(* QII>XJ9
Demo for program"RP Fiber Power": thulium-doped fiber laser, il:+O08_
pumped at 790 nm. Across-relaxation process allows for efficient d~.#K S
population of theupper laser level. -q-%)f
*) !(* *)注释语句 RNm/&F1C$
/ZAEvdO*P
diagram shown: 1,2,3,4,5 !指定输出图表 xEbcF+@
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 ](%-5G1<
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 HbCM{A9
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 Jr#ptf"Wu
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 grv 3aa@
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 ZVI.s U
`TAhW
include"Units.inc" !读取“Units.inc”文件中内容 .rwZ`MP
6}[W%S]8
include"Tm-silicate.inc" !读取光谱数据 ?:UDK?
ETYw
; Basic fiberparameters: !定义基本光纤参数 ,KZ_#9[>
L_f := 4 { fiberlength } !光纤长度 ;hRo}
+\l
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 1,Y-_e)
r_co := 6 um { coreradius } !纤芯半径 L>cTI2NB.
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 ZVeY`o(uE
ZU/6#pb
; Parameters of thechannels: !定义光信道 $LKniK
l_p := 790 nm {pump wavelength } !泵浦光波长790nm |',MgA
dir_p := forward {pump direction (forward or backward) } !前向泵浦 S?;&vs9j
P_pump_in := 5 {input pump power } !输入泵浦功率5W vX&Nh"0H&
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um SeKU?\
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 {G_ZEo#x8,
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 K
o,O!T.
5r@x$* >e
l_s := 1940 nm {signal wavelength } !信号光波长1940nm u PjJ>v
w_s := 7 um !信号光的半径 FhW\23OC
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 7n
{uxE#U)
loss_s := 0 !信号光寄生损耗为0 7)z^*;x
EZao\,t
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 s-Bpd#G>/
L=
hPu#&/
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 Q!MS_
#O
calc Q
R;Xj3]v
begin $GEY*uIOa
global allow all; !声明全局变量 ,{7Z OzA
set_fiber(L_f, No_z_steps, ''); !光纤参数 v-EcJj%
add_ring(r_co, N_Tm); ,SH))%Cyt
def_ionsystem(); !光谱数据函数 a//<S?d$:
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 )y_MI
r
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 G-xW&wC-
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 fC52nK&T8
set_R(signal_fw, 1, R_oc); !设置反射率函数 3`$-
finish_fiber(); qf7lQovK
end; pvD\E
&+Xj%x.]
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 ma,H<0R
show "Outputpowers:" !输出字符串Output powers: LDx1@a|83
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) D!+d]A[r
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) QVsOB$
)u`q41!
]:8:|*w
; ------------- Rra<MOR
diagram 1: !输出图表1 d@JjqE[
QGs\af
"Powers vs.Position" !图表名称 }$?xwcPU
a"4j9cO
x: 0, L_f !命令x: 定义x坐标范围 &82Za%
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 Gk
g)\ 3
y: 0, 15 !命令y: 定义y坐标范围 U@Y0 z.Y
y2: 0, 100 !命令y2: 定义第二个y坐标范围 $OldHe[p
frame !frame改变坐标系的设置 >/9f>d?w^
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) }vgeQh-G
hx !平行于x方向网格 mfc\w'
hy !平行于y方向网格 bk44qL;8
[< Bk% B5
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 fucG 9B
color = red, !图形颜色 UOC>H%r~M?
width = 3, !width线条宽度
^"STM'Zh
"pump" !相应的文本字符串标签 |
U )
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 w3WBgH
color = blue, >08'+\~:b
width = 3, Qyx%:PE
"fw signal" <F{EZ Ii
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 xp7`[.
color = blue, Zn0e#n
style = fdashed, @8{-B;
width = 3, )O*\}6:S
"bw signal" 4+"2K-]
GH[ATL
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 [|.IXdJ!
yscale = 2, !第二个y轴的缩放比例 H0r@dn
color = magenta, 4+I @
width = 3, "H\1Z,P<m
style = fdashed, )_BQ@5NK
"n2 (%, right scale)" 0h=NbLr|S-
yq]= +X>(
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 Zawnx=
yscale = 2, 8T-/G9u
color = red, +?y ', Ir
width = 3, Uq/FH@E=
style = fdashed, |7ct2o~un
"n3 (%, right scale)" [}:;B$,
VZF;
)}w2'(!X8
; ------------- ?TTtGbvU
diagram 2: !输出图表2 ~;$,h ET
m' HAt~
"Variation ofthe Pump Power" Bl[4[N
;&7dX^oH
x: 0, 10 R `K1L!`3
"pump inputpower (W)", @x ~i_YrTp
y: 0, 10 ,^wjtA3j8
y2: 0, 100 [QUaC3l)
frame X6 E^5m
hx hNU$a?eVpR
hy x
Zp`
legpos 150, 150 t?1b(oJ
1?I_fA}
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 Uzh#zeZ`<
step = 5, a=_+8RyVQ
color = blue, <tUl(q+ty
width = 3, Q rBb!.r
"signal output power (W, leftscale)", !相应的文本字符串标签 >ElK8
finish set_P_in(pump, P_pump_in) Wdk]>w
'L
-A]-o
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 nMM:Tr
yscale = 2, xQUskjv/
step = 5, 2P,%}Ms
color = magenta, d)>b/0CZ
width = 3, u~c75Mk_v
"population of level 2 (%, rightscale)", kF]sy8u]
finish set_P_in(pump, P_pump_in) 5]f6YlJZ
b
I"+b\K
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 CH9Psr78
yscale = 2, Tfq7<<0$N
step = 5, k%D|17I
color = red, :MaP58dhh
width = 3, w`YN#G
"population of level 3 (%, rightscale)", G22{',#r8
finish set_P_in(pump, P_pump_in) PQj 'D<G
l4bLN
Llf#g#T
; ------------- ;{lb_du2:
diagram 3: !输出图表3 "LNLM
\X2r?
"Variation ofthe Fiber Length" I|x?
K>
F,8 ?du]
x: 0.1, 5 t p<v
"fiber length(m)", @x 3p1U,B}
y: 0, 10 G)IK5zCDd
"opticalpowers (W)", @y 1SF8D`3
frame p!o-+@ava
hx z[Ah9tM%
hy prEI9/d"
70<{tjyc
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 #HDP ha
step = 20, w2H^q3*
color = blue, 'pnOHT
width = 3, +mPVI
"signal output" 3ytlD '
'iWDYZ?
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 6$)FQ
U
step = 20, color = red, width = 3,"residual pump" ;I9g;}
WJJmM*>JW
! set_L(L_f) {restore the original fiber length } h_HPmh5
B3|G&Kg
BgT(~8'
; ------------- [*J?TNk
diagram 4: !输出图表4 SM8f"H28
+ )n}n5
"TransverseProfiles" !bIE%cq
Mt4*`CxtH;
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) k4PXH
I5@8=rFk
x: 0, 1.4 * r_co /um *C);IdhK%y
"radialposition (µm)", @x $0gGRCCG;
y: 0, 1.2 * I_max *cm^2 I~GHx5Dk
"intensity (W/ cm²)", @y X[!S7[d-y
y2: 0, 1.3 * N_Tm GG`j9"t4
frame Jcy+(7lE)
hx |>RNIJ]
hy 4,08`5{
1N[9\Yi
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 }_BNi;H
yscale = 2, ~/qBOeU3
color = gray, |xF!3GGms
width = 3, v@4vitbG9
maxconnect = 1, H$V`,=H
"N_dop (right scale)" GExr] 2r
zR4]buHnE
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 b<%c ]z
color = red, g[*"LOw
maxconnect = 1, !限制图形区域高度,修正为100%的高度 OIK46D6?.
width = 3, "G^TA:O:=
"pump" *07?U")
({zWyl
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 6L;]5)#
color = blue, &>!-67
maxconnect = 1, Cmp5or6d
width = 3, O^PN{u
"signal" )FSEHQ
*+XiBho
n.i8?:
; ------------- m[z$y
diagram 5: !输出图表5 mMvAA;
l<p<\,nV$
"TransitionCross-sections" a`8]TD
;%Px~g
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) dz^b(q
UM`{V5NG#
x: 1450, 2050 O c.fvP^ZD
"wavelength(nm)", @x puLgc$?
y: 0, 0.6 B&7NF}CF2
"cross-sections(1e-24 m²)", @y -k@1#c+z
frame L[Ot$
hx A;^ iy]"
hy 4*L*"vKa
MsBm0r`a
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 _Hd|y
color = red, fs:yx'mxV
width = 3, #
E_S..
"absorption" *o38f>aJl
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 %%/8B
color = blue, TtF+~K
width = 3, V1,/qd_
"emission" 7#W]Qj
\#xq$ygg