稳定腔的激光器所发出的激光,将以高斯光束的形式在空间传输。共焦腔中产生的光束具有特殊的结构。它既不同于点光源所发射的球面波,又不同于普通平行光束的平面波,而是一种特殊的高斯光束(亦 称高斯球面波)。下面重点介绍共焦腔中高斯光束的特性与参数。 7he,?T)vD
<fjX[l<Uz
一、期模高斯光束 `d
+Da=L
*,)Md[
由波动光学理论可以证明沿某一方向(设为z轴)传播的高斯光束的电矢量表示式为: ARVf[BAJ-*
t#/YN.@r
e00(xyz)=(a0/w(z))e-(r2/w2(z)e-i[k(z +r2/2r(z)-ф(z)](18-9) 式中a0为常数因子。 P[#e/qnXu|
V>%rv'G8
a0/w(z)是z轴上(x=0,y=0)各点的电矢量振幅。w(z)称为z点的光斑尺寸,它是z的函数: dvx#q5f_S
w(z)=w0[1+(zλ/πw02)2]1/2 (18-10) B5VKs,g
y$F'(b|)
w0是z=0处的w(z)值,它是高斯光束的一个特征参数,称最小光斑尺寸,也称为光束的“腰 粗”。r(z)是在z处波阵面的曲率半径,是z的函数: Ae^~Cz1qz
t r3!d_
r(z)=z[1+(πw0?2/λz)2] (18-11) %lx!.G
e&F8m%t
ф(z)是与z有关的位相因子: 5 +YH.4R
ф(z)=tg-1λz/πw02 (18-12) N1S{suic
gA+qC7=p$
二、高斯光束的特点 +z\^t_"f
o>i4CCU+
1.z=0处的情况。将z=0代入式(18-11) 则有limr(z)=∞ 所以有 r2/2r(z)=0 又由(18-12)式 ф=0 |`,2ri*5A
V`d,qn)i
所以有e(x,y,0)=(a0/w0)e(r2/w2(18-13) F>6|3bOR
f:,DWw`B
(18-13)式说明,光波电矢量的振幅分布是高斯函数,通常就称振幅的这种分布为高斯分布。当r=0(即光斑中心)处振幅a有最大值 即a(000)=a0/w0 当r=w0时有 o.g V4%
{
Fb*&|-n
a(r,0)=1/ea0/w0=1/ea(0,0,0) vHc%z$-d
SC!RbW@3
即电矢量振幅下降到极大值1/e;而当r继续增大时,e值继续下降而趋向于零。可见光斑中心最亮,向外逐渐减弱。所以通常以电矢量振幅下降到中心值1/e(或光强为中心值的1/e2)处的光斑半径w0作为光斑大小的量度,称“腰粗”。 4JXeV&5Qk'
*NaB#;+|k`
从上述分析可知,高斯光束在光腰处波阵面是一平面。这一点与平面波相同,但光强分布是一种特殊的高斯分布。这一点又不同于通常讨论的均匀平面波。也正由于这一点差别,决定了它沿z方向传播时不再保持平面波特性,而是以高斯球面波的特殊形式传播。 0c]/bs{}
t?&|8SId
2.z>0处情况。(18-9)式高斯光束电矢量表示式表明其等相面为球面。其球面的曲率半径,从(18-11)式,有 Z'W=\rl
r(z)=z[1+(πw02/λz)2]>z VG#EdIiI
zOIDU
即波阵面的曲率半径大于z,且r(z)随z而异,也就是作为波阵面的球面的曲率中心不在原点。 1~`fVg
其电矢量的振幅分布为: uc\Kg1{
a(x,y,z)=a0/w(z)e-r2/w2(z) (18-14) f:w?pE
OU.6bmWy|
(18-14)式仍为高斯分布,即中心最强,同时按高斯函数形式向外逐渐减弱。但此时光斑尺寸为: ,0Hr2*p
w(z)=w0[1+(zλ/πw02)2]1/2>w0 RFc v^Xf
IGQFtO/x
3.光束发散角。从式(18-11)可见,高斯光束的光斑尺寸w(z),随z增大而加大,表示光束逐渐发散,通常以发散角2θ来描述光束的发散度。其表示为: +oML&g-g_
2θ=2dw(z)/dz=2λ2z/πw0[π2w04+λ2z2]-1/2 (18-15) @)M9IOR
9};8?mucr
当z=0时(束腰处) 2θ=0br> 当z=πw02/λ时,2θ=21/2λ/πw0 FUb\e-Q=
当z→∞时,2θ=2λ/πw0 (18-16) 5yo%$i8I
称其为远场发散角。通常把z值从零到z=πw02/λ这段距离称为高斯光束的准直距离。在此区间内光束发散度很小。 )[IC?U:5I
H;LViP2K*
三、共焦腔中的高斯高光束 7"x;~X
xml7Uarc
高斯光束当z1=πw02/λ时,波阵面的曲率半径可由式(18-1)算得: -20bPiM$A
r(z1)=z1[1+(πw02/λz1)]=2z1 (18-17) s`8= 3]w
9T9!kb
如我们在z=±z1处各放一凹球镜组成谐振腔,其曲率半径ra和rb为: }C?'BRX
ra=rb=r(z1)=2z1 WDD%Q8ejV&
=BAr .m+"
这两镜构成腔长l=2z1=ra=rb的共焦腔。因腰粗w0的高斯光束在z1处波阵面的曲率半径与镜面的曲率半径rb(或ra)相等,即波阵面与镜面相重,所以腰为w0的高斯光束,在腔长l为: p38-l'{#
l=2z1=2πw02/λ(18-18) HM1Fz\Sf
&`r-.&Y
的共焦腔中来回反射能保持其特性不变,说明该共焦腔中可以产生腰粗wπw0的高斯光束。从(18-18)式算得腔长为l的共焦腔对应的高斯光束的参数为: p27~>xQ
腰粗: w0=(λl/2π)1/2 (18-19) 4.aZ#c91_
镜面上的光斑尺寸:wa=wb(λl/π)1/2 (18-20) Lg.gfny[(t
发散角(远场):2θ=2(2λ/π)1/2 (18-21) Y\P8v
可见共焦腔中高斯光束特性完全由腔长决定。 U9 s&
例:若有腔长l=150cm的氩离子激光器,采用共焦腔结构,则在基模工作时,对λ=514.5nm的激光光束将有下述参数: -@2iaQ(5a2
腰粗:w0=(λl/2π)1/2=0.35mm V)k4:H
发散角:2θ=2(2λ/π)1/2=0/9×10-3rad Qd{CMmx
镜面上的光斑尺寸:wa=(λl/π)1/2=0.49mm