(* iW?z2%#
Demo for program"RP Fiber Power": thulium-doped fiber laser, .)g7s? K
pumped at 790 nm. Across-relaxation process allows for efficient 9Ai3p
population of theupper laser level. 17E,Qnf
*) !(* *)注释语句 <#ng"1J
3/{,}F$
diagram shown: 1,2,3,4,5 !指定输出图表 :
GdLr
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 O>@ChQF
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 V[;^{,;
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 $=9g,39
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 ,%T
sfB
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 <~bvfA=
6no&2a|D
include"Units.inc" !读取“Units.inc”文件中内容 l9Av@|
@hF$qevX
include"Tm-silicate.inc" !读取光谱数据 >^~W'etX|
PJ))p6
9
; Basic fiberparameters: !定义基本光纤参数 grxlGS~Q
L_f := 4 { fiberlength } !光纤长度 D & Bdl5g
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 8U)*kmq
r_co := 6 um { coreradius } !纤芯半径
Pb}Iiq=
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 mVd%sWD
ts/Ha*h
; Parameters of thechannels: !定义光信道 XS(Q)\"
l_p := 790 nm {pump wavelength } !泵浦光波长790nm S*NeS#!v
dir_p := forward {pump direction (forward or backward) } !前向泵浦 xU F5
P_pump_in := 5 {input pump power } !输入泵浦功率5W ?~3Pydrb#
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um 3rj7]:Vr
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 {nj`>
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 C <d]0)
-KL5sK
l_s := 1940 nm {signal wavelength } !信号光波长1940nm _Wtwh0[r*
w_s := 7 um !信号光的半径 no,b_0@N
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 2dCD.9s9~
loss_s := 0 !信号光寄生损耗为0 S=a>rnF
-`CE;
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 nC}Y+_wo0
P]0/ S
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 %$&_!
calc Ys>Z=Eky
begin .k"unclT0
global allow all; !声明全局变量 \gGTkH
set_fiber(L_f, No_z_steps, ''); !光纤参数 qK)T#sh
add_ring(r_co, N_Tm); f<;eNN
def_ionsystem(); !光谱数据函数 f_z]kA
+H
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 }2''}-Nc
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 C.RXQ`-P}
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 @6Z6@Pq(xQ
set_R(signal_fw, 1, R_oc); !设置反射率函数 .|i/
a%J
finish_fiber(); PQrc#dfc|
end; k !V@Q!>,
eWr2UXv$
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 r<[G~n
show "Outputpowers:" !输出字符串Output powers: 39bw,lRPV
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) Ae*
6&R4
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) "I
QM4:
PU-L,]K
q4SEvP}fLx
; ------------- 0*,]`A=
diagram 1: !输出图表1 m[nrr6 G"
hm0MO,i"
"Powers vs.Position" !图表名称 y9~:[ jB
K(AZD&D
x: 0, L_f !命令x: 定义x坐标范围 ;NF:98
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 Ud_0{%@
y: 0, 15 !命令y: 定义y坐标范围 {$I1(DYN
y2: 0, 100 !命令y2: 定义第二个y坐标范围
t;}`~B
frame !frame改变坐标系的设置 lv#L+}T
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) ;( (|0Xa
hx !平行于x方向网格 Q>I7.c-M|
hy !平行于y方向网格 Jo\karpb
F{E`MK~f_
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 C8O<fwNM
color = red, !图形颜色 p2hPLq
width = 3, !width线条宽度 3F$N@K~s
"pump" !相应的文本字符串标签 i)(-Ad_
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 %GGSd0
g
color = blue, jd.w7.8
width = 3, _QneaPm%
"fw signal" H#3Ma1z
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 [&)*jc16
color = blue, A]MX^eY
style = fdashed, IeAi '
width = 3, Nv=&gOy=
"bw signal" &kQj)
Qx8O&C?Ti
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 h>A~yDT[
yscale = 2, !第二个y轴的缩放比例 xmejoOF
color = magenta, w3M F62:
width = 3, F.AP)`6+*
style = fdashed, 4veXg/l
"n2 (%, right scale)" G[]h1f!
>VJ"e`
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 ,U>G$G^
yscale = 2, zqLOwzMlLx
color = red, Bqw/\Lxwlf
width = 3, -HRa6
style = fdashed, _$yS4= .
"n3 (%, right scale)" u179!
VuuF _y;
M
%!O)r#Pn
; ------------- MC1&X'
diagram 2: !输出图表2 zor
f.:0T&%G
"Variation ofthe Pump Power" PJAM_K;
[j?<&