(* wPX^P
Demo for program"RP Fiber Power": thulium-doped fiber laser, +cbF$,M4
pumped at 790 nm. Across-relaxation process allows for efficient YG /@=Z.
population of theupper laser level. G`;\"9t5h
*) !(* *)注释语句 dBwoAq`'
uq/Fapl
diagram shown: 1,2,3,4,5 !指定输出图表 :`4F0
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 ftKL#9,s(
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 Dlpmm2
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 +f%"O?
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 }g@
'^v
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 w+r).PS}C
r\cY R}v
include"Units.inc" !读取“Units.inc”文件中内容 {\vVzy,t7
x4/{XRQ
include"Tm-silicate.inc" !读取光谱数据 6$0<&')Yb
3 yw$<lm
; Basic fiberparameters: !定义基本光纤参数 oaZdvu@y
L_f := 4 { fiberlength } !光纤长度 UCXRF
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 |Y8}*C\M.h
r_co := 6 um { coreradius } !纤芯半径 5F!Qn\{u{
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 w3 kkam"
R(*t1R\
; Parameters of thechannels: !定义光信道 1Q!kk5jE
l_p := 790 nm {pump wavelength } !泵浦光波长790nm lT*@f39~g
dir_p := forward {pump direction (forward or backward) } !前向泵浦 rHM^_sYRb
P_pump_in := 5 {input pump power } !输入泵浦功率5W ZyDNtX%
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um a]Pw:lT
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 a#{"3Z2|
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 {6WG
73]8NVm
l_s := 1940 nm {signal wavelength } !信号光波长1940nm yXoNfsv
w_s := 7 um !信号光的半径 E
.28G2&
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 }*U|^$FEU
loss_s := 0 !信号光寄生损耗为0 ;c>"gW8
k s\q^ten
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 3y+~l
H:
x=IZ0@p
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 i39ZBs@
calc ?wv^X`Q*~
begin qH5nw}]
global allow all; !声明全局变量 z HvE_-
set_fiber(L_f, No_z_steps, ''); !光纤参数 $,J0) ~
add_ring(r_co, N_Tm); h`n '{s
def_ionsystem(); !光谱数据函数 G<=I\T'g;
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 c|JQ0] K
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 !tt 8-Y)i
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 qHp2;
set_R(signal_fw, 1, R_oc); !设置反射率函数 :o~'\:/
finish_fiber(); C0KFN
end; b_ak@LYiu
{lH'T1^m
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 iLIb-d?!a&
show "Outputpowers:" !输出字符串Output powers: j6EF0/_|e
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) x s\<!
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) X'<RqvDc5
$~G5s<r
_B#x{ii
; ------------- fv#ov+B
diagram 1: !输出图表1 YJMs9X~3
R6BbkYWrX
"Powers vs.Position" !图表名称 BO4;S/ O
wM4{\ f\
x: 0, L_f !命令x: 定义x坐标范围 v@ OELJX
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 .%{B=_7
y: 0, 15 !命令y: 定义y坐标范围 Wz=&
0>Mm_
y2: 0, 100 !命令y2: 定义第二个y坐标范围 Pg8boN]}
frame !frame改变坐标系的设置 3o[(pfcU
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) _hyqHvP
hx !平行于x方向网格 z[1uub,)1
hy !平行于y方向网格 $*G3'G2'iS
>;1w-n
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 y>x"/jzF#
color = red, !图形颜色 ]
1pIIX}
width = 3, !width线条宽度 i8k} B
o
"pump" !相应的文本字符串标签 ]|eMEN['
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 dp^PiyL
color = blue, d@g2 9rs
width = 3, gJX"4]Ol#}
"fw signal" q[VQ?b~9
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 oNe:<YT
color = blue, b#p0s?*
style = fdashed, $3l#eKZA
width = 3, v5L+B`~
"bw signal" a'|]_`36x
U5N |2
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 S$hxR
yscale = 2, !第二个y轴的缩放比例 ^8~TsK~
color = magenta, P8ej9ULX,
width = 3, { 22ey`@`h
style = fdashed, PvV\b<Pe+
"n2 (%, right scale)" .eg'Z@o
_g/d/{-{Q
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 Bj2iYk_cLa
yscale = 2, }wn|2K'
color = red, YToG'#qs
width = 3, zeQ~'ao<
style = fdashed, q6$6:L,<
"n3 (%, right scale)" 1}|y^oB\-
]^.`}Y=`g
#&IrCq+
; ------------- Cj3Xp~
diagram 2: !输出图表2 (*\&xRY|C
w^&UMX}
"Variation ofthe Pump Power" `Zo5!"'
nbP}a?XC
x: 0, 10 _ymSo`IvR
"pump inputpower (W)", @x +qjZ;5(
y: 0, 10 eWm'eO
y2: 0, 100 y~#5!:Be
frame ag:<%\2c
hx :RB7#v={
hy KYB3n85 1
legpos 150, 150 2i!R>`
i: UN
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 1_LKqBgo
step = 5, 7mi*#X}
color = blue, vFJ4`Gjw(
width = 3, dfVI*5[Z
"signal output power (W, leftscale)", !相应的文本字符串标签 _?{KTgJ G
finish set_P_in(pump, P_pump_in) {)r[?%FMgV
OI)k0t^;D
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响
b}7g>
yscale = 2, h6LjReNo
step = 5, : ciwh
color = magenta, wd|^m%
width = 3, ^8oN~HLZ
"population of level 2 (%, rightscale)", ZUB]qzmK
finish set_P_in(pump, P_pump_in) *B&i `tq
Y(rQ032s
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 x?{l<mc
yscale = 2, rS\mFt X
step = 5, u];\v%b
color = red, >/C,1}p[
width = 3, M-QQ
"population of level 3 (%, rightscale)", :X9;KoJl-V
finish set_P_in(pump, P_pump_in) <]S
M$)=D
o%]b\Vl6
&JLKHwi/
; ------------- mp(:D&M
diagram 3: !输出图表3 T^|6{ S\
Q"pZPpl&
"Variation ofthe Fiber Length" ri"=)]
5 YIk
x: 0.1, 5 6S%KUFB+e
"fiber length(m)", @x 65&+Fv
y: 0, 10 p'/%"
"opticalpowers (W)", @y #CeWk$)m
frame S,+|A)\#
hx Vz,"vBds
hy 9ys[xOh
WM
UG}"OBg/
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 fEK%)Z:0
step = 20, xWQQX
color = blue, gY-}!9kW]
width = 3, 8.`5"9Vh
"signal output" Jn0L_@
i2O$oHd
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 i"!j:YEo
step = 20, color = red, width = 3,"residual pump" czo*_q%
V,tYqhQ3
! set_L(L_f) {restore the original fiber length } XHuHbriI
^jo*e,y:
Z79Y$d>G<E
; ------------- A sf]sU..
diagram 4: !输出图表4 Rwmr [g
.#e?[xxk
"TransverseProfiles" b Oh[(O!
hdH-VR4
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) .YS48 c
_32 o7}!x
x: 0, 1.4 * r_co /um
5&U?\YNLa
"radialposition (µm)", @x olDzmy(=W*
y: 0, 1.2 * I_max *cm^2 NydoX9
"intensity (W/ cm²)", @y #k)J);&ZA
y2: 0, 1.3 * N_Tm 98l-
frame ^zS|O]Tx
hx (TGG?V
hy VelX+|w
#5IfF~*i
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 D
z>7.'3
yscale = 2, ,n{|d33
color = gray, M059"X="
width = 3, hKK"D:?PRs
maxconnect = 1, 1,G f;mcQ
"N_dop (right scale)" yD&UH_ 1g
b;(BMO,(
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 M*jn8OE
color = red, 1FEY&rpR
maxconnect = 1, !限制图形区域高度,修正为100%的高度 qc^qCGy!z
width = 3, ivl_=
"pump" h IUO=f
Zo5.Yse
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 &uTK@ G+
color = blue, o{
\r1<D
maxconnect = 1, jP"='6Vrw
width = 3, 2Yd;#i)
"signal" IY9##&c3>
ww{07g
(V+iJ_1g{
; ------------- v4x1=E
diagram 5: !输出图表5 SE!0f&
baM@HpMhM
"TransitionCross-sections" tJY3k$YX
|/35c0IM
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) Kkds^v6
7
S2QTRvH
x: 1450, 2050 Jq?"?d|:
"wavelength(nm)", @x !+I!J
s"
y: 0, 0.6 .Cf`D tK
"cross-sections(1e-24 m²)", @y !|S{e^WhbU
frame FY;R0+N
hx L9)nRV8
hy 4~/3MG
;v1&Rs
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 h/n&&J
color = red, Vnq&lz%QqC
width = 3, |\~!oN
"absorption" 2f$6}m'Ad
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 G+xdh
color = blue, o}K!p%5_
width = 3, :vJ0Ypz-u
"emission" j5>3Td.
v81H!c.*