(* i7dDklj4
Demo for program"RP Fiber Power": thulium-doped fiber laser, t M5(&cQ!d
pumped at 790 nm. Across-relaxation process allows for efficient GIlaJ!/
population of theupper laser level. OG#^d5(
*) !(* *)注释语句 7b1
yF,N
w(HVC
diagram shown: 1,2,3,4,5 !指定输出图表 Ow-ejo
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 f?Ex$gnI
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 VY/r2o#
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 ,q*|R
O
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 (U5XB
[r_P
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 $idToOkw
M0m%S:2
include"Units.inc" !读取“Units.inc”文件中内容 ,8*A#cT
B
@yGnrfr
include"Tm-silicate.inc" !读取光谱数据 7'+`vt#E
J|xXo
; Basic fiberparameters: !定义基本光纤参数 9@t&jznt<
L_f := 4 { fiberlength } !光纤长度 ${Lrj}93
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 ,pcyU\68v
r_co := 6 um { coreradius } !纤芯半径 Fz8& Jn!
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 O#tmB?n*
->|eMV'd
; Parameters of thechannels: !定义光信道 =0e>'Iw2
l_p := 790 nm {pump wavelength } !泵浦光波长790nm Q-,
4
dir_p := forward {pump direction (forward or backward) } !前向泵浦 '5$: #|-
P_pump_in := 5 {input pump power } !输入泵浦功率5W 1mgw0QO
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um !o'a]8
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 ++2a xRl
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 1q'_J?Xmd
eI2041z
l_s := 1940 nm {signal wavelength } !信号光波长1940nm *)r_Y|vg
w_s := 7 um !信号光的半径 r(]Gd`]
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 \.P'8As
loss_s := 0 !信号光寄生损耗为0 qUe2(/TQu
/_<_X
7
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 "QfF]/:
(Vey]J
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 (|W6p%(
calc MXVCu"g%
begin (N}\Wft%
global allow all; !声明全局变量 -{3^~vW|<
set_fiber(L_f, No_z_steps, ''); !光纤参数 +SV!QMIg
add_ring(r_co, N_Tm); g3n>}\xG>
def_ionsystem(); !光谱数据函数 %Y`)ZKh
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 g7%vI8Y)@
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 )$Fw<;4
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 Z1H
set_R(signal_fw, 1, R_oc); !设置反射率函数 1%.CtTi
finish_fiber(); #!z'R20PH
end; wj$3L3
K(mzt[n(
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 Ejf>QIB
show "Outputpowers:" !输出字符串Output powers: ohXbA9&(x
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) MoC/xF&
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) eF8um$t9
VjSbx'i
: B/u>
; ------------- S r7EcT-
diagram 1: !输出图表1 az:lG(ZGw
A|L-;P NP
"Powers vs.Position" !图表名称 1eqFMf
e]jzFm~
x: 0, L_f !命令x: 定义x坐标范围 bir tA{q
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 mnMY)-6C
y: 0, 15 !命令y: 定义y坐标范围 >m9ge`!9
y2: 0, 100 !命令y2: 定义第二个y坐标范围 o AS 'Z|
frame !frame改变坐标系的设置 Lp||C@h~
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) =WOYZ7
hx !平行于x方向网格 +fF4]WFP
hy !平行于y方向网格 q|;+Wp?
D2Kh+~l
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 ]s_BOt
color = red, !图形颜色 Yi"jj;!^S
width = 3, !width线条宽度 IW|1)8d
"pump" !相应的文本字符串标签 wmv/?g
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 ! F&{I
color = blue, V,9UOC,Gn
width = 3, W{'tS{
"fw signal" -,xsUw4
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 Y'LIk Q\
color = blue, u-Ip *1/wp
style = fdashed, } SA/,4/9
width = 3, l3/?,xn
"bw signal" T xwZ3E
~_L_un.R
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 ;l b@o,R :
yscale = 2, !第二个y轴的缩放比例 ?<$DQ%bf
color = magenta, zwX1&rN
width = 3, *$7c||J7
style = fdashed, I%G6V
a@
"n2 (%, right scale)" au1(.(
3m`y?Dd
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 A=k{Rl{LA
yscale = 2, ?G!DYUK
color = red, :-.bXOB(
width = 3, Co>=<\yi
style = fdashed, Ih0kdi
"n3 (%, right scale)" ZA4vQDW
ugt|'i
>'lte&
; ------------- !n/"39KT
diagram 2: !输出图表2 X}3o
*]
cm{N
"Variation ofthe Pump Power" Xn3Ph!\Z5e
viY &D
x: 0, 10 [&
&9F};
"pump inputpower (W)", @x rt\4We,7
y: 0, 10 h{cJ S9e}
y2: 0, 100 j!P]xl0vOZ
frame sk_Q\0a
hx t|aBe7t7
hy $/Q*@4t
legpos 150, 150 Xj<B!Wn*Xb
l;SqjkN
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 TM|ycS'
step = 5, 8?O6IDeW
color = blue, 7,2bR
width = 3, R"=pAO.4l
"signal output power (W, leftscale)", !相应的文本字符串标签 dw!cDfT+
finish set_P_in(pump, P_pump_in) =X11x)]F9
sc^TElic
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 i7f/r.
yscale = 2, QuJ)WaJkC
step = 5, F\Gi;6a
color = magenta, PSQ5/l?\>
width = 3, b}9Ry"
"population of level 2 (%, rightscale)", Ln})\
UDK)
finish set_P_in(pump, P_pump_in) >I3#ALF
ayJKt03\O\
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 $!x8XpR8s
yscale = 2, L= fz:H
step = 5, :YU_ \EV
color = red, COa"zg
width = 3, #xS8
"population of level 3 (%, rightscale)", V\"x#uB
finish set_P_in(pump, P_pump_in) &!#a^d+` 0
,tZWPF-
$)M8@d
; ------------- /,z4tf
diagram 3: !输出图表3 mpBSd+;Z
geL)v7t+#
"Variation ofthe Fiber Length" <8>gb!D G
R;gN^Yjk:
x: 0.1, 5 < 6[XE
"fiber length(m)", @x 3EN?{T<yf
y: 0, 10 ~1Q$FgLk
"opticalpowers (W)", @y t%wC~1
frame wvum7K{tI
hx V6Y:l9
hy YT6<1-E#
pzP~,cdf
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 #N?EPV$
step = 20, s('<ms
color = blue, t8,s]I&
width = 3, pDO&I]S`q0
"signal output" E4aCL#}D
%:2<'s2Si
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 K%ltB&
step = 20, color = red, width = 3,"residual pump" , [xDNl[Y|
-9)<[>:
! set_L(L_f) {restore the original fiber length } _6"!y
]Q
j_VTa/
z^to"j
; ------------- ixZ w;+h
diagram 4: !输出图表4 Gk0f#;
<GI{`@5C
"TransverseProfiles" ;H5PiSq;z
Q<.847 )
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) <o8j+G)K#
j'#M'W3@
x: 0, 1.4 * r_co /um L,L>cmpM
"radialposition (µm)", @x M/XxiF
y: 0, 1.2 * I_max *cm^2 vq|o}6Et
"intensity (W/ cm²)", @y $bRakF1'S
y2: 0, 1.3 * N_Tm 3>Ts7
wM
frame B>}=x4-8
hx \*Roa&<!
hy `x2Q:&.H`
g/&`NlD
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 n$n)!XL/
yscale = 2, L|Zja*
color = gray, O)78
iEXi|
width = 3, G:NI+E"]
maxconnect = 1, hce *G@b
"N_dop (right scale)" qi7(RL_N
zrWkz3FN
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 1@*qz\ YY
color = red, og<mFbqkq7
maxconnect = 1, !限制图形区域高度,修正为100%的高度 AvF:$kG
width = 3, M8oCh
"pump" dYdZt<6W<(
:feU
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 Sq"O<FmI
color = blue, iq_y80g`8h
maxconnect = 1, RO(~c-fV
width = 3, B2\R#&X.
"signal" Ffxf!zS
=~M%zdIXv
5}d"nx
; ------------- }!=}g|z#|
diagram 5: !输出图表5 :td#zM
$\BRX\6(-
"TransitionCross-sections" [\(}dnj:
es}j6A1
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) =SJwCT0;
+L(0R&C
x: 1450, 2050 5g9lO]WDI
"wavelength(nm)", @x Q@B--Omfh
y: 0, 0.6 q3a`Y)aVB
"cross-sections(1e-24 m²)", @y HAa2q=
frame _&!%yW@
hx 6[g~p< 8n}
hy 6% +s`
ts
BPQ 8Ne
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 \LX!n!@
color = red, |DAe2RK
width = 3, KUs\7Sb
"absorption" !vNZ-}
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 jx _n$D
color = blue, Wez"E2J`
width = 3, r83chR9
"emission" N\ nr
,VK! 3$;|