-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2025-08-04
- 在线时间1820小时
-
-
访问TA的空间加好友用道具
|
1.摘要 piUfvw *
8D(Lp1 qmpU{fs 在测量信号或数据的情况下,很难(如果不是不可能的话)完全避免所有可能的噪声源,因为这些噪声源会干扰任何实验测量。但是,噪声的存在会干扰数据的重要特征(例如,测量光谱的半宽谱)。 nYY' hjZ 因此,有一些后期处理技巧可能会有所帮助。这里我们只讨论一个这样的工具:Savitzky-Golay滤波器,它通过对一组采样点执行回归算法来平滑局部噪声。在这个例子中,我们讨论了VirtualLab Fusion中这个特性的选项和效果,并以一个绿色LED灯在60 nm带宽下发射的光谱为例进行了测试。 \AR3DDm k.0pPl
0xutG/-&N dZbG#4oO 2.如何进入Savitzky-Golay过滤器 5.)/gK2$ Lop=._W h9{'w 对于每个实值数据数组,都可以在下面找到Savitzky-Golay滤波器 f1VA61z{) 操作→ > cJX'U9 杂项→ M7lMOG(\ Savitzky-Golay过滤器 !FnH; 3412znM&
\RP=Gf d7QQ5FiB 3.可视化的过滤函数 |c>A3 P$=B BUKh5L
vCNYqa)m: QO~TuC 4.影响过滤器-窗口大小 cXokq 4~r=[|(aY 更大的窗口大小导致在拟合过程中考虑更多的采样点,因此曲线更平滑。 `S7${0e ^coJ"[D
l:kF0tj" sXSZ#@u,WN 更高的阶数允许更详细的曲线,但反过来也可以保留局部噪声。 8eoDE. } $}7WJz:
Wm ?RB0 /SD2e@x{U 5.局部噪声过滤 l>9ZAI\^ c~Hq.K$d
QSy #k~ Om2
)$( 6.FWHM 检测 "|"bo5M: #/1,Cv yj
\bb,gRfP ]urcA,a 7.等距的重采样 e~weYGK m[u
6<C
D &wm7,
|