw0    (18-16) ox%9Ph  
      称其为远场发散角。通常把z值从零到z=πw02/λ这段距离称为高斯光束的准直距离。在此区间内光束发散度很小。 [o.B  
    x-?{E  
    三、共焦腔中的高斯高光束 CMn{LQcC  
    tUgEeh6  
      高斯光束当z1=πw02/λ时,波阵面的曲率半径可由式(18-1)算得: cIp D~0\  
      r(z1)=z1[1+(πw02/λz1)]=2z1    (18-17) K^ B%/T]d  
    I('Un@hS  
      如我们在z=±z1处各放一凹球镜组成谐振腔,其曲率半径ra和rb为: @DZB9DDR  
      ra=rb=r(z1)=2z1 NcP.;u;`  
    v{9t]s>B  
      这两镜构成腔长l=2z1=ra=rb的共焦腔。因腰粗w0的高斯光束在z1处波阵面的曲率半径与镜面的曲率半径rb(或ra)相等,即波阵面与镜面相重,所以腰为w0的高斯光束,在腔长l为: V^\8BVw  
      l=2z1=2πw02/λ(18-18) Ur5FC r  
    Op>%?W8/UF  
      的共焦腔中来回反射能保持其特性不变,说明该共焦腔中可以产生腰粗wπw0的高斯光束。从(18-18)式算得腔长为l的共焦腔对应的高斯光束的参数为: <x&%~6j  
      腰粗: w0=(λl/2π)1/2  (18-19) 1P(|[W1  
      镜面上的光斑尺寸:wa=wb(λl/π)1/2  (18-20) !}4MN:r  
      发散角(远场):2θ=2(2λ/π)1/2  (18-21) ({NAMc*  
      可见共焦腔中高斯光束特性完全由腔长决定。 04*6(L)h*  
      例:若有腔长l=150cm的氩离子激光器,采用共焦腔结构,则在基模工作时,对λ=514.5nm的激光光束将有下述参数: X+~ XJ  
      腰粗:w0=(λl/2π)1/2=0.35mm _>v<(7  
      发散角:2θ=2(2λ/π)1/2=0/9×10-3rad Vo7dAHHL  
      镜面上的光斑尺寸:wa=(λl/π)1/2=0.49mm
     
    光行天下网站、公众号广告投放、企业宣传稿件发布,请联系QQ:9652202,微信号:cyqdesign
    分享到
    离线itsyou
    发帖
    192
    光币
    50
    光券
    0
    只看该作者 1楼 发表于: 2009-04-27
    好东东 学习了
    离线aoxiwaly
    发帖
    127
    光币
    2
    光券
    0
    只看该作者 2楼 发表于: 2013-03-03
    请参考激光原理~ 内有详细的理论说明~
    发帖
    23
    光币
    0
    光券
    0
    只看该作者 3楼 发表于: 2021-07-06
    看不懂,应该看什么书 I(S)n+E