清华大学在大规模多任务纳米光子集成器件逆向设计上取得新进展
硅光子学技术使紧凑型集成光子器件具备了多功能性和大规模生产的能力。然而,高性能自由形式光学器件的设计仍然具有挑战性,因为涉及到复杂的光和物质的相互作用,需要耗费大量时间进行电磁模拟。而当需要设计多个硅光子器件时,这个问题变得更加突出,通常需要长时间的迭代优化。解决大规模硅光子器件的逆向设计问题具有很强的研究价值和工业设计生产意义。 近日,清华大学深圳国际研究生院付红岩副教授团队开发出一种全自动大规模多任务硅基光子器件的逆向设计方法。该方法是一种基于低维傅里叶频域和深度神经网络的拓扑优化方法,能在有效控制逆向设计器件的最小尺寸的同时快速训练可用于器件设计的深度神经网络,无需任何提前准备的数据集。 图1.多任务光子滤波器设计 逆向设计是将整个设计区域像素化,通过目标优先的优化方法确定器件的具体结构。考虑到器件加工需求,那些孤立的像素点和狭缝无法加工,因此需要通过平滑结构边缘来满足加工需要,这也使得部分设计自由度变得冗余。已知傅立叶低频信号对应了器件的主体结构,而傅立叶高频信号代表了噪声和图像中快速变化的信息。仅使用低频傅立叶分量在重建时域图像结构时能在控制器件最小尺寸的同时,降低冗余的设计自由度。 图2.最小尺寸控制方法 为实现多任务器件优化设计,研究人员将设计目标通过一个深度生成神经网络映射到低频傅立叶分量。这些分量在高频补零后通过傅立叶逆变化即可还原成器件图形的具体结构。生成的器件结构通过电磁仿真软件仿真后得到实际的光学响应。该响应与目标光学响应之间的差值可用于生产神经网络的训练。 |




