-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2025-04-29
- 在线时间1766小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 v_|k:l d H N"pNNs 成像示意图 )&6ZgRq 首先我们建立十字元件命名为Target ~`97?6*Ra 'nIKkQ" N 创建方法: E]O/'-
=O%Hf bx 面1 : icK>| 面型:plane 'vwu^u? 材料:Air rSa=NpFxLu 孔径:X=1.5, Y=6,Z=0.075,形状选择Box K>2M*bGcp kk>z,A4
h_ V1#:[o63+ 辅助数据: ni$;"RGC 首先在第一行输入temperature :300K, 0gRm LX emissivity:0.1; 8-B6D~i ;,lFocGv &j}:8Tst 面2 : 0^3n#7m;K 面型:plane "IHFme@^ 材料:Air K+\2cf?bU 孔径:X=1.5, Y=6,Z=0.075,形状选择Box 6Vgxfic :i3
W U% b+`qGJrej 位置坐标:绕Z轴旋转90度, ]T<tkvcI 5<XWbGW 0Ke2%+yqJ 辅助数据:
:al
,zxs ;e{e
?,[ 首先在第一行输入temperature :300K,emissivity: 0.1; &gF9VY MWv(/_b fHODS9HQ Target 元件距离坐标原点-161mm; gNJdP!(t qizQt]l m[CyvcF*u 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 KV)if' Pcjrv:0$ .ah[!O 探测器参数设定: ]D&U}n "$/1.SX;] 在菜单栏中选择Create/Element Primitive /plane E!RlH3}) #-i#mbZ e 6p9 {z42 6 w'))Z LJ6L#es2 _T_6Yl&cf) 元件半径为20mm*20,mm,距离坐标原点200mm。 h1H$3TpP Y2IMHNtH 光源创建: JEs@ky?{z ^ (s(4| 光源类型选择为任意平面,光源半角设定为15度。 }eF
r,bJ N!fjN >cw LzxO=+=9!q 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 Ob{Tn@ 6RG63+G 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 vjzG
H* UhJ{MUH` +eO>> ~Z 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 (_]!}N ~0h@p4 创建分析面: *+XiBho n.i8?: uq/Fapl 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 cF_`QRtO J$PlI XS
#u/!
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 FQ>kTm`d x]@z.Yj FRED在探测器上穿过多个像素点迭代来创建热图 t3!OqM u0]u"T&N! FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 /OYa1, 将如下的代码放置在树形文件夹 Embedded Scripts, %NfXe[T 5dhy80|g] PD^G$LT 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 =av0a! XUKlgl!+. 绿色字体为说明文字, =j{tFxJ rW090Py '#Language "WWB-COM" lSBR(a<\y 'script for calculating thermal image map sgDSl@lB 'edited rnp 4 november 2005 PxQQf I> Y
mL{uV$ 'declarations c1r+?q$f Dim op As T_OPERATION _n/73Oh Dim trm As T_TRIMVOLUME fL#r@TB-s Dim irrad(32,32) As Double 'make consistent with sampling b;{"@b,Y Dim temp As Double :<mJRsDf Dim emiss As Double xticC> Dim fname As String, fullfilepath As String LR{bNV[i 4lWqQVx 'Option Explicit :p,|6~b$ V0rQtxE{F Sub Main I 44]W & 'USER INPUTS j
RcE241 nx = 31 (~%NRH<\ ny = 31 h_{f_GQ" numRays = 1000 gS'7:UH, minWave = 7 'microns C
#iZAR maxWave = 11 'microns BWvM~no sigma = 5.67e-14 'watts/mm^2/deg k^4 ?AD-n6 fname = "teapotimage.dat" $8i`h}AM <ch}]-_ Print "" ;Ce?f=4 Print "THERMAL IMAGE CALCULATION" oH+PlL #HH[D;z detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 SMIDW}U2S 0O,;[l Print "found detector array at node " & detnode +RL@g*` 7Mq{Py1 srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 /8Y8-&K0 rAAx]nQ@ Print "found differential detector area at node " & srcnode rdd-W>+ >zDQt7+g; GetTrimVolume detnode, trm (oR~%2K detx = trm.xSemiApe ?P-O4 dety = trm.ySemiApe u<uc"KY= area = 4 * detx * dety YPGzI]\ Print "detector array semiaperture dimensions are " & detx & " by " & dety l?2 Print "sampling is " & nx & " by " & ny fkp(M xGQP*nZ 'reset differential detector area dimensions to be consistent with sampling }nX0h6+1 pixelx = 2 * detx / nx #h^nvRmON pixely = 2 * dety / ny R.*;] R>M SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False Uz_p-J0 Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 (*P`
?4U4o<
'reset the source power z/`+jIB SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) OblHN* Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" oJ
%Nt&q Jk-WD"J6 'zero out irradiance array >J3mta3 For i = 0 To ny - 1 yNXYS For j = 0 To nx - 1
sZCK? irrad(i,j) = 0.0 >!@D^3PPA Next j 2w3LK2`ZL Next i s|H7;.3gp G#e]J;
'main loop 8^+|I, EnableTextPrinting( False ) x%r$/= nvf5a-C+q ypos = dety + pixely / 2 oNe:<YT
For i = 0 To ny - 1 s7sd(f]= xpos = -detx - pixelx / 2 j@(S7=^C6% ypos = ypos - pixely v5L+B`~ a'|]_`36x EnableTextPrinting( True ) U5N |2 Print i S$hxR EnableTextPrinting( False ) EBW*v ' d;p3cW" Yg '( For j = 0 To nx - 1 `Wjq$* .eg'Z@o xpos = xpos + pixelx SF*mY=1 9)]`le 'shift source l![79eFp LockOperationUpdates srcnode, True NR(rr. GetOperation srcnode, 1, op ,"`3N2!Y} op.val1 = xpos *~6]IWN` op.val2 = ypos NAE|iyw SetOperation srcnode, 1, op 9 c9$cnQ LockOperationUpdates srcnode, False hfLe<, g]HxPq+O 'raytrace ~FYC'd DeleteRays flqr["czwK CreateSource srcnode D9NRM;v TraceExisting 'draw G@D;_$a 0 fT*O 'radiometry ym6Emf] For k = 0 To GetEntityCount()-1 /];N 1 If IsSurface( k ) Then ,e1c,} temp = AuxDataGetData( k, "temperature" ) P;25F emiss = AuxDataGetData( k, "emissivity" ) B&X)bGx8
If ( temp <> 0 And emiss <> 0 ) Then 3=ME$%f ProjSolidAngleByPi = GetSurfIncidentPower( k ) xC _3&. frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) 2 N &B irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi U= n End If >BO!jv!a $<Gt^3e End If `k
I}p OI)k0t^;D Next k
b}7g> C'A
D[`p Next j : ciwh wd|^m% Next i 2ALYfZ|d EnableTextPrinting( True ) LL3| U v8E:64 'write out file mXJG &EA fullfilepath = CurDir() & "\" & fname gPKO-Fsd" Open fullfilepath For Output As #1 %iIr %P? Print #1, "GRID " & nx & " " & ny +gndW Print #1, "1e+308" P!9-!+F" Print #1, pixelx & " " & pixely `ZC -lAY Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 e
jk?If 07 C;ha2UV0H maxRow = nx - 1 }o
GMF~ maxCol = ny - 1 p|;#frj For rowNum = 0 To maxRow ' begin loop over rows (constant X) U.^%7. row = "" i0x[w>\- For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) I
%1P:- row = row & irrad(colNum,rowNum) & " " ' append column data to row string 4yxf/X) Next colNum ' end loop over columns fH,h\0 @d3yqA
Print #1, row yyVJb3n5:! q,Nqv[va Next rowNum ' end loop over rows REJBm Close #1 +)(
"!@ [e. `M{(TB Print "File written: " & fullfilepath **9[e[(X Print "All done!!" [F *hjGLc} End Sub `a7b,d jw2hB[WR 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: 0#ePg6n \@6w;tyi SV2\vby}C 找到Tools工具,点击Open plot files in 3D chart并找到该文件 5iItgVTW G
@L`[Wu =cR=E{20 打开后,选择二维平面图: Q;2kbVWY @DR?^
q p
|