我国科研人员发明晶体“自刻蚀”新工艺

发布:cyqdesign 2026-01-17 14:09 阅读:18

半导体领域,平面内横向精准构建是探索新奇物性、研发新型器件及推动器件微型化的关键。

近期,中国科学技术大学科研团队等,在新型半导体材料领域取得重要进展,首次在二维离子型软晶格材料中,实现了面内可编程、原子级平整的“马赛克”式异质结可控构筑,为未来高性能发光和集成器件的研发开辟了全新路径。

以二维卤化物钙钛矿为代表的离子型软晶格半导体,其晶体结构柔软且不稳定。这一特性使得传统光刻加工等技术难以实现高质量的横向异质集成。因此,在离子型软晶格半导体材料中实现高质量、可控外延的横向异质结精密加工,一直是重要的科学难题。面对这一挑战,研究团队独辟蹊径,创新性地提出并发展了引导晶体内应力“自刻蚀”新方法。

团队发现,二维钙钛矿单晶在生长过程中会自然累积内部应力。团队巧妙设计了一种温和的配体—溶剂微环境,能够选择性地激活并利用这些内应力,引导单晶在特定位置发生可控的“自刻蚀”,从而形成规则的方形孔洞结构。

内应力驱动的二维钙钛矿面内刻蚀与图案化策略

团队进一步通过快速外延生长技术,将不同种类的半导体材料精准回填,最终在单一晶片内部构筑出晶格连续、界面原子级平整的高质量“马赛克”异质结。

这种全新的加工方法不是通过“拼接“不同材料,而是在同一块完整晶体中,引导其进行精密的“自我组装”。这意味着,未来有可能在一块极薄的材料上,直接“生长”出密集排列的、能发出不同颜色光的微小像素点,为高性能发光与显示器件的发展,提供了全新的备选材料体系和设计思路。

二维钙钛矿面内马赛克异质结结构

这一研究首次在二维离子型材料体系中,实现了对横向异质结结构的高质量、可设计性构筑,突破了传统工艺的局限。同时,研究展现的驾驭晶体内应力与动力学新范式,实现了单晶内部功能结构的可编程演化,为探究理想化界面物理提供了新平台,也为低维材料的集成化与器件化开辟了新路径。

相关研究成果发表在《自然》(Nature)上。

论文链接:https://doi.org/10.1038/s41586-025-09949-1

分享到:

最新评论

我要发表 我要评论
限 50000 字节
关于我们
网站介绍
免责声明
加入我们
赞助我们
服务项目
稿件投递
广告投放
人才招聘
团购天下
帮助中心
新手入门
发帖回帖
充值VIP
其它功能
站内工具
清除Cookies
无图版
手机浏览
网站统计
交流方式
联系邮箱:广告合作 站务处理
微信公众号:opticsky 微信号:cyqdesign
新浪微博:光行天下OPTICSKY
QQ号:9652202
主办方:成都光行天下科技有限公司
Copyright © 2005-2026 光行天下 蜀ICP备06003254号-1