切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2635阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2176
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* kQLT$8io  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, dXl]Pe|v  
    pumped at 790 nm. Across-relaxation process allows for efficient T tPr)F|  
    population of theupper laser level. q]TqI' o  
    *)            !(*  *)注释语句 cJ. 7Mt  
    \ZMP_UU(  
    diagram shown: 1,2,3,4,5  !指定输出图表 -j&Vtr  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 oE1M/*myS  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 ll%G!VR  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 &iNS?1a%f=  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 b0 &  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 Yrxk Kw#  
    !4t`Hv?'  
    include"Units.inc"         !读取“Units.inc”文件中内容 \]8VwsP  
    'd/*BjNp)  
    include"Tm-silicate.inc"    !读取光谱数据 Q ]"jD#F  
    ]boE{R!I  
    ; Basic fiberparameters:    !定义基本光纤参数 n3$gx,KL  
    L_f := 4 { fiberlength }      !光纤长度 \,R!S/R#  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 TGf;_)El  
    r_co := 6 um { coreradius }                !纤芯半径 qBYg[K>  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 mw4JQ\  
    *g_w I%l  
    ; Parameters of thechannels:                !定义光信道 hsz^rZ  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm :H?f*aw  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 'w.}2(  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W j0x5@1`6G  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um & fu z2xv  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 4&{!M _  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 PO o%^'(  
    E]1##6Ae  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm K(VW%hV1  
    w_s := 7 um                          !信号光的半径 HTk\723Rdw  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 IP ,.+:i  
    loss_s := 0                            !信号光寄生损耗为0 b+{r! D}~  
    'wvMH;}u  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 Jf_%<\ O  
    Nqc p1J"  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 mb1Vu  
    calc j (ygQ4T  
      begin CZ(`|;BC*  
        global allow all;                   !声明全局变量 ` 1+%}}!$u  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 u,o1{% O  
        add_ring(r_co, N_Tm); : @6mFTV  
        def_ionsystem();              !光谱数据函数 aGK@)&h$  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 -Sz_mr  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 Wp[9beI*M  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 o=_c2m   
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 !9]d |8!  
        finish_fiber();                                   | -+zofx  
      end; $UvPo0{  
    !^WHZv4  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 P!e=b-T  
    show "Outputpowers:"                                   !输出字符串Output powers: wL3,g2-L  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) <a|@t@R  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) I[D8""U  
    m`}{V5;  
    G1d(,4Xp  
    ; ------------- O/b+CSS1  
    diagram 1:                   !输出图表1 $1Z6\G O  
    A@$kLex  
    "Powers vs.Position"          !图表名称 rs]I  
    Ew$I\j*  
    x: 0, L_f                      !命令x: 定义x坐标范围 -RMi8{  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 VkZ.6kV  
    y: 0, 15                      !命令y: 定义y坐标范围 {( tHk_q  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 & mt)d  
    frame          !frame改变坐标系的设置 )`+YCCa6F  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) |"]PCb)!  
    hx             !平行于x方向网格 >jTp6tu,  
    hy              !平行于y方向网格 E[g*O5  
    vH[Pb#f-  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 jc:s` 4  
      color = red,  !图形颜色 R_N:#K.M  
      width = 3,   !width线条宽度 _#C()Ro*P  
      "pump"       !相应的文本字符串标签 gl7|H&&xV  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 X2yTlLdY  
      color = blue,     lAi2,bz"  
      width = 3, rHz||jjU  
      "fw signal" _}gtcyx  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 2+Rv{%  
      color = blue, T .n4TmF  
      style = fdashed, ;\{`Ci\  
      width = 3, '@=PGpRF  
      "bw signal"  P_Hv%g  
    6.c^u5;  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 /+|#^:@  
      yscale = 2,            !第二个y轴的缩放比例 1G^#q,%X_v  
      color = magenta, M(Zc^P}N  
      width = 3, OW@\./nM  
      style = fdashed, S\#17.=  
      "n2 (%, right scale)" D(]E/k@ ;~  
    ,"2TArC'z  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 J'T=q/  
      yscale = 2, `T&jPA9eY  
      color = red, y 1\'( 1  
      width = 3, p/ GVTf  
      style = fdashed, 6'-As= iw  
      "n3 (%, right scale)" .u z|/Zy  
    DN] v_u+}  
    ~AB*]Us  
    ; ------------- p&b5% 4P  
    diagram 2:                    !输出图表2 9KuD(EJS  
    tJ0NPI56yP  
    "Variation ofthe Pump Power" 2kh"8oQ  
    CH#k(sy  
    x: 0, 10 0JjUAxNq  
    "pump inputpower (W)", @x (eWPis[  
    y: 0, 10 $ &UZy|9  
    y2: 0, 100 PkuTg";  
    frame 60>.ul2  
    hx /j2H A^GT  
    hy Cb;WZ3HR  
    legpos 150, 150 9pKGr@&   
    #]Y>KX2HG  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 K }$&:nao  
      step = 5, e^1uVN  
      color = blue, u9qMqeF  
      width = 3, eD?3"!c!  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 9ooY?J  
      finish set_P_in(pump, P_pump_in) iEyeX0nm  
    R:aa+MX(1  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 J @IS\9O  
      yscale = 2, ;3eKqr0  
      step = 5, TI|/u$SJ<Z  
      color = magenta, 9LC&6Q5O&  
      width = 3, T1WWK'  
      "population of level 2 (%, rightscale)", w8Sv*K  
      finish set_P_in(pump, P_pump_in) "2ru7Y"  
    V~IIY B7  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 Fg]?zEa  
      yscale = 2, ^Q<mV*~  
      step = 5, k(VB+k"3  
      color = red, cZ8.TsI~  
      width = 3, xGk6n4Gg  
      "population of level 3 (%, rightscale)", R\3VB NX.g  
      finish set_P_in(pump, P_pump_in) _f0C Y"  
    ENVk{QE!  
    _*M42<wcO  
    ; ------------- CT a#Q,  
    diagram 3:                         !输出图表3 B5%n(,Lx  
    !%(h2]MQ  
    "Variation ofthe Fiber Length" T4/fdORS  
    T=f|,sK +7  
    x: 0.1, 5 Ga>uFb}W~  
    "fiber length(m)", @x C BYX]  
    y: 0, 10 oTjyN\?H  
    "opticalpowers (W)", @y 9# 4Y1LS)  
    frame <yA}i"-1W  
    hx :'L2J  
    hy F'}'(t+oAm  
    m><w0k?t  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 WUc#)EEM)  
      step = 20,             O)|P,?  
      color = blue, ~5 N)f UI\  
      width = 3, ,QIF &  
      "signal output" `A$!]&[~|  
    lT&wOm3  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 QS.>0i/7l  
       step = 20, color = red, width = 3,"residual pump" }kHdK vZ  
    +yob)%  
    ! set_L(L_f) {restore the original fiber length } \`<cH#  
    WO5O?jo'  
    n"PJ,ao  
    ; ------------- `N//A}9  
    diagram 4:                                  !输出图表4 >Hb^P)3  
    o{b=9-V  
    "TransverseProfiles" gF=jf2{YX  
    UV 4>N  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) gJiK+&8I  
    vr^~yEr  
    x: 0, 1.4 * r_co /um d,vNem-Z*L  
    "radialposition (µm)", @x /^{BUo  
    y: 0, 1.2 * I_max *cm^2 D-Vai#Cd  
    "intensity (W/ cm&sup2;)", @y ]r! >{  
    y2: 0, 1.3 * N_Tm #o/ H~Iv  
    frame ,d+fDmm3  
    hx qW:)!z3\  
    hy % }|cb7l  
    nMfFH[I4  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 -4rDbDsr  
      yscale = 2, g[ 0<m#"  
      color = gray, 1% F?B-k  
      width = 3, jCAC `  
      maxconnect = 1, >SN|?|2U/  
      "N_dop (right scale)" 4to% `)]  
    Sd/?&  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 H7U li]e3  
      color = red, ,oxcq?7#4  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 =(a1+. O  
      width = 3, xqXDxJlns  
      "pump" 5J)=}e  
    do-ahl,  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 o@]So(9f  
      color = blue, [XRCLi}  
      maxconnect = 1, [3l*F  
      width = 3, 6$a$K,dZ  
      "signal" _zt1 9%Wg  
    V@7KsB  
    +uWDP .  
    ; ------------- IEjP<pLe  
    diagram 5:                                  !输出图表5 jV#ahNq;  
    8zLY6@  
    "TransitionCross-sections" <H1 `  
    M<SdPC(+  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) Qu5UVjbE,  
    Qu=LnGo~P  
    x: 1450, 2050 G$'jEa<:u  
    "wavelength(nm)", @x SvN9aD1  
    y: 0, 0.6 9!9Z~ /*m  
    "cross-sections(1e-24 m&sup2;)", @y g-`~eG28D5  
    frame 2)#K+O3c  
    hx pME{jD  
    hy e__@GBG  
    E_F5(x SA  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 < v]3g  
      color = red, )&era ` e[  
      width = 3, P o jmC  
      "absorption" n .!Ym X4  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 |9"p|6G?B  
      color = blue, 87 }&`  
      width = 3, tt%MoQ)   
      "emission" 48|s$K^  
    lP Lz@Up~  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚