-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2025-06-20
- 在线时间1790小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 Jq-]7N%k/ q"lSZ;
'E 成像示意图 !c
Hum 首先我们建立十字元件命名为Target `4J$Et%S $bR~+C 创建方法: Dcgo%F-W Dw.J2>uj 面1 : BL}\D;+t 面型:plane 194)QeoFw 材料:Air C ;W"wBz9 孔径:X=1.5, Y=6,Z=0.075,形状选择Box <)H9V-5aZ v@L;x [Q p8O2Z?\ 辅助数据: Ffz,J6b 首先在第一行输入temperature :300K, 4xje$/_d
emissivity:0.1; O,f?YJ9S YK'<NE3 4 ! n@KU!&k 面2 : %ntRG! 面型:plane Cl7xt}I 材料:Air #=A)XlZMd 孔径:X=1.5, Y=6,Z=0.075,形状选择Box G9cUD[GB UB@+ck /W<;Z;zk 位置坐标:绕Z轴旋转90度, FcU SE ^\=`edN 0 ^6V[=!& H 辅助数据: 7`'Tb p |/{=ww8| 首先在第一行输入temperature :300K,emissivity: 0.1; oD.Cs' {4Cmu;u 8cIKvHx Target 元件距离坐标原点-161mm; *.t7G @RKryY) ;?p>e' 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 VY4yS*y ( Erc3Ac8 sUQ@7sTj 探测器参数设定: !_)[/q" tT_\ i6My 在菜单栏中选择Create/Element Primitive /plane BQMpHSJ_ on`3&0,. ^u ~Q/4 b3,
_(;A! E ~<JC"] oZ|\vA%4^ 元件半径为20mm*20,mm,距离坐标原点200mm。 8<Av@9 *} %IWPM" 光源创建: 2c*GuF9(0 E:nF$#<'N 光源类型选择为任意平面,光源半角设定为15度。 lt8|9"9< .aQ \jA 2P0*NQ 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 2\{zmc}G-0 s2'h 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 }o`76rDN eng'X-x 1=V-V< 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 !+v$)3u9 wbl& 创建分析面: $ddCTS^ *$g-:ILRuZ }5"u[Z. 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 C~/a- pv|G^,># vEJbA 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 W'M*nR|xo /%^#8<=|U FRED在探测器上穿过多个像素点迭代来创建热图 Pd Wx|y{% . $vK&k FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 ]h5tgi?_l 将如下的代码放置在树形文件夹 Embedded Scripts, gg2(5FPP 9G2FsM|, 61U09s%\0 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 \dah^mw" a\*yZlXKs 绿色字体为说明文字, =T7.~W }N52$L0[ '#Language "WWB-COM" Qo|\-y-# 'script for calculating thermal image map GZIa4A 'edited rnp 4 november 2005 'm$L Ij?@ 4j^
@wV' 'declarations 9hyn`u. Dim op As T_OPERATION Ig{0Z"> Dim trm As T_TRIMVOLUME h/Y'<: Dim irrad(32,32) As Double 'make consistent with sampling AA>P`C$&M Dim temp As Double c7H^$_^ = Dim emiss As Double U]rRQ
d/:; Dim fname As String, fullfilepath As String `Urhy#LC t%8BK>AHvw 'Option Explicit wUJcmM; oQJtUP% Sub Main =7UsVn#o 'USER INPUTS V!~wj nx = 31 1< ?4\?j ny = 31 $%f&a3# numRays = 1000 ]6j{@z?{ minWave = 7 'microns o)/ 0a maxWave = 11 'microns Zv{'MIv&v sigma = 5.67e-14 'watts/mm^2/deg k^4 <:CkgR$/{ fname = "teapotimage.dat" J<lW<:!3] ;$Jo+# Print "" RxQ * Print "THERMAL IMAGE CALCULATION" {{!-Gr :Zlwy-[ detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 'Pbr
v :k#HW6p Print "found detector array at node " & detnode 2~[juWbz uQzXfOq srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 VIbq:U [V`r^ Print "found differential detector area at node " & srcnode K(|}dl: f6p/5]=J26 GetTrimVolume detnode, trm yf,z$CR detx = trm.xSemiApe cWm$;`Q#\ dety = trm.ySemiApe qe\5m.k area = 4 * detx * dety A@u@ift Print "detector array semiaperture dimensions are " & detx & " by " & dety 0n'_{\yz Print "sampling is " & nx & " by " & ny ;9#KeA _ 0"SU_jQzv 'reset differential detector area dimensions to be consistent with sampling fV~[;e;U. pixelx = 2 * detx / nx ~VB1OLgv#. pixely = 2 * dety / ny 1Z&(6cDY8M SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False -:rUw$3J Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 \{D"
!e ;AG()NjOO: 'reset the source power !5N.B|Nt SetSourcePower( srcnode, Sin(DegToRad(15))^2 )
Fk;Rfqq Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" Uw:"n]G]D? 7|H$ /] 'zero out irradiance array G+m }MOQP7 For i = 0 To ny - 1 Pzem{y7Ir For j = 0 To nx - 1 ;F Eqe49 irrad(i,j) = 0.0 2&5K.Ui% Next j [N'h%1]\ Next i lLIAw$ C_Wc5{ 'main loop uw8f ~:LT EnableTextPrinting( False ) p
K$`$H v` r:=K ypos = dety + pixely / 2 5IG-~jzCLb For i = 0 To ny - 1 5-A\9UC*@ xpos = -detx - pixelx / 2 7[wPn`v2 ypos = ypos - pixely "wc<B4" -n;}n:wL EnableTextPrinting( True ) 4Po_-4 Print i 8cQ'dL`( EnableTextPrinting( False ) d d;T-wa} *z2s$EZ K<J9~ For j = 0 To nx - 1 S]{oPc[7 @o.I ;}*N xpos = xpos + pixelx L:x-%m%w 3gf1ownC 'shift source zW nR6*\ LockOperationUpdates srcnode, True BJ0?kX@ GetOperation srcnode, 1, op IRbfNq^: op.val1 = xpos ,z?':TZ op.val2 = ypos ch]29 SetOperation srcnode, 1, op [00m/fT6 LockOperationUpdates srcnode, False -K$)DvV^(E !!y a 'raytrace =R\]=cRbg DeleteRays DTs;{c CreateSource srcnode eDB ;cN TraceExisting 'draw tnIX:6 "7`<~>9t. 'radiometry QS j]ZA For k = 0 To GetEntityCount()-1 ItCv.yv35 If IsSurface( k ) Then 92-I~
!d temp = AuxDataGetData( k, "temperature" ) rLT!To emiss = AuxDataGetData( k, "emissivity" ) h7@6T+#WoT If ( temp <> 0 And emiss <> 0 ) Then NuI9iU ProjSolidAngleByPi = GetSurfIncidentPower( k ) E)3NxmM# frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) mBC+6(5V irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi v8DC21pb End If /7LR;>B j Q=:|R3U/ End If :H[6Lg\* },[}$m% Next k C.QO#b M:V_/@W. Next j F5#YOck&, zn(PI3+]! Next i 6zn5UW#q EnableTextPrinting( True ) 2BobH_H tI{_y 'write out file jq-_4}w?C fullfilepath = CurDir() & "\" & fname LIdF 0 Open fullfilepath For Output As #1 07 $o;W@ Print #1, "GRID " & nx & " " & ny L.WljNo Print #1, "1e+308" (tQc Print #1, pixelx & " " & pixely %%wNZ{ Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 Ca3~/KrM PxE3K-S)G maxRow = nx - 1 L_s:l9!r maxCol = ny - 1 8.~kK<)! For rowNum = 0 To maxRow ' begin loop over rows (constant X) PYzvCf`? row = "" Q5_o/wk For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) Q3SS/eNP row = row & irrad(colNum,rowNum) & " " ' append column data to row string bJ;'`sw1 Next colNum ' end loop over columns sNwI0o bYPK h Print #1, row yiI1x*^ ,v&(Y Od Next rowNum ' end loop over rows bs'n+:X` Close #1 {}Za_(Y,] YnP5i#" Print "File written: " & fullfilepath A +)`ZTuO Print "All done!!" cFWc<55aX6 End Sub V470C@ Qw)c$93 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: as_PoCoss ~3 bPIg7D $tS}LN_!
找到Tools工具,点击Open plot files in 3D chart并找到该文件 Z(!\%mn kSh( u +d;bjo 2 打开后,选择二维平面图: IaXeRq?< C>w|a
|