切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2545阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2176
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* O[X*F2LC4  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, AvL /gt:  
    pumped at 790 nm. Across-relaxation process allows for efficient BD6!,  
    population of theupper laser level. Y A.&ap  
    *)            !(*  *)注释语句 {uDW<u_!  
    hzD)yf  
    diagram shown: 1,2,3,4,5  !指定输出图表 #1YMpL  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 gI:g/ R  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 t Cuvb  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 *h^->+0n  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 &oL"AJU  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 N2h5@*1Y  
    qxRsq&_  
    include"Units.inc"         !读取“Units.inc”文件中内容 YznL+TD  
    32GI+NN  
    include"Tm-silicate.inc"    !读取光谱数据 %PW-E($o<  
    mR}8}K]L  
    ; Basic fiberparameters:    !定义基本光纤参数 ,>|tQ'  
    L_f := 4 { fiberlength }      !光纤长度 01Jav~WR  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 Kq7r+ A  
    r_co := 6 um { coreradius }                !纤芯半径 <Qq {&,Le  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 )Rr6@o  
    #rHMf%0  
    ; Parameters of thechannels:                !定义光信道 ~B<\#oO  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm v}>g* @  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 O"9t,B>=i  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W }$?FR  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um )\U:e:Zae  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 =B&|\2`{)  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 ?[Yn<|  
    6O4 *OR<&  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm Y XhZWo{B  
    w_s := 7 um                          !信号光的半径 p{?duq=  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 V``|<`!gd  
    loss_s := 0                            !信号光寄生损耗为0 St;9&A  
    /X8a3Eqp9  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 1I;q@g0  
    GzEw~JAs  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 V7$ m.P#uM  
    calc j)i c7 b  
      begin Vy& X1lG:  
        global allow all;                   !声明全局变量 f:j:L79}  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 P IG,a~  
        add_ring(r_co, N_Tm); (~|)Gmq2  
        def_ionsystem();              !光谱数据函数 \:'GAByy  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 j ,rc9  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 oy[s])Tg  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 Zl_sbIY  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 5|0}bv O  
        finish_fiber();                                   n%r>W^2j  
      end; '[r:pwE  
    _d!sSyk`  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 U& GPede  
    show "Outputpowers:"                                   !输出字符串Output powers: Vc\g"1 x  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) CfOyHhhKX  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) m.P F'_)/  
    b'( AVA  
    2tU3p<[  
    ; ------------- 'q}Ud10c  
    diagram 1:                   !输出图表1 yCz"~c  
    &"u(0q  
    "Powers vs.Position"          !图表名称 n6[shXH  
    hGFi|9/-u  
    x: 0, L_f                      !命令x: 定义x坐标范围 !fs ~ >  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 iBWzxPv:z  
    y: 0, 15                      !命令y: 定义y坐标范围 s=$xnc}mf  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 CCpRQKb=  
    frame          !frame改变坐标系的设置 M_O$]^I3w  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) l>jrY1u  
    hx             !平行于x方向网格 Q3=X#FQ  
    hy              !平行于y方向网格 +R?E @S  
    [,&g46x22  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 ?Gf'G{^}  
      color = red,  !图形颜色 X6sZwb  
      width = 3,   !width线条宽度 B^19![v3T  
      "pump"       !相应的文本字符串标签  H#F"n"~$  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 qY&(O`?m&  
      color = blue,     H!NGY]z*  
      width = 3, E.yFCaL  
      "fw signal" tL&_@PD)3  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 -/3h&g  
      color = blue, nUY)Ln I  
      style = fdashed, E; yr46  
      width = 3, ZyDf@(z`  
      "bw signal" 6n:X p_yO  
    -X*.scw  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 va~:Ivl-)  
      yscale = 2,            !第二个y轴的缩放比例 2SC'Z>A  
      color = magenta, ]Y & 2&  
      width = 3, Y&VypZ"G>  
      style = fdashed, AU*]D@H  
      "n2 (%, right scale)" dyqk[$(  
    HH*,Oe   
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 :wzbD,/M  
      yscale = 2, YTgT2w  
      color = red, =PU@'OG  
      width = 3, (3 ,7  
      style = fdashed, [)Ia Xa  
      "n3 (%, right scale)" ;J?fK69%  
    +vFqHfmP  
    NgGpLdaC2v  
    ; ------------- kPEU}Kv  
    diagram 2:                    !输出图表2 a Sm</@tO&  
    i(u zb<  
    "Variation ofthe Pump Power" C#&b`  
    hAi'|;g  
    x: 0, 10 ,0L< wa  
    "pump inputpower (W)", @x .>`7d=KT  
    y: 0, 10 O[ans_8  
    y2: 0, 100 uxrNkZia  
    frame T~>&m~} +  
    hx *nM.`7g*[  
    hy 4J[bh  
    legpos 150, 150 cP21x<n  
    _qit$#wK;  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 X7aj/:fXe  
      step = 5, Yk4ah$}%-^  
      color = blue, RXPl~]k#i  
      width = 3, Xp^>SSt:4  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 )sEAP Ika  
      finish set_P_in(pump, P_pump_in) (ds*$]  
    XF4NRs  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 7")&njQ/x  
      yscale = 2, i;)r|L `V?  
      step = 5, Qe<c@i"  
      color = magenta, oRn5blj  
      width = 3, 5OFb9YX  
      "population of level 2 (%, rightscale)", Z${@;lgP  
      finish set_P_in(pump, P_pump_in) KbRKPA`  
    ht)KS9Xu  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 ]o8~b-  
      yscale = 2, 87V XVI  
      step = 5, Z=?qf$.}  
      color = red, !hPe*pPVV)  
      width = 3, g.EKdvY"%H  
      "population of level 3 (%, rightscale)", T/7[hj  
      finish set_P_in(pump, P_pump_in) [h :FJ  
    l5k]voG  
    !P)7t`X  
    ; ------------- TLzcQ|  
    diagram 3:                         !输出图表3 {Q L qf   
    PI" )^`  
    "Variation ofthe Fiber Length" wa9{Q}wSa  
    In4T`c?kQ  
    x: 0.1, 5 > cJX'U9  
    "fiber length(m)", @x @l2AL9z$m>  
    y: 0, 10 jr5x!@rb  
    "opticalpowers (W)", @y =HvLuVc  
    frame _bq2h%G=8  
    hx @*LESN>T@t  
    hy xZ"kJ'C4}  
    Q ?W6  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 w3IU'(|G  
      step = 20,             $VJ=A<  
      color = blue, )@YrHS4  
      width = 3, D#9W [6  
      "signal output" 0g(hY:  
    4a~9?}V:  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 IF*kLl?  
       step = 20, color = red, width = 3,"residual pump" tU7eW#"w  
    !*xQPanL  
    ! set_L(L_f) {restore the original fiber length } <tTn$<b  
    KH&xu,I  
    , v6[#NU_Z  
    ; ------------- PFIL)D |G  
    diagram 4:                                  !输出图表4 L``K. DF  
    WaWx5Fx+  
    "TransverseProfiles" G#0 4h{  
    Xl%&hM  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) tL4xHa6v]  
    WYE[H9x1?  
    x: 0, 1.4 * r_co /um "mE<r2=@  
    "radialposition (µm)", @x p.1|bXY`  
    y: 0, 1.2 * I_max *cm^2 :FdV$E]]<  
    "intensity (W/ cm&sup2;)", @y $NWI_F4  
    y2: 0, 1.3 * N_Tm NC2PW+(  
    frame |v{ a5|<E  
    hx T3{qn$t8  
    hy 2S8/ lsB  
    )P.|Xk:r  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 z|yC[ Ota  
      yscale = 2, GRj{*zs  
      color = gray, |^@TA=_  
      width = 3, VG\ER}s&P  
      maxconnect = 1, G\IH b |  
      "N_dop (right scale)" fr\UX}o  
    >[Q(!Ai  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 .|{*.YE  
      color = red, &e% y|{Y  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 TaB35glLY  
      width = 3, BZx#@356N  
      "pump" 58MBG&a%  
    *Qg/W? "m  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 I\DT(9 'E  
      color = blue, ou-5iH?  
      maxconnect = 1, 5R,/X  
      width = 3, `&>!a  
      "signal" eA_1?j]E3  
    !H,R$3~  
    Ty]CdyL$  
    ; ------------- `pN]Ykt  
    diagram 5:                                  !输出图表5 h_d!G+-]  
    8F4#E U  
    "TransitionCross-sections" \"PlM!0du  
    DjL(-7'p  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) /sdkQ{J!.  
    F{f "xM  
    x: 1450, 2050  ;nv4lxm  
    "wavelength(nm)", @x |g 4!Yd  
    y: 0, 0.6 >1mCjP  
    "cross-sections(1e-24 m&sup2;)", @y P67r+P,  
    frame })bTQj7  
    hx Ctt{j'-[  
    hy F+Lq  
    K#F~$k|1B  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 I[<C)IG  
      color = red, vC J  
      width = 3, X'[S Cs  
      "absorption" [N#2uo  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 FK={ %  
      color = blue, [>?B`1;@  
      width = 3, FJ>| l#nO  
      "emission" -\>Bphu,y  
    +\.gdL)  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚