这是一个一维孤立线光栅的简单案例。设置与周期线光栅的案例相同,但代替周期性排列的线,现在使用单线。因此,二维计算域不再采用水平方向上的周期性边界条件,而是采用水平和垂直方向上的透明边界。 D/^yAfI
Lqq
RuKi zs:OHEZw 光栅被斜入射S和P偏振平面波照亮。JCMsuite计算近场分布。下图显示了当波长为193nm时,平面波从衬底侧垂直入射到结构内的近场强度 Pp3<K649 WM$}1:O S偏振光照明的近场强度
W0J d2 *] 
P偏振光照明的近场强度 w4P?2-kB
后处理傅里叶变换计算散射场在上半空间的傅里叶变换。 A-Be}A
G?)NDRM 在实验中,远场通常由成像的光学装置来收集。后处理光学成像允许描述一个通用光学成像系统。我们通过一个没有像差的简单2X放大工具来演示这一点。 X*hY?'Rp
o8;>E>; PostProcess { ~VYZu=p OpticalImaging { AE? 0UVI InputFileName = "project_results/transmitted_fourier_transform.jcm" N}Q%y(O^ OutputFileName = "project_results/image_fourier_transform.jcm" UJMM& OpticalSystem { /#lhRNX SpotMagnification = 2.0 0F> ils } 8Y?zxmwn] } 8'[g?
89o&KF] 输出文件fourier_transform_image.jcm包含经过光学系统后的场的傅里叶变换。可以使用笛卡尔输出后处理来计算相干图像。下图显示了不同z方向切片的图像(图像平面沿z方向放置),用于S偏振照明。 z)p(
l!
b5lZ| |W. 线光栅通过光学系统后的相干图像(s偏振入射平面波)
,|6O}E&
lHQ:LI 
线光栅通过光学系统后的相干图像(p偏振入射平面波)