切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2645阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2176
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* BKfoeN)%  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, Gr|102  
    pumped at 790 nm. Across-relaxation process allows for efficient _3m\r*(vmQ  
    population of theupper laser level. 1v9 #Fr Y  
    *)            !(*  *)注释语句 'Fa~l'G7X  
    O<+x=>_  
    diagram shown: 1,2,3,4,5  !指定输出图表 26-K:"  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 s,8g^aF4  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 A~ wVY  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 DP &*P/  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 oN.#q$\` k  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 K;~I ;G  
    %H7H0 %qW  
    include"Units.inc"         !读取“Units.inc”文件中内容 9y*pn|A[F  
    ?[hkh8|  
    include"Tm-silicate.inc"    !读取光谱数据 Y'x+! &H  
    6V @ [< d  
    ; Basic fiberparameters:    !定义基本光纤参数 0 t0m?rVW  
    L_f := 4 { fiberlength }      !光纤长度 HhT6gJWrU  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 R?J=5tO  
    r_co := 6 um { coreradius }                !纤芯半径 j<-YK4.t  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 &&|c-mD+*  
    f>ilk Q`  
    ; Parameters of thechannels:                !定义光信道 1y6{3AZm<  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm ;c0z6E /  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 t|cTl/i 4  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W Jrw R:_+|  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um Bpdx]5qfK  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 ]t.6bb4  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 JX2@i8[~  
    nCdxn#|  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm J+f*D+x1  
    w_s := 7 um                          !信号光的半径 DBZ^n9  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布  z-;{pPZ  
    loss_s := 0                            !信号光寄生损耗为0 4 JDk ()  
    ,I8[tiR"b  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 "' ]|o~B  
    = GZ,P (  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 LVxR *O  
    calc vC%8-;8{H  
      begin bv4G!21]*;  
        global allow all;                   !声明全局变量 ^Z:qlYZ  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 ^n<o,K4\}  
        add_ring(r_co, N_Tm); L [=JHW  
        def_ionsystem();              !光谱数据函数 SR*KZ1U  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 iCh,7I,m  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 @hj5j;NHK  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道  j#YPo  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 ?bH!|aW(H  
        finish_fiber();                                   <~-cp61z;  
      end; )XoIb[s"  
    VL| q`n  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 y-^m  
    show "Outputpowers:"                                   !输出字符串Output powers: .u$o^; z!  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) eaCh;IpIf  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) 4~mmP.c  
    PNhxF C.  
    y-#01Z  
    ; ------------- XmX{e.<NZ  
    diagram 1:                   !输出图表1 \ 3HB  
    y#)ad\  
    "Powers vs.Position"          !图表名称 [}Pi $at  
    !ui:0_  
    x: 0, L_f                      !命令x: 定义x坐标范围 M5T4{^i  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 'MY0v_  
    y: 0, 15                      !命令y: 定义y坐标范围 ~mK|~x01@  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 ZBl!7_[_  
    frame          !frame改变坐标系的设置 Vs@H>97,G  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) "=3bL>\<  
    hx             !平行于x方向网格 ud:5_*  
    hy              !平行于y方向网格 g]E>e v{`  
    |++\"g  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 \O(~:KN  
      color = red,  !图形颜色 Ue2%w/Yo  
      width = 3,   !width线条宽度 fH*1.0f]6  
      "pump"       !相应的文本字符串标签 #/LU@+  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率  Va3/#is'  
      color = blue,     Y]])Tq;h5  
      width = 3, {bD:OF  
      "fw signal" #f-pkeaeq  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 d@e2+3<  
      color = blue, +X|^ ~)tMJ  
      style = fdashed, \ICc?8oL  
      width = 3, q>Kzl/~c.P  
      "bw signal" @z1pE@7jK  
    9HBRWh6  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 B`?}jJa9*  
      yscale = 2,            !第二个y轴的缩放比例 &^1{x`Qo=  
      color = magenta, ~zph,bk  
      width = 3, d_aHUmI^"  
      style = fdashed, ~1.B fOR8  
      "n2 (%, right scale)" AOscewQ  
    $BUm,  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 y`8 bx94jB  
      yscale = 2, w$4*/D}Y  
      color = red, hG8<@  
      width = 3, EUjA-L(  
      style = fdashed, ?{rpzrc!*  
      "n3 (%, right scale)" wjc&S'[  
    M~,N~ N1  
    p`/c&}  
    ; ------------- @e:= D  
    diagram 2:                    !输出图表2 X(JE]6_  
    W\5PsGUsv  
    "Variation ofthe Pump Power" ckdXla  
    8Ai\T_l  
    x: 0, 10 $~)YI/b  
    "pump inputpower (W)", @x 8~ w P?  
    y: 0, 10 =>htX(k}  
    y2: 0, 100 eI3ZV^_Ps  
    frame  KGJ *h  
    hx Ci_Qra 6  
    hy i)th] 1K%  
    legpos 150, 150 H7dT6`<~Y  
    $(+#$F<eo+  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 14z ?X%  
      step = 5, Pmdf:?B  
      color = blue, Ld?'X=eQ  
      width = 3, |qz&d=>  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 = :BTv[lv  
      finish set_P_in(pump, P_pump_in) }*?,&9/_)  
    X+kgx!u'y  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 dCpDA a3  
      yscale = 2, 0)rayzv  
      step = 5, RmRPR<vGW  
      color = magenta, A~({vb'  
      width = 3, bCqTubbx!t  
      "population of level 2 (%, rightscale)", #7['M;_  
      finish set_P_in(pump, P_pump_in) ;cfPS  
    .,F`*JVFq  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 2{<o1x,Ym  
      yscale = 2, 'Y0h w  
      step = 5, .t7ME{  
      color = red, K.Tob,5`  
      width = 3, kgh0  
      "population of level 3 (%, rightscale)", M;9s  
      finish set_P_in(pump, P_pump_in) otbr8&?-  
    o3JSh=  
    :!ablO~  
    ; ------------- dngG=  
    diagram 3:                         !输出图表3 jss.j~8  
    Mj`g84  
    "Variation ofthe Fiber Length" \,ne7G21j  
    h"7~`!"~  
    x: 0.1, 5 0.)q5B`  
    "fiber length(m)", @x |k^C-  
    y: 0, 10 RT|1M"?$  
    "opticalpowers (W)", @y ;Z); k`j  
    frame #>6Jsnv1  
    hx 0D Lw  
    hy ,b4oV  
    25 cJA4  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 Z/czAr@4  
      step = 20,             G=]ox*BY  
      color = blue, 0S96x}]J B  
      width = 3, sI.p( -K Q  
      "signal output" e07u@_'^  
    05:?5M4};  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 k~F;G=P  
       step = 20, color = red, width = 3,"residual pump" U(Tl$#Bt  
    ;;6$d{  
    ! set_L(L_f) {restore the original fiber length } Kq5i8L=u  
    #Vu;R5GZ}  
    P\WFm   
    ; ------------- \SoT^PW  
    diagram 4:                                  !输出图表4 cyo[HI?WM  
    Fv*Et-8tN5  
    "TransverseProfiles" 33 ; '6/  
    &u~Pp=kv  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) et"Pb_-U  
    u=tp80_  
    x: 0, 1.4 * r_co /um TOhWfl;  
    "radialposition (µm)", @x mx#%oJnsi  
    y: 0, 1.2 * I_max *cm^2 C`R<55x6  
    "intensity (W/ cm&sup2;)", @y N\];{pe>  
    y2: 0, 1.3 * N_Tm \E[6wB>uN%  
    frame 9J?lNq  
    hx ,"Fl/AjO  
    hy Kv2S&P|jXM  
    s/B_  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 ~KRS0 ^  
      yscale = 2, @]]&^ 7  
      color = gray, g/_0WW]}  
      width = 3, R$+p4@?S  
      maxconnect = 1, jZC[_p;  
      "N_dop (right scale)"  "iR:KW@  
    T@*'}*  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 8N+T=c  
      color = red, =H3tkMoi2  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 j ijwHL  
      width = 3, 0ckmHv  
      "pump" r<4j;"lQK  
    fERO(o  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 Ctn 4q'Q  
      color = blue, UhrRB  
      maxconnect = 1, 5\= y9Z- x  
      width = 3, $8xb|S[  
      "signal" jJ-C\ v  
    oR,6esA+6n  
    zhm0 J-g  
    ; ------------- C<3<,~gI  
    diagram 5:                                  !输出图表5 -U\'Emu4  
    IxS%V31  
    "TransitionCross-sections" H%XF~tF:  
    Fe4>G8uuwn  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) i/skU9  
    Ix}6%2\  
    x: 1450, 2050 d$ n31F  
    "wavelength(nm)", @x )UM^#<-  
    y: 0, 0.6 \PUJD,9H  
    "cross-sections(1e-24 m&sup2;)", @y 8Y.9%@  
    frame K, I  
    hx mLpM8~L  
    hy KN[;z2i  
    KX]!yA  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 ]d-.Mw,'  
      color = red, * m^\&  
      width = 3, vXRY/Zzj1  
      "absorption" pmvd%X\f  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 -YAtM-VL  
      color = blue, ]/H6%"CTa  
      width = 3, gK9d `5  
      "emission" Qj;{Z*l%+  
    ,aLwOmO  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚