(* O4#zsr:"
Demo for program"RP Fiber Power": thulium-doped fiber laser, mR{0*<
pumped at 790 nm. Across-relaxation process allows for efficient A} "*`y
population of theupper laser level. +pV3.VMH0
*) !(* *)注释语句 p;H1,E:Re#
~cez+VQe
diagram shown: 1,2,3,4,5 !指定输出图表 \"*l:x-u
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 kOjq LA
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 W"0 #
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 E }yxF.
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 Rza\n8
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 {P3,jY^
f9rToH
include"Units.inc" !读取“Units.inc”文件中内容 ML]?`qv '
0O:TKgb&C.
include"Tm-silicate.inc" !读取光谱数据 OGVhb>LO1
W%wS+3Q/
; Basic fiberparameters: !定义基本光纤参数 X >**M
L_f := 4 { fiberlength } !光纤长度 z/ i3
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 Vz#cb5:g
r_co := 6 um { coreradius } !纤芯半径 `#UTOYx4
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 =1,g#HS
eu4x{NmQ
; Parameters of thechannels: !定义光信道 |p+VitM7
l_p := 790 nm {pump wavelength } !泵浦光波长790nm o+vf
dir_p := forward {pump direction (forward or backward) } !前向泵浦 FD6|>G
P_pump_in := 5 {input pump power } !输入泵浦功率5W PM|K*,3J
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um 8R
z=)J
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 "- Ns1A8
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 IS!+J.2
Y'Af I^K
l_s := 1940 nm {signal wavelength } !信号光波长1940nm #8RQ7|7b|
w_s := 7 um !信号光的半径 Zf"AqGP
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 9UwDa`^
loss_s := 0 !信号光寄生损耗为0 qB&*"gf
#"Zr#P{P
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 JrQN-e!
s 2$R2,
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 g&za/F
calc Oo0$n]*;W
begin E8nqExQ
global allow all; !声明全局变量 k-89(
set_fiber(L_f, No_z_steps, ''); !光纤参数 RsY<j& f
add_ring(r_co, N_Tm); -8o8lz
def_ionsystem(); !光谱数据函数 x88$#N>Q5
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 0Icyi#N
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 + ]__zm/^
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 N7E[wOP
set_R(signal_fw, 1, R_oc); !设置反射率函数 mA4v 4z
finish_fiber(); ,Bta)
end; mrJQB I+
a@7we=!
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 &3JbAJ|;X
show "Outputpowers:" !输出字符串Output powers: ~/NA?E-c
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) Wb|IWnH$
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) p$ko=fo-*_
b+C>p2 %
)O}x&@Q
; ------------- ^GbyA YEp
diagram 1: !输出图表1 $0 li"+
DB*IVg
"Powers vs.Position" !图表名称 $HH(8NoL
&o8\ $A
x: 0, L_f !命令x: 定义x坐标范围 n8iN/Y<%U
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 WOwIJrP
y: 0, 15 !命令y: 定义y坐标范围 5~sJ$5<,
y2: 0, 100 !命令y2: 定义第二个y坐标范围 XGUF9arN
frame !frame改变坐标系的设置 fEpY3od
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) T.{I~_
hx !平行于x方向网格 A$oYw(m#
hy !平行于y方向网格 N\vc<Zpn
sz)3
z
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 W<x2~HW(
color = red, !图形颜色 m xWaXb
width = 3, !width线条宽度 L7KHs'c*
"pump" !相应的文本字符串标签 R#r?<Ofw4
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 <y!BO
color = blue, jf})"fz-*
width = 3, -1< }_*
"fw signal" ~U^0z|.
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 "'PDreS
color = blue, _2TIan}
style = fdashed, BBp
Hp
width = 3, eAl&[_o|S
"bw signal" @z2RMEC~
H,uOshR
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 #v`G4d
yscale = 2, !第二个y轴的缩放比例 NZD
X93
color = magenta, p?!]sO1l
width = 3, *mBEF"
style = fdashed, beq)Frn^
"n2 (%, right scale)" Fc nR}TE
]{y ';MZ
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 8gx^e./
yscale = 2, #<?j784
color = red, ;hKn$' '
width = 3, e0hT
style = fdashed, ;`xu)08a
"n3 (%, right scale)" AQFx>:in
}XAoMp
ly{~X
; ------------- xR%CS`0R
diagram 2: !输出图表2 yP"_j&ef7
*{tJ3<t(1
"Variation ofthe Pump Power" =g&0CFF <
Nl(Aa5:!
x: 0, 10 HDC`g
"pump inputpower (W)", @x aEgzQono
y: 0, 10 `yxk
Sb
y2: 0, 100 FS20OD
frame ?49wq4L;a
hx - BocWq\
hy 7#<|``]zNf
legpos 150, 150 zKI(yC
CE?R/uNo{
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 jsL'O;K/
step = 5, z~X] v["d
color = blue, SR\#>Qwx_
width = 3, .Oim7JQ8
"signal output power (W, leftscale)", !相应的文本字符串标签 FS']3uJ/
finish set_P_in(pump, P_pump_in) +]AE}UXZoh
i1sc oxX3\
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 .2u %;)S
yscale = 2, Qs4Jl ;Y _
step = 5, yJgnw6>r2
color = magenta, 8Y4YE(x5
width = 3, [OMKk#vW
"population of level 2 (%, rightscale)", A]>0lB
finish set_P_in(pump, P_pump_in) bbnAF*7s8
&18} u~M
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 K;YK[M1!
yscale = 2, 4S9AXE6
step = 5, ] e&"CF
color = red, aeg5ij-]u@
width = 3, 5#iv[c
"population of level 3 (%, rightscale)", 9@^/ON\O
finish set_P_in(pump, P_pump_in) 0$P40 7
(D))?jnC
^&.F!
; ------------- (3_2h4O
diagram 3: !输出图表3 3J@#V '
56L>tP
"Variation ofthe Fiber Length" EI+.Q
4cs`R+]o
x: 0.1, 5 eyy&JjVs
"fiber length(m)", @x Kr8p:$D};
y: 0, 10 vL-%"*>v
"opticalpowers (W)", @y mWO=(}Fb\
frame lZb1kq%9g
hx Yr[1-Oy/k
hy dmf~w_(7
.*v8*8OJ&
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 [=XsI]B\
step = 20, 3"q%-M|+Q
color = blue, 0xH$!?{b
width = 3,
#p\sw
"signal output" Inr ~9hz
"WK.sBFz4
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 jb77uH_
step = 20, color = red, width = 3,"residual pump" Th@L68
{KODwP'~
! set_L(L_f) {restore the original fiber length } II),m8G
?2Bp^3ytJ
`qX'9e3VP+
; ------------- ^2Op?J
diagram 4: !输出图表4 LkJ3 :3O
!a?o9<V
"TransverseProfiles" As78yfK
-6Cxz./#yS
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) 5$N4<Lo7
-O -_F6p'D
x: 0, 1.4 * r_co /um {T=I~#LjMI
"radialposition (µm)", @x l HZf'P_Wx
y: 0, 1.2 * I_max *cm^2 V18w
"intensity (W/ cm²)", @y t t#M4n@
y2: 0, 1.3 * N_Tm T w/CJg
frame ()XL}~I{!A
hx UPLr[>Q#
hy d4gl V`%.
Z @j0J[s
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 {5_*tV<I
yscale = 2, Hn:%(Rg=aW
color = gray, CJ
KFNa
width = 3, bCc^)o/w
maxconnect = 1, hX~IZ((Hi8
"N_dop (right scale)" B*,9{ g0m/
%vyjn&13
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 R1A!ob
color = red, Dh J<\_;
maxconnect = 1, !限制图形区域高度,修正为100%的高度 e>"{nOY4
width = 3, hm?-QVRPV
"pump" ?I7%@x!+S
yS lN|8d
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 k1B7uA'h"G
color = blue, F y^!*M-
maxconnect = 1, BQt!L1))
width = 3, Kkdd }j
"signal" Z#MPlw0B
F|Jo|02
Pp#!yMxBr
; ------------- _ ?=bW
diagram 5: !输出图表5 1+Ja4`o,iS
Y~bp:FkS
"TransitionCross-sections" wGAN"K:e
[WC-EDO2lb
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) \)`\F$CF
0Tg/R4dI
x: 1450, 2050 CP/`ON
"wavelength(nm)", @x aCy2.Qn
y: 0, 0.6 W<k) '|
"cross-sections(1e-24 m²)", @y 8[
:FU
frame ,,b_x@y*
hx T? _$
hy 3| g'1X}
v"=^?5B
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 r'k-*I
color = red, 1% EIP-z
width = 3, 's!EAqCN
"absorption" ) Q]kUG#`
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 &+JV\
color = blue, GS \-
width = 3, }JAg<qy}
"emission" S\s1}`pNm
ub./U@1