-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2025-09-16
- 在线时间1852小时
-
-
访问TA的空间加好友用道具
|
以下我们使用一个很简单的共振器范例模型进行功能示范 agU%z:M{ 此范例将会示范如何使用GLAD。我们将使用resonator.inp这个档案示范共振器。即使使用者对共振器不感兴趣,这个范例也将会展示在GALD中解决问题的几个重要步骤: ot@|blVC8 初始化计算机数组及单位 $ ]W[y= 选择波长 `qf\3JT\ 定义初始分布 lruF96C/Y 使用宏进行重复运算 tDC0-N&6S~ 建立数据显示计算结果 BaWQ<T8p8 此共振器将使用半对称的结构进行计算,由半径50cm的球面镜及平面镜所组成。共振器的长度为46cm。输出将由平面镜输出。下表1显示其结构参数: ]k'#g Z$ 7m|`tjQ1 L,C? gd@" 图1-稳定的共振器结构。其光腰将会在平面镜上形成,及其相曲率将与曲面镜的理想模态曲率相同 Tn4W\?R 为了简化讨论,我们将忽略增益及形成bare-cavity分析。我们开始分析从准备一个命令档案如下: VM-qVd- variab/dec/int pass m4Phn~>Gg macro/def reson/o 6\,DnO pass = pass + 1 # increment pass counter 7oZ@<QP' prop 45 # propagate 45 cm. BKE\SWu mirror/sph 1 -50 # mirror of 50 cm. radius CN\|_y clap/c/n 1 .14 # .14 cm. radius aperture C2+{U prop 45 # propagate 45 cm. along beam mP9cBLz mirror/flat 1 # flat mirror 22)0zY%\ variab/set Energy 1 energy # set variable to energy value Jh37pI Energy = Energy - 1 # calculate energy difference b$dJ?%W udata/set pass pass Energy # store energy differences b4Ricm energy/norm 1 1 # renormalize energy Ci]'G>F@" plot/l 1 xrad=.15 # make a plot at each pass =7 Jy macro/end BW'L.*2 array/set 1 64 # set array size H!u nIy| wavelength/set 0 1.064 # set wavelengths tt+>8rxF:; units/set 1 .005 # set .005 cm sample spacing "
Sc5qG resonator/name reson # set name of resonator macro snXB`UC resonator/eigen/test 1 # find resonator properties `Mg8]H~ resonator/eigen/set 1 # set surrogate beam to eigen mode Mam8\ clear 1 0 # clear the array p+orBw3 noise 1 1 # start from noise 7))y}N:p energy/norm 1 1 # normalize energy vC)"*wYB{ pass = 0 # initialize pass counter OZ(Dpx(Q reson/run 100 # run resonator 100 times '8s>rH5[V title Energy loss per pass :d;[DYFLxb plot/watch plot1.plt # set plot name <\ y!3; plot/udata min=-.05 max=.0 # plot summary of eigenvalues u|(Ux~O
title diffraction mode shape >%9^%p^ set/density 32 # set plot grid to 32 x 32 ]YCPyc: set/window/abs -.05 .05 -.05 .05 # set plot window $T"h";M)s plot/watch plot2.plt # set plot name _^_5K(Uq plot/iso 1 # make an isometric plot dv"as4~% 以下就对每一项指令来做介绍: Yuwc$Qp) variab/dec/int pass O4m(Er@a 此行定义一整数变量叫pass。我们将使用pass来储存数据,变量如果不清楚的定义为整数,将会被定义为实数变量。 @)o0GHNP macro/def reson/o uzHT.iBn 此行开始定义宏,就像是子程序或函式一样。所有介于macro/def与macro/end之间的指令都将定义为宏。这些指令暂时不会被执行。这些指令列将被放在MACLIB中留待以后使用。这些宏指令列将不需缩排。但使用缩排将会使这些指令更容易阅读。
z'7#"D pass = pass + 1 # increment pass counter n4^~gT%b5] 此行将pass变数加一。这是一个简单的数学式。我们使用pass来计算执行宏的次数。#字符表示其后的字为批注。当我们在下指令时使用批注是很重要的一件事。 Ee{ `Y0 prop 45 # propagate 45 cm. Wu4ot0SZ 此行表示绕射传播45cm。绕射传播的计算花费最多的时间。但是,对现代的计算机而言64X64的矩阵运算只是很短的时间而已。 tS?a){^:c 此45cm的传播距离是将光线由左边的平面镜,传播至右边的曲面镜如图一。 qOW#Q:T mirror/sph 1 -50 # mirror of 50 cm. radius 5,S,\O9>X 此行为设定球面镜为曲率50cm。”1”表示设为镜面对光束 1作用。光束最多可达40道,但只有一道用在此一分析中。在指令中的负号表示为一凹面镜。此凹面镜使光线收敛并将光线反向。 k) "ao2iXL clap/c/n 1 .14 # .14 cm. radius aperture cb+l"FI7 此一指令建立一圆形的0.14的孔径对光束1作用。孔径是非常重要的在共振器中,它大量的减少了散射光线。并且,孔径将光束减为剩下最少的模态。 >eQbipn prop 45 # propagate 45 cm. along beam Rb)|66&3& 此为第二次传播将光束由右边的球面镜向左传播回平面镜。 `&7mHa61 mirror/flat 1 # flat mirror yC
W*fIaq 建立一平面镜在左边针对光束1。对bare-cavity共振器分析,光束只是直接反射回右边。在真实的雷射中,镜面将会是部份反射让光束传播出去。 F7\BF variab/set Energy 1 energy ^uia`sOP4 变数Energy设为光束1的总能量(真实能量)。我们没有将其定义为实数变量,但在GLAD中将会自动设为实数变量。 VLiIO"u; Energy = Energy - 1 # calculate energy difference G;/Q>V 此算式将能量减1计算每次传递所损失的能量。 1hR
(N udata/set pass pass Energy # store energy differences &B}Lo
此处使用udata这个指令将Energy数据存入数组中,使用两个pass变量,分别为数组的横坐标及纵坐标。 IrJ+Jov energy/norm 1 1 # renormalize energy +fM&su=wl 此行将共振器中的能量归一化。在真实的雷射中,能量被孔径及其它效应所损失,以及被其它放大器的能量增幅,在稳定态时所平衡。在bare-cavity分析中,就像我们在这里所做的,我们模拟拟稳定态增益简化为将增益值做再归一化,在每次传播的最后。 #;`Oj plot/l 1 xrad=.14 # make a plot at each pass {{32jU7< 画出空腔分布使用等比例的绘图显示模态形式对时间的关系图。 ,"B?_d6 macro/end fO6[!M( 结束宏定义 im8
-7Xt array/set 1 64 # set array size y`4{!CEyLW 此指令是定义Beam 1为64 x 64的矩阵。此数据为计算的主体,任何尺寸的矩阵都可以被定义。对一个小型的稳定空腔共振器而言,一个小的矩阵已经足够准确,因为只有低阶模态是最重要的。 bMsECA& wavelength/set 0 1.064 # set wavelengths {|z#70 设定Beam 1 的波长为1.06μm ZP-dW|<[x units/set 1 .005 # set array size {J2#eiF 此行定义数组的尺寸为0.005 cm,所以64 x 64的数组大小为0.32 cm {&-#s#& resonator/name reson # set name of resonator macro 80|onP\L 此行定义共振器的宏名称为”reson” flP>@i:e6 resonator/eigen/test 1 # find resonator properties dXl]Pe|v 此行进行共振器的测试,得到其基本特性。GLAD使用此一信息来决定所使用的数值算法。使用正确的数值算法是非常重要的,可让我们在每次的传递后得到正确的结果。光束的强度及相位在每次传递后都会改变,但其算法必须保持不变才能得到正确的结果。 8"x9#kyU<3 resonator/eigen/set 1 # initialize surrogate beam A#(`9 此处确定光束最初的初级损失模态,藉由此一指令resonator/eigen/set来确定。可以确定用来计算高斯光束的演算已设定完成。我们可以变更光线的资料,在下面两行指令完成后。 L x.jrF|& clear 1 0 # clear the array FqwIJ|ct noise 1 1 # start from noise -^Xy% 第一行设定整个光线矩阵为零。第二行放入随机数噪声在数组中,仿真自发辐射所造成的噪声影响。 .$Y?
W< 大部份的雷射都从自发辐射开始,所以此一设定更增加了真实性,而不是简单的平面波而已。当然,稳定态的解不会因为我们的初始条件而有所影响。 s O=4IBE c_#*mA"+ energy/norm 1 1 # normalize energy i
E9\_MA 此行调整光线的强度,不需要改变其外形,所以其总能量将会是归一化的。我们将会量测能量在每次传递后并减1,此一差异将表示出能量的损失。 T^]7R4Fg pass = 0 # initialize variable ?W!ry7gXO 将pass这个变数设为0 !4t`Hv?' reson/run 100 T6uMFD4 | 执行reson此一宏100次,有时候我们会需要执行超过100次或少于100次的执行得到稳定
:=9< 的效能。 Q ]"jD#F title Energy loss per pass 4d`+CD C 定义下式绘图所使用的标题 G6V/S aD plot/watch plot1.plt # set plot name 9OyN i 此指令建立绘图文件名称。绘图数据将会储存在此一档案中。Watch程序会自动的显示绘图数据并自动更新数据,当新的绘图数据建立在同一个文件名称中。Watch将会针对不同的文件名称建立不同的绘图窗口。可以让我们同时观察到许多图形。 ]v\^&7pW plot/udata min=-.05 max=.0 XFQNr` 此行画出在宏中使用udata/set所收集的数据。最小及最大值的定义更有效的显示出损失。 H-,TS^W title diffraction mode shape )t%h[0{{ 此行定义下图的标题 @r<b:?u set/density 32 # set plot grid to 32 x 32 Qs l80~n_7 set/window/abs -.05 .05 -.05 .05 /;l[I=VI 第一行定义网格线密度为32x32。第二行定义绘图宽度为0.05 x 0.05 cm。此指令让绘图区域正好足够绘出主要的光线部份。 hbI;Hd plot/watch plot2.plt # set plot name rLzW` 此行定义新的绘图档案。Watch将会定义新的绘图窗口给新的档案。 >aG= T{ plot/iso 1 t`YWwI. 此行定义等比例图显示共振图的模态在100次的传递后。因为我们开始于随机数噪声,经过100步 E]1##6Ae 之后并未完全收敛,还有一些低阶的Hermite-gaussian模式存在。如果我们执行更多步计算,终究会得到期待的稳定高斯模态。 K(VW%hV1 执行此一档案只要输入read/disk resonator.inp就可执行刚才输入的指令 HTk\723Rdw 5/?P|T OxQYNi2 QQ:2987619807 N*_"8LIfi_
|