|
以下我们使用一个很简单的共振器范例模型进行功能示范 e2Pcm_Ahv* 此范例将会示范如何使用GLAD。我们将使用resonator.inp这个档案示范共振器。即使使用者对共振器不感兴趣,这个范例也将会展示在GALD中解决问题的几个重要步骤: .hb:s,0mP 初始化计算机数组及单位 net@j#}j- 选择波长 xIW3={b 3 定义初始分布 Z clQ 使用宏进行重复运算 P`+{@@ 建立数据显示计算结果 p`dU2gV 此共振器将使用半对称的结构进行计算,由半径50cm的球面镜及平面镜所组成。共振器的长度为46cm。输出将由平面镜输出。下表1显示其结构参数: SHxNr(wJ<Q Mj3A5;# EJ.SW5 图1-稳定的共振器结构。其光腰将会在平面镜上形成,及其相曲率将与曲面镜的理想模态曲率相同 2jItq2.> 为了简化讨论,我们将忽略增益及形成bare-cavity分析。我们开始分析从准备一个命令档案如下: K7B/s9/xs variab/dec/int pass :RTC!spy macro/def reson/o \:'/'^=#| pass = pass + 1 # increment pass counter M/'sl; prop 45 # propagate 45 cm. r,3DTBe mirror/sph 1 -50 # mirror of 50 cm. radius {<p?2E clap/c/n 1 .14 # .14 cm. radius aperture )EuvRLo{S7 prop 45 # propagate 45 cm. along beam 1=c\Rr9] mirror/flat 1 # flat mirror eK=xrk variab/set Energy 1 energy # set variable to energy value mDABH@R Energy = Energy - 1 # calculate energy difference ah&D%8E udata/set pass pass Energy # store energy differences f*% D$Mqg energy/norm 1 1 # renormalize energy !Pvf;rNI1T plot/l 1 xrad=.15 # make a plot at each pass 4B1v4g8} macro/end %XDc,AR[ array/set 1 64 # set array size /t57!& wavelength/set 0 1.064 # set wavelengths ~H_/zK6e units/set 1 .005 # set .005 cm sample spacing TER=*"! resonator/name reson # set name of resonator macro )9G[dDeC resonator/eigen/test 1 # find resonator properties %N6A+5H resonator/eigen/set 1 # set surrogate beam to eigen mode kZ
.gO clear 1 0 # clear the array l/GGCnO/ noise 1 1 # start from noise `2WFk8) F energy/norm 1 1 # normalize energy N^G
Mp,8 pass = 0 # initialize pass counter ,eW%{[g( reson/run 100 # run resonator 100 times #U4F0BdA title Energy loss per pass 33x{CY15 plot/watch plot1.plt # set plot name jXx<`I+] plot/udata min=-.05 max=.0 # plot summary of eigenvalues 4r#= * title diffraction mode shape 85$m[+md set/density 32 # set plot grid to 32 x 32 {X+3;& |