摘要 E3L?6Qfx> ]]xKc5CT 在为增强和混合现实(AR&MR)应用设计光波导设备的过程中,所提供的
视场(FOV)等
参数是主要的兴趣所在。为了突破可实现的最大视场的极限,人们研究了各种方法,例如在从入射耦合到出射耦合的传播过程中分割视场的
系统。一个非常流行的方法是所谓的 "蝴蝶出瞳扩展",即在FOV的正负部分使用两个独立的EPE光栅区域,这也被应用于微软的Hololens2。在这份
文件中,我们展示了在VirtualLab Fusion中实现这样一个EPE概念,它基于微软的US9791703B1专利。
rvA>khu0/ KuNLu31%
r^9l/H~$ g14*6O: 建模任务:基于专利US9791703B1的方法 t@RYJmW
1CtUf7 `/Q
[^>XRBSm
+qxPUfN 任务描述 " T(hcI
T&U}}iWN
` ]|X_!J- pA7-B>Y 光导元件 6|97;@94
AXfU$~
GqFx^dY4* *7Dba5B 有了光导组件,可以很容易地定义具有复杂形状的区域的系统。此外,这些区域可以配备理想化的或真实的
光栅结构,作为入射器、出射器和扩瞳器发挥作用。
|1tKQ0jg =j]y?;7q
xh6(~'$ f^%3zWp|- 输入耦合和输出耦合的光栅区域 zVh yAf
>T$0*7wF
QxT'\7f #86N
!&x 为了简单起见,我们在圆形区域使用了两个一维周期性入射耦合光栅(一个在第一表面,一个在第二表面)。这将导致FOV的左右部分的行为略微不对称,但可以通过将两个光栅组合成一个单一的二维周期结构(位于第一或第二表面)来克服这个问题。
6)HmE[[F 为了重新组合和耦合
光线,一个一维周期性的出射耦合器被应用,有一个矩形的区域。这是一个特殊的配置,为了使设计有更大的灵活性,可以用一个二维周期的出射耦合器来代替它。
hW7u#PY [%IOB/{N
/i+z#q5' ;qx#]Z0 < 出瞳扩展器(EPE)区域 Rq4;{a/j
MB}nn&u#
:cpj{v;s J,a&"eOZ 每个区域的形状可以使用不同的方法和定义策略来非常灵活地定义。在这个例子中,两个EPE都是由多边形区域与两个椭圆体结合起来定义的,以切割内部部分。这些光栅是一维周期性的,旋转角度为±35°(分别为左侧和右侧)。更多关于区域定义的信息在下面:
<y 4(!z" *4O=4F)x
, c.^"5 .Xg.,kW 设计&分析工具 YMGy-]!o VirtualLab Fusion提供了一系列的工具来帮助
光学工程师设计和分析光导系统的任务。分析光导系统的任务,包括。
.j6udiv5 - 光导布局设计工具:
/SvhOi 设计一个具有1D-1D光瞳扩展的光导。它可以作为您系统的基础。
|T#cq! - k域布局工具。
F)P:lvp<r 分析你的设计的耦合条件。
/%$Zm^8c - 尺寸和光栅分析工具。
= XZU9df 检测您的系统中的足迹,以确定 你的区域的大小和形状。
glAS$< [i.@q}c~E
Po>6I0y uJ`N'`Z 总结-元件 B=Hd:P|
h*%p%t<