(* (mq 7{;7y
Demo for program"RP Fiber Power": thulium-doped fiber laser, O.7Q*^_
pumped at 790 nm. Across-relaxation process allows for efficient 5 pNbO[
population of theupper laser level. "yR56`=
*) !(* *)注释语句 5t6!K?}
)|>LSKTEl
diagram shown: 1,2,3,4,5 !指定输出图表 :tP:X+?O
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 '}a[9v76
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 ?!H<V@a
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 S>~QuCMY
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 ZyE2=w7n
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 Fs q=u-= :
8i!~w 7z
include"Units.inc" !读取“Units.inc”文件中内容 H \$04vkR
Jhbkp?Zli
include"Tm-silicate.inc" !读取光谱数据 ayfZ>x{s*
'L#qR)t
; Basic fiberparameters: !定义基本光纤参数 ?>lvV+3^`
L_f := 4 { fiberlength } !光纤长度 Wc4K?3 ZM
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 8+Lig
r_co := 6 um { coreradius } !纤芯半径 owA3>E5t&
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 jEBZ"Jvb
MRvtuE|g
; Parameters of thechannels: !定义光信道 {;4AdZk
l_p := 790 nm {pump wavelength } !泵浦光波长790nm ${n=1-SMU
dir_p := forward {pump direction (forward or backward) } !前向泵浦 l" y==y
P_pump_in := 5 {input pump power } !输入泵浦功率5W wAE,mw
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um Ya] qo]
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 l[]K5?AS>-
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 mq$mB1$3u
3 wVN:g7
l_s := 1940 nm {signal wavelength } !信号光波长1940nm n50XGv
w_s := 7 um !信号光的半径 KK-9[S-
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 ZVotIQ/Q'
loss_s := 0 !信号光寄生损耗为0 6T 2jVNg
&_
er_V~
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 WXj}gL`
[07N<<
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 SJ1
1LF3)
calc |Ia3b VW
begin 4VE7%.z+
global allow all; !声明全局变量 -d\O{{%>.z
set_fiber(L_f, No_z_steps, ''); !光纤参数 w5"C<5^
add_ring(r_co, N_Tm); wC@5[e$
def_ionsystem(); !光谱数据函数 T*>n
a8W
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 Sc
"J5^
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 ToIvyeFr
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 BsVUEF ,N
set_R(signal_fw, 1, R_oc); !设置反射率函数 uV<I!jyI
finish_fiber(); D%cWw0Oq
end; m3]|I(]`Xe
U6qv8*~
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 c8mcJAc
show "Outputpowers:" !输出字符串Output powers: ]X+3"
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) juuBLv
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) 0N.tPF}
E" iH$NN
"HFS5Bj'
; ------------- 1E!0N`E
diagram 1: !输出图表1 xKKL4ws
S1^u/$*6
"Powers vs.Position" !图表名称 dwks"5l
O4FW/)gq
x: 0, L_f !命令x: 定义x坐标范围 5,>1rd<B
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 ) F 6#n&2
y: 0, 15 !命令y: 定义y坐标范围 v=?U{{xQ
y2: 0, 100 !命令y2: 定义第二个y坐标范围 j.4oYxK!s/
frame !frame改变坐标系的设置 #V[?puE@
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) -CW&!oW
hx !平行于x方向网格 Lys4l$J]
hy !平行于y方向网格 k;:v~7VF
"Iu[)O%
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 p8y_uNQE
color = red, !图形颜色 +uW$/_Y$
width = 3, !width线条宽度 x Yr-,$/
"pump" !相应的文本字符串标签 I,Q"<?&
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 ,LZ6Wu$P
color = blue, jJl6H~
"q
width = 3, O!='U!X@P
"fw signal" |jm|/{lc
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 {
'Hi_b3
color = blue, 35Nwx<
style = fdashed, sd\>|N?'
width = 3, u814ZN}
"bw signal" R3F>"(P@tS
a_I!2w<I
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 Q^/5hA
yscale = 2, !第二个y轴的缩放比例 hu\HK81m
color = magenta, (r`+q[
width = 3, *Id$%O
style = fdashed, 2}]6~i
"n2 (%, right scale)" WZ5[tZf
~\/>b}^uf'
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 ?RvXO'm l
yscale = 2, Z$0r+phQk=
color = red, (6z^m?t?
width = 3, hNc;,13
style = fdashed, 1Nw&Z0MI
"n3 (%, right scale)" +V1EqC*
,5'LbO-
#/@U|g
; ------------- l?(nkg["nY
diagram 2: !输出图表2 dv-yZRU:
Jl&bWp^3
"Variation ofthe Pump Power" G;V@oT
@B
~![l
x: 0, 10 _~_04p
"pump inputpower (W)", @x ;_K+b,
y: 0, 10 Y32F{ z
y2: 0, 100 rwFR5
frame 8,YF>O&
hx i9k7rEW^
hy zc]F
legpos 150, 150 C=@BkneQ
KM4w{
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 #NNj#
step = 5, .=rv,PWjZ
color = blue, [e3|yE6
width = 3, L@S"c
(
"signal output power (W, leftscale)", !相应的文本字符串标签 5}9-)\8=z
finish set_P_in(pump, P_pump_in) [6 wI22
?1 r@r
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 <qZXpQ#
yscale = 2, B P"PUl:
step = 5, ]l+Bg;F#V
color = magenta, %9[GP7?
width = 3, Ol9U^
"population of level 2 (%, rightscale)", FFbMG:>:
finish set_P_in(pump, P_pump_in) >NB}Bc
*]z.BZI:
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 b@^M|h.Va
yscale = 2, '15j$q
step = 5, p]`pUw{
color = red, ]?-56c,
width = 3, vi4 1`
"population of level 3 (%, rightscale)", Y::fcMJr;Q
finish set_P_in(pump, P_pump_in) !W^2?pqN
7EY~5U/4
%2BFbaE
; ------------- 8 jqt=}b
diagram 3: !输出图表3 kBIF[.v(\
h\'GL(?DBI
"Variation ofthe Fiber Length" FO_nS
#lltXqvD?
x: 0.1, 5 U`FybP2R~
"fiber length(m)", @x FvG9PPd
y: 0, 10 [2 2IF
"opticalpowers (W)", @y *IGxa
frame Ou2H~3^PL
hx _I~TpH^1K
hy sl6p/\_w
Lj *FKP\{
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 <B`}18x
step = 20, 1a_;[.s
color = blue, +n,8o:fU:
width = 3, FPaj
p
"signal output" 1GOa'bxm
qqw6p j
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 IS&`O=7
step = 20, color = red, width = 3,"residual pump" l]WV?^*
6$ IXER
! set_L(L_f) {restore the original fiber length } ~(aq3ngo.
cD0
wrqdQ}@(
; ------------- yel>-=Vn
diagram 4: !输出图表4 sB0+21'R
C^nL{ZP,
"TransverseProfiles" *Z{$0K
WcH^bAY 6
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) [ R~+p#l+Q
+ W@r p#
x: 0, 1.4 * r_co /um ~|DF-t
V
"radialposition (µm)", @x V]q{N-Iq
y: 0, 1.2 * I_max *cm^2 ?b#?Vz
"intensity (W/ cm²)", @y QMtt:f]?i
y2: 0, 1.3 * N_Tm ATnD~iACY
frame ]2h[.qa
hx ^]U2Jd
hy d[~c-G6
J3:P/n&
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 am%qlN<
yscale = 2, g,,cV+
color = gray, \W=
width = 3, 7]nPWz1%*
maxconnect = 1, _Fz)2h,3
"N_dop (right scale)" I]k'0LG*^
gKYn*
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 o8s&n3mY}y
color = red, ~B=\![
maxconnect = 1, !限制图形区域高度,修正为100%的高度 2$\f !6p
width = 3, LL[+QcH
"pump" hJ}G5pX
G x,D'H'
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 +vU.#C_2
color = blue, 3_h%g$04s
maxconnect = 1, fLD9RZ8_
width = 3, dHp6G^Y
"signal" Y\op9Fw
|HG%o
3E]
e<p$Op
; ------------- ?-i|f_`
diagram 5: !输出图表5 [;?^DAnK2
Yt#($}p
"TransitionCross-sections" UoLO#C0i
>#q|Pjv]
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) ]$L[3qA.
?BLOc;I&a
x: 1450, 2050 3YLnh@-
"wavelength(nm)", @x JQtH},Tr
y: 0, 0.6 plf<O5'
"cross-sections(1e-24 m²)", @y VtKN{sSnu
frame xS(sR x+A
hx t&&OhHK
hy ':>B%k
*jJ62-o
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 H!Od.$ZIX
color = red, NNfCJ|
width = 3, v4v+;[a%
"absorption" S 5d{dTPq
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 uZYeru"w
color = blue, S1B/ClKWq
width = 3, c3}}cFe
"emission" sbs"26IE
S1+#qs{5a