切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2233阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2171
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* i7dDklj4  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, tM5(&cQ!d  
    pumped at 790 nm. Across-relaxation process allows for efficient GIlaJ!/  
    population of theupper laser level. OG#^d5(  
    *)            !(*  *)注释语句 7b1 yF,N  
    w (HVC  
    diagram shown: 1,2,3,4,5  !指定输出图表 Ow-ejo  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 f?Ex$gnI  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 VY/r2o#  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 ,q*|R O  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 (U5XB [r_P  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 $idToOkw  
    M0m%S:2  
    include"Units.inc"         !读取“Units.inc”文件中内容 ,8*A#cT B  
    @yGnrfr  
    include"Tm-silicate.inc"    !读取光谱数据 7'+`vt#E  
    J|xXo  
    ; Basic fiberparameters:    !定义基本光纤参数 9@t&jznt<  
    L_f := 4 { fiberlength }      !光纤长度 ${Lrj}93  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 ,pcyU\68v  
    r_co := 6 um { coreradius }                !纤芯半径 Fz8& Jn!  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 O#tmB?n*  
    ->|eMV'd  
    ; Parameters of thechannels:                !定义光信道 =0e>'Iw2  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm Q-, 4  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 '5$: #|-  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W 1mgw0QO  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um !o'a]8  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 ++2a xRl  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 1q'_J?Xmd  
    eI2041z  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm *)r_Y|vg  
    w_s := 7 um                          !信号光的半径 r(]Gd`]  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 \.P'8As  
    loss_s := 0                            !信号光寄生损耗为0 qUe2(/TQu  
    /_<_X 7  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 "QfF]/:  
    (Vey]J  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 (|W6p%(  
    calc MXVCu"g%  
      begin (N}\Wft%  
        global allow all;                   !声明全局变量 -{3^~vW|<  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 +SV!QMIg  
        add_ring(r_co, N_Tm); g3n>}\xG>  
        def_ionsystem();              !光谱数据函数 %Y`)ZKh  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 g7%vI8Y)@  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 )$Fw<;4  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道  Z1H  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 1%.CtTi  
        finish_fiber();                                   #!z'R20PH  
      end; wj$3 L3  
    K(mzt[n(  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 Ejf>QIB  
    show "Outputpowers:"                                   !输出字符串Output powers: ohXbA9&(x  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) MoC/xF&  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) eF 8um$t9  
    VjSbx'i  
    :B/u>  
    ; ------------- S r7EcT-  
    diagram 1:                   !输出图表1 az:lG(ZGw  
    A|L-;P NP  
    "Powers vs.Position"          !图表名称 1eqFMf  
    e]jzFm~  
    x: 0, L_f                      !命令x: 定义x坐标范围 bir tA{q  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 mnMY)-6C  
    y: 0, 15                      !命令y: 定义y坐标范围 > m9ge`!9  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 o AS 'Z|  
    frame          !frame改变坐标系的设置 Lp||C@h~  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) =WOYZ7  
    hx             !平行于x方向网格 +fF4]WF P  
    hy              !平行于y方向网格 q|;+Wp?  
    D2Kh+~l  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 ]s_BOt  
      color = red,  !图形颜色 Yi"jj;!^S  
      width = 3,   !width线条宽度 IW|1)8d  
      "pump"       !相应的文本字符串标签 wmv/ ?g  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 ! F&{I  
      color = blue,     V,9UOC,Gn  
      width = 3, W{'tS{  
      "fw signal" -,xsUw4  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 Y'LIk Q\  
      color = blue, u-Ip*1/wp  
      style = fdashed, } SA/,4/9  
      width = 3, l3/?,xn  
      "bw signal" T xwZ3E  
    ~_L_un.R  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 ;lb@o,R :  
      yscale = 2,            !第二个y轴的缩放比例 ?< $DQ%bf  
      color = magenta, zw X 1&rN  
      width = 3, *$ 7c||J7  
      style = fdashed, I%G6V a@  
      "n2 (%, right scale)" au1(.(  
    3m`y?Dd  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 A =k{Rl{LA  
      yscale = 2, ?G!DYUK  
      color = red, :-.bXOB(  
      width = 3, Co>=<\yi  
      style = fdashed, Ih0kd i  
      "n3 (%, right scale)" ZA4vQDW  
    ugt|'i  
    >'lte&  
    ; ------------- !n/"39KT  
    diagram 2:                    !输出图表2 X}3o  
    *] cm{N  
    "Variation ofthe Pump Power" Xn3Ph!\Z5e  
    v iY&D  
    x: 0, 10 [& &9F};  
    "pump inputpower (W)", @x rt\4We,7  
    y: 0, 10 h{cJ S9e}  
    y2: 0, 100 j!P]xl0vOZ  
    frame s k_Q\0a  
    hx t|aBe7t7  
    hy $/Q*@4t  
    legpos 150, 150 Xj<B!Wn*Xb  
    l;SqjkN  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 TM|ycS'  
      step = 5, 8?O6IDeW  
      color = blue, 7,2bR  
      width = 3, R"=pAO.4l  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 dw!cDfT+  
      finish set_P_in(pump, P_pump_in) =X11x)]F9  
    sc^TElic  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 i 7 f/r.  
      yscale = 2, QuJ)WaJkC  
      step = 5, F\Gi;6a  
      color = magenta, PSQ5/l?\>  
      width = 3, b}9Ry"  
      "population of level 2 (%, rightscale)", Ln})\ UDK)  
      finish set_P_in(pump, P_pump_in) >I3#ALF  
    ayJKt03\O\  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 $!x8XpR8s  
      yscale = 2, L= fz:H  
      step = 5, : YU_ \EV  
      color = red, COa"zg  
      width = 3,  # xS8  
      "population of level 3 (%, rightscale)", V\"x#uB  
      finish set_P_in(pump, P_pump_in) &!#a^d+` 0  
    ,tZWPF-  
    $)M8@d  
    ; ------------- /,z4tf  
    diagram 3:                         !输出图表3 mpBSd+ ;Z  
    geL)v7t+#  
    "Variation ofthe Fiber Length" <8>gb!DG  
    R;gN^Yjk:  
    x: 0.1, 5 < 6[XE  
    "fiber length(m)", @x 3EN?{T<yf  
    y: 0, 10 ~1Q$FgLk  
    "opticalpowers (W)", @y t%wC~1  
    frame wvum7K{tI  
    hx V6Y:l9  
    hy YT6<1-E#  
    pzP~,cdf  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 #N?EPV$  
      step = 20,             s('<ms  
      color = blue, t8,s]I&  
      width = 3, pDO&I]S`q0  
      "signal output" E4aCL#}D  
    %:2<'s2Si  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 K%ltB&  
       step = 20, color = red, width = 3,"residual pump" , [xDNl[Y|  
    -9)<[>:  
    ! set_L(L_f) {restore the original fiber length } _ 6"!y ]Q  
    j_VTa/  
    z^to"j  
    ; ------------- ixZ w;+h  
    diagram 4:                                  !输出图表4 Gk0f#;  
    <GI{`@5C  
    "TransverseProfiles" ;H5PiSq;z  
    Q<.84 7 )  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) <o8j+G)K#  
    j'#M'W3@  
    x: 0, 1.4 * r_co /um L, L>cmpM  
    "radialposition (µm)", @x M/XxiF  
    y: 0, 1.2 * I_max *cm^2 vq|o}6Et  
    "intensity (W/ cm&sup2;)", @y $bRakF1'S  
    y2: 0, 1.3 * N_Tm 3>Ts7 wM  
    frame B>}=x4-8  
    hx \*Ro a&<!  
    hy `x2Q:&.H`  
    g/&`NlD  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 n$n)!XL/  
      yscale = 2, L|Zja*  
      color = gray, O)78 iEXi|  
      width = 3, G:NI+E"]  
      maxconnect = 1, hce *G@b  
      "N_dop (right scale)" qi7(RL_N  
    zrWkz3FN  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 1@*qz\ YY  
      color = red, og<mFbqkq7  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 AvF:$ kG  
      width = 3, M8 oCh  
      "pump" dYdZt<6W<(  
     :feU  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 Sq"O<FmI  
      color = blue, iq_y80g`8h  
      maxconnect = 1, RO(~c-fV  
      width = 3, B2\R#&X.  
      "signal" Ff xf!zS  
    =~M%zdIXv  
    5}d"nx  
    ; ------------- }!=}g|z#|  
    diagram 5:                                  !输出图表5 :td#zM  
    $\BRX\6(-  
    "TransitionCross-sections" [\(}dnj:  
    es}j6A1  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) =SJwCT0;  
    +L(0R&C  
    x: 1450, 2050 5g9lO]WDI  
    "wavelength(nm)", @x Q@B--Omfh  
    y: 0, 0.6 q3a`Y)aVB  
    "cross-sections(1e-24 m&sup2;)", @y HAa2q=  
    frame _&!%yW@  
    hx 6[g~p< 8n}  
    hy 6%  +s`  
    ts BPQ 8Ne  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 \LX!n!@  
      color = red, |DAe2RK  
      width = 3, KUs\7Sb  
      "absorption" !vNZ- }  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 jx_n$D  
      color = blue, Wez"E2J`  
      width = 3, r83chR9  
      "emission" N\ nr  
    ,VK! 3$;|  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚