(* Ssd7]G+n:
Demo for program"RP Fiber Power": thulium-doped fiber laser, wV q4DE
pumped at 790 nm. Across-relaxation process allows for efficient g$U7bCHG
population of theupper laser level. U]Fnf?(
*) !(* *)注释语句 _N"c,P0
&; [0.:;
diagram shown: 1,2,3,4,5 !指定输出图表 YK V"bI
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 eC='[W<a.
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 V!f'
O@p[
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 :+<GJj_d+
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 `08}y*E
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 r12e26_Ab
pnGDM)H7
include"Units.inc" !读取“Units.inc”文件中内容 (,['6k<
MC_i"P6a
include"Tm-silicate.inc" !读取光谱数据 `G2!{3UD
l(3\ekU!
; Basic fiberparameters: !定义基本光纤参数 PG*FIRDb
L_f := 4 { fiberlength } !光纤长度 -:Jn|=
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 x8Nij:K#
r_co := 6 um { coreradius } !纤芯半径 #{~3bgY
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 i%otvDn1
jN%+)Kj0C)
; Parameters of thechannels: !定义光信道 15cgmZsS
l_p := 790 nm {pump wavelength } !泵浦光波长790nm -v~XS-F
dir_p := forward {pump direction (forward or backward) } !前向泵浦 !}J19]\
P_pump_in := 5 {input pump power } !输入泵浦功率5W eR!K8W
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um q;<Q-jr&O
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 J1d|L|M
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 ;f[@zo><r
8]&lUMaqVZ
l_s := 1940 nm {signal wavelength } !信号光波长1940nm @l?2",
w_s := 7 um !信号光的半径 ,QHn} 3fW
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 J
Sms
\
loss_s := 0 !信号光寄生损耗为0 vb2aj!8_?
~c'R7E&Bfa
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 9S{?@*V
0hX@ta[Up
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 4(p,@e31
calc .GuZV'
begin l 5z8]/
global allow all; !声明全局变量 du^r EMb%
set_fiber(L_f, No_z_steps, ''); !光纤参数 V5]:^=
add_ring(r_co, N_Tm); ,CjJO -
def_ionsystem(); !光谱数据函数 3L%g2`
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 o88Dz}a
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 6N'HXL UlQ
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 ]]_H|tO
set_R(signal_fw, 1, R_oc); !设置反射率函数 vQL)I
finish_fiber(); 6 WEu(}=
end; ,E8~^\HV
$:<G=
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 0= -D
show "Outputpowers:" !输出字符串Output powers:
q
pFzK
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) ?p!+s96
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) *,p16"Q;
8A|i$#.&
21G:!t4/?n
; ------------- QLAyX*%B
diagram 1: !输出图表1 \ /6m
XrQS?D`
"Powers vs.Position" !图表名称 2`w\<h
oxL4* bqZ
x: 0, L_f !命令x: 定义x坐标范围 ! jb{q bq
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 pd
X"M>
y: 0, 15 !命令y: 定义y坐标范围 -~ycr[}x
y2: 0, 100 !命令y2: 定义第二个y坐标范围 /'0,cJnm
frame !frame改变坐标系的设置 Id'@!U:NA
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) X5eTj
hx !平行于x方向网格 5zsXqBG
hy !平行于y方向网格 $;t#pN/`
DwC8?s*2H
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 Zc57] ~
color = red, !图形颜色 'BwM{c-O"
width = 3, !width线条宽度 ,JmA e6
"pump" !相应的文本字符串标签 P1mPC
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 AAt<{
color = blue, ?#X`Eu
width = 3, #]5|Qhrr+
"fw signal" g_w4}!|
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 6'N!)b^-
color = blue, J#y?^Qm$)<
style = fdashed, 5-pz/%,
width = 3, O[fgn;@|
"bw signal" VClw!bm
GQ8r5V4:
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 .o5r;KD
yscale = 2, !第二个y轴的缩放比例 D;Jb'Be
color = magenta, g1`/xJz|
width = 3, ,/g\;#:{@]
style = fdashed, c=p @l<)
"n2 (%, right scale)" Cz_chK4
{1
94u%'
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 lYu1m
yscale = 2, hrRX=
color = red, ~f2zMTI|
width = 3, "@I"0OA
style = fdashed, 3f:I<S7
"n3 (%, right scale)" ~!!>`x
UI:{*N**Z
Th%1eLQ
; ------------- p=(;WnsK
diagram 2: !输出图表2 HH|&$C|64
tnmuCz
"Variation ofthe Pump Power" VQvl,'z
Yn}_"FO'
x: 0, 10 :*!u\lV \
"pump inputpower (W)", @x , &HZvU&
y: 0, 10 ?WX&,ew~
y2: 0, 100 BKm$H!u
frame f6Wu+~|Y
hx `8TM<az-L
hy [hS?d.D
legpos 150, 150 j]<T\O>t>
R6Cm:4m}I
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 )8yee~+TN
step = 5, #?i#q%q
color = blue, DwZt.*
width = 3, MOG[cp
"signal output power (W, leftscale)", !相应的文本字符串标签 ~&~%q u
finish set_P_in(pump, P_pump_in) D.<CkDB
j#U?'g
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 43-%")bH
yscale = 2, W&4`eB/4}
step = 5, 38Z"9
color = magenta, rA9x T`
width = 3, Em@h5V
"population of level 2 (%, rightscale)", h ;5
-X7
finish set_P_in(pump, P_pump_in) @WU_GQas3
,/W<E
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 4W.;p"S2
yscale = 2, g#_?Vxt
step = 5, %MP s}B
color = red, !r.}y|t?;
width = 3, p^YE"2 -
"population of level 3 (%, rightscale)", ;.W0Aa
finish set_P_in(pump, P_pump_in) Xt=&
_u;^w}0
}C7tlA8,7
; ------------- dtM@iDljj
diagram 3: !输出图表3 _T5~B"*
9zO3KT2
"Variation ofthe Fiber Length" ''BP4=r5n
! qcu-d5b
x: 0.1, 5 y=vH8D]%X
"fiber length(m)", @x YC=BP5^
y: 0, 10 Op)0D:BmR
"opticalpowers (W)", @y 6ddkUPTF
frame Z{p6Q1u
hx B@zJ\Ir[
hy f/;\/Q[Z7
I I>2\d|
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 R|+R4'
step = 20, i8B%|[nm
color = blue, F41!Dj7
width = 3, rY!uc!
"signal output" ZVp\5V*
GPR`=]n& &
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响
kw-/h+lG
step = 20, color = red, width = 3,"residual pump" fSqbGoIQ
NxXVW
! set_L(L_f) {restore the original fiber length } Msd!4TrBJ
YRp\#pVnZ
M@'V4oUz
; ------------- \aZ(@eF@@Q
diagram 4: !输出图表4 xD\Km>|i
@5?T]V g
"TransverseProfiles" rIb[gm)Rk
z)VIbEy
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) @i{JqHU"
)%y~{j+ M
x: 0, 1.4 * r_co /um +cV!=gDT
"radialposition (µm)", @x D`t e|K5
y: 0, 1.2 * I_max *cm^2 W;N/Y3Lb
"intensity (W/ cm²)", @y ?Nh%!2n
y2: 0, 1.3 * N_Tm {-Y_8@&