-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2026-01-28
- 在线时间1922小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 \L#QR =5_y<0`4 成像示意图 ,Qo}J@e( 首先我们建立十字元件命名为Target C
>kmIw' UG=I~{L 创建方法: As}eUm)B5c WJcVQMs 面1 : '8Qw:f h 面型:plane %L cH>sV 材料:Air }MjQP R 孔径:X=1.5, Y=6,Z=0.075,形状选择Box 1*#bfeoM Gx;xj0-" ,]U[W 辅助数据: h+xA?[c= 首先在第一行输入temperature :300K, 4[_L=zD emissivity:0.1; D@5s8xv i ha9!kf _y-B";Vmm
面2 : ~%KM3Vap 面型:plane OgTSx 材料:Air `+fk`5Y 孔径:X=1.5, Y=6,Z=0.075,形状选择Box )DRkS,I Z{#"-UG 59K} 位置坐标:绕Z轴旋转90度, QD}1?)} @4&,
#xo W7W3DBKtSm 辅助数据: uwId a.CF9m5]c 首先在第一行输入temperature :300K,emissivity: 0.1; ${@q?iol 7
{nl..` 3~:0?Zuq Target 元件距离坐标原点-161mm; kI<WvgoL (`F|nG=X +>u>`| 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 Y}K!`~n1S KZW'O
b>[ hXPocP 探测器参数设定: d<_NB]V&F yqYhe-" 在菜单栏中选择Create/Element Primitive /plane =9fEv,Jk w)^\_uAlS x!`b'U\ sK `<kbj 2Gm-\o&Td" [u7 vY@ 元件半径为20mm*20,mm,距离坐标原点200mm。 **.:) u7n[f@Eg,% 光源创建: (Hl8U 8H7O/n 光源类型选择为任意平面,光源半角设定为15度。 /MhS=gVxM Rnzqw,q Q
g$($
我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 )tScc*=8 !e&rVoA 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 5Yn{?r\#F }'DC
Q _Q)d+Fl 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 u0s'6= L
43`^;u 创建分析面: G5Je{N8W #UBB
lE# G l_\Vy 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 Q
js2hj-$ W=UqX{-j) oHOW5 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 AfUZO^< hHCzj*5 FRED在探测器上穿过多个像素点迭代来创建热图 \Bt=bu>Z <{E;s)hD? FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 Q! Kn|mnN 将如下的代码放置在树形文件夹 Embedded Scripts, ax4*xxU sfyBw xLe
=d |6 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 |3S'8OeCI ZH_FA 绿色字体为说明文字, "\4]X"3<+ &S<?07Z '#Language "WWB-COM" qC\]"Z`m 'script for calculating thermal image map 2H[=lY 'edited rnp 4 november 2005 LE8K)i GhtbQM1[H 'declarations I<c@uXXV;! Dim op As T_OPERATION /X@7ju; Dim trm As T_TRIMVOLUME ('T4Db Dim irrad(32,32) As Double 'make consistent with sampling l8er$8S} Dim temp As Double
(L`l+t1 Dim emiss As Double MJ1W*'9</W Dim fname As String, fullfilepath As String wTHK=n\i {EOn r1 'Option Explicit qo61O\qm 5woIGO3X Sub Main -Uzc"Lx B 'USER INPUTS sP9 ^IP nx = 31 ~^^!"- ny = 31 ?F)_T numRays = 1000 F# jCEq minWave = 7 'microns `oB' ( maxWave = 11 'microns Uy(vELB sigma = 5.67e-14 'watts/mm^2/deg k^4 B"7$!C o fname = "teapotimage.dat" `x2fp6
\k|_&hG Print "" h~,x7]w6 Print "THERMAL IMAGE CALCULATION" jAA'hA $eK8GMxZ# detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 Z~duJsH $|>6z_3% Print "found detector array at node " & detnode T {hyt Lv srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 JCM)N8~i \#uqD\DE Print "found differential detector area at node " & srcnode -$AjD?; "B3iX@C GetTrimVolume detnode, trm ;X+G6F' detx = trm.xSemiApe (xucZ dety = trm.ySemiApe @:S$|D~ area = 4 * detx * dety J% :WLQo Print "detector array semiaperture dimensions are " & detx & " by " & dety TjKzBAX Print "sampling is " & nx & " by " & ny X4Pm)N` '}wG"0 'reset differential detector area dimensions to be consistent with sampling j%6|:o3G( pixelx = 2 * detx / nx ~+nS)4( pixely = 2 * dety / ny :`{9x%o; SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False 3{ .9O$ Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 RH<@c^ S Q{%HW4lg 'reset the source power RA*_&Ll&!C SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) y&n1 Nj]^ Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" PFImqojHd 2z.k)Qx!Z 'zero out irradiance array 9)G:::8u7 For i = 0 To ny - 1 Ln"+nKr For j = 0 To nx - 1 ~J8cS irrad(i,j) = 0.0 bl(BA}< Next j XS}Zq4H Next i I>N-95 b|X>3( 'main loop d_4n0Kh0 EnableTextPrinting( False ) t:?<0yfp& 9`LU=Xv/ ypos = dety + pixely / 2 8r7/IGFg For i = 0 To ny - 1 f9h:"Dnzin xpos = -detx - pixelx / 2 )a4E&D ypos = ypos - pixely {q5hF5!`) Y;a6:>D%cT EnableTextPrinting( True ) x]yHBc Print i #J%h!#3g EnableTextPrinting( False ) dg!1wD X+(aQ
>y HB/
_O22 For j = 0 To nx - 1 PO=ZxG >#${.+y xpos = xpos + pixelx ZaEBdBv <a4iL3 'shift source x9XGCr LockOperationUpdates srcnode, True ~Mg8C9B?%3 GetOperation srcnode, 1, op )w}*PL op.val1 = xpos Apw-7*/ op.val2 = ypos b&U5VA0=1 SetOperation srcnode, 1, op d\1:1ucV LockOperationUpdates srcnode, False IkE'_F x| ~D(zo 'raytrace EkfGw/WDw DeleteRays _umO)]Si CreateSource srcnode 1xFhhncf TraceExisting 'draw P:zEx]Y% .R<s<] 'radiometry '|dKg"Yl For k = 0 To GetEntityCount()-1 rRA_'t;uK If IsSurface( k ) Then !0d9<SVC temp = AuxDataGetData( k, "temperature" ) OTy4"% emiss = AuxDataGetData( k, "emissivity" ) h!JjN$ If ( temp <> 0 And emiss <> 0 ) Then CwCo"%E8} ProjSolidAngleByPi = GetSurfIncidentPower( k ) z9uEOX&2\ frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) %(O^as irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi \8C*O{w End If -Z\UYt <O`q3u'l End If 1W6n[Xg ZT3jxwe Next k duiKFNYN hQW#a]]V: Next j ><Mbea=U+ Eb{4.17b Next i 6|(7G64{ EnableTextPrinting( True ) >Y*iy se*pkgWbz 'write out file JzS^9)& fullfilepath = CurDir() & "\" & fname QdG?"Bdt2 Open fullfilepath For Output As #1 &caO*R<#J} Print #1, "GRID " & nx & " " & ny N#xM_Mpt Print #1, "1e+308" A%sxMA!K, Print #1, pixelx & " " & pixely &55uT;7] a Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 ht[TMdV 9iN!hy[ maxRow = nx - 1 4HYH\ey maxCol = ny - 1 jAQ)3ON< For rowNum = 0 To maxRow ' begin loop over rows (constant X) 1J!tcj1( row = "" hzf}_1 For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) Z!5m'yZO row = row & irrad(colNum,rowNum) & " " ' append column data to row string Zqe[2() Next colNum ' end loop over columns ^Qb!k/$3y Pq_ApUZa Print #1, row 1>O0Iu 56~da ){gd Next rowNum ' end loop over rows B )3SiU Close #1 "N[gMp6U Se]t;7j Print "File written: " & fullfilepath @+Anv~B. Print "All done!!" bKTwG@{/k End Sub -<VF6k< zj$Z%|@$ 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: Gm?"7R. ^SL}wC x TY{?4 找到Tools工具,点击Open plot files in 3D chart并找到该文件 %L=h}U13 C(Bar# 3By>t!~Q 打开后,选择二维平面图: -B++V fqp7a1qQl
|