中国科大创制出超强二维聚酰胺薄膜材料在材料科学领域,强度与弹性长期被视为不可调和的矛盾属性。无机二维材料(如石墨烯、二硫化钼)虽具备极高的杨氏模量,却存在结构可调性差等问题;有机二维聚合物(如传统聚酰胺、COF等)虽具备良好弹性与结构可调性,杨氏模量却普遍局限于1-10 GPa,难以满足高强度应用需求。这种性能矛盾严重制约了二维材料在柔性电子、高性能防护等领域的实际应用。 近日,中国科学技术大学刘波教授团队通过分子结构精准设计与层间相互作用调控,成功研发出一系列二维聚酰胺材料,其中GH-TMC薄膜的杨氏模量达35.6 GPa、硬度2.0 GPa,弹性回复率更是高达60%,一举突破传统二维材料强度与弹性难以兼顾的技术瓶颈,其综合力学性能不仅远超绝大多数聚合物、金属材料,更超越了主流MOF与COF材料,为柔性电子、高性能防护涂层及能源器件等领域的材料升级提供了全新解决方案。相关成果以“Manipulating mechanical strength of isoreticular two-dimensional polyamide materials via multiple interactions”为题发表于《自然·通讯》杂志。 图1. 一系列二维聚酰胺薄膜结构单元及其相应的杨氏模量值 具体而言,研究团队提出“刚性单元微型化和多重弱相互作用协同”的创新策略:一方面,通过缩小二维聚酰胺的结构单元尺寸,提升共价键密度与共价网络刚性。结构单元越小,材料杨氏模量越高,如GH-TMC采用六元环小结构单元,其模量显著高于采用更大环单元的GH-BTCA、Melem-TPC等材料(图1);另一方面,巧妙引入氢键、π-π堆叠与错位静电作用构成的三重相互作用网络,其中面内高密度氢键强化了分子刚性,边缘氢键的可逆断裂与重构为材料提供弹性回复能力,而胍阳离子与氯离子的错位静电作用及层间π-π堆叠则稳定了纳米片堆叠结构,避免层间滑移导致的性能损失。 为验证材料性能的可靠性,团队采用原子力显微镜(AFM)峰力定量纳米力学成像(PF-QNM)与原位扫描电子显微镜(SEM)纳米压痕技术双重表征,结果显示GH-TMC薄膜的力学性能具有优异均匀性。不同测试区域的杨氏模量与硬度偏差极小,即使在700 nm深度的连续6次压痕测试中,应力位移曲线仍保持稳定,且无明显塑性残留,证明其在高强度下的结构稳定性。更值得关注的是,该材料的H³/E⟡值显著高于传统聚合物与金属,意味着其在高频摩擦场景中具备更长使用寿命,而60%的弹性回复率则使其可适配柔性基底的反复弯折需求,完美弥合了无机材料刚性与有机材料强度之间的鸿沟。 这项研究的核心价值不仅在于开发出一种高性能二维材料,更在于建立一套“分子结构-层间相互作用-力学性能”的调控范式。通过设计刚性单元尺寸与多重弱相互作用的协同机制,为解决二维材料“强度-弹性”问题提供了通用策略。该策略可推广至其他二维聚合物体系,未来有望通过进一步调控分子结构与相互作用类型,开发出适配不同场景的特种二维材料,例如面向柔性生物电子的低模量高弹性版本、面向防护涂层的超高硬度版本等,推动二维材料从基础研究走向实际应用,为先进材料领域的创新发展注入新动力。 该项研究受到国家重点研发计划,国家自然科学基金面上项目、中央高校基本科研专项资金和安徽省自然科学基金的资助。刘波为该论文的通讯作者,博士研究生胡卿为该论文的第一作者。 论文链接:https://www.nature.com/articles/s41467-025-66696-7 分享到:
|




