(* }vZTiuzC
Demo for program"RP Fiber Power": thulium-doped fiber laser, 6&btAwvOHx
pumped at 790 nm. Across-relaxation process allows for efficient M8VsU*aU
population of theupper laser level. g@m__
*) !(* *)注释语句 ")u)AQ
FX+^S?x.
diagram shown: 1,2,3,4,5 !指定输出图表 `a8 &7J(
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 [9Hrpo]tU:
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 ;I>77gi`]
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 jF{)2|5
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 P u}PE-b
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 UdFYG^i
s5ILl wr
include"Units.inc" !读取“Units.inc”文件中内容 3V/f-l]X/
0C717
include"Tm-silicate.inc" !读取光谱数据 Bm;@}Ly=G
XeozRfk%J|
; Basic fiberparameters: !定义基本光纤参数 scZ'/(b-E
L_f := 4 { fiberlength } !光纤长度 !/Wv\qm
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 lAAP V
r_co := 6 um { coreradius } !纤芯半径 zTze%
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 G 'CYvV
>+S* Wtm5
; Parameters of thechannels: !定义光信道 ;zo?o t/
l_p := 790 nm {pump wavelength } !泵浦光波长790nm mZ.E;X& ,*
dir_p := forward {pump direction (forward or backward) } !前向泵浦 nVk]Qe
P_pump_in := 5 {input pump power } !输入泵浦功率5W aT=V/Xh}d
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um yjucR
Fl
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 =@k3*#\
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 Ot3+<{
:LB< z#M
l_s := 1940 nm {signal wavelength } !信号光波长1940nm |bmc6G[
w_s := 7 um !信号光的半径 mh~n#bah
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 u_S>`I
loss_s := 0 !信号光寄生损耗为0 NAfu$7
uzL IllVX*
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 <$`udP@
~wd~57i@
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 C5oIl_t
calc MM Nz2DEy[
begin D 3}e{J8
global allow all; !声明全局变量 Jm}zit:o
set_fiber(L_f, No_z_steps, ''); !光纤参数 \8SHX
add_ring(r_co, N_Tm); U=UnE"h
def_ionsystem(); !光谱数据函数 }u'O<d~z?
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 'p(I!]"uo
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 :=%`\\
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 P
C
set_R(signal_fw, 1, R_oc); !设置反射率函数 !& xc.39
finish_fiber(); [u`9R<>c"U
end; p%*!]JRS
q,eXH8 x
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 "zN]gz=OV>
show "Outputpowers:" !输出字符串Output powers: 2BIOA#@t
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) |h%fi-a:
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) \JEI+A PY*
pi?U|&.1z
<S
M%M?
; ------------- mH09*
Z
diagram 1: !输出图表1 eVy\)dCsU
W=
\gPCo
"Powers vs.Position" !图表名称 lr@H4EJ{
8fs::}0
x: 0, L_f !命令x: 定义x坐标范围 @y`7csbp
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 s&*s9F
y: 0, 15 !命令y: 定义y坐标范围 kzb1iBe 6m
y2: 0, 100 !命令y2: 定义第二个y坐标范围 g3uI1]QXLg
frame !frame改变坐标系的设置 cX/["AM
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) ^aO\WKkA
hx !平行于x方向网格 a=3{UEi'o
hy !平行于y方向网格 :S
|)
>|So`C3:e
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 @VcSK`
color = red, !图形颜色 K|LS VN?K
width = 3, !width线条宽度 [-Dl ,P=
"pump" !相应的文本字符串标签 $:MO/Suz{
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 s"\o6r
,
color = blue, >T<"fEBI
width = 3, ?QXo]X;f&
"fw signal" SpUcrK;1
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 675x/0}GO
color = blue, <U]#722
style = fdashed, -!]dU`:(X
width = 3, ~V4&l3o
"bw signal" r-a/vx#
jVpk) ;vC
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 fX2PteA0qX
yscale = 2, !第二个y轴的缩放比例 -3T6ck
color = magenta, ! G+/8Q^
width = 3, U ]6Hml;l
style = fdashed, O{9h'JU
"n2 (%, right scale)" Q[k7taoy
K-nf@o+
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 \'40u|f
yscale = 2, ]='E&=nc
color = red, @"#W\m8
width = 3, ]l'W=_XDg
style = fdashed, x1kb]0s<-
"n3 (%, right scale)" }$ Am;%?p
5E/z.5 q
dEp?jJP$;
; ------------- -)tu$W*
diagram 2: !输出图表2 @M-+-6+
+`x8[A)-
"Variation ofthe Pump Power" ,]'?Gd
:,=no>mMx
x: 0, 10 ]64mSB
"pump inputpower (W)", @x wKCHG/W
y: 0, 10 8]N+V:
y2: 0, 100 h*Y);mc$#
frame 5"5D(
hx V(Ps6jR"BS
hy 8eSIY17
legpos 150, 150 iG*/m><-
5B?>.4R
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 +t
R6[%
step = 5, @l^=&53T
color = blue, KFd"JtPg
width = 3, +QIM~tt)
"signal output power (W, leftscale)", !相应的文本字符串标签 EIwTx:{F
finish set_P_in(pump, P_pump_in) bO:Ei
g`!:7|&,_
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 }xHoitOD
yscale = 2, _{o=I?+]
step = 5, 31y=Ar""
color = magenta, *Ri?mEv
hF
width = 3, .Mw'P\GtM
"population of level 2 (%, rightscale)", ho_;;y
finish set_P_in(pump, P_pump_in) d9[*&[2J|
a'ViyTBo
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 FG-w7a2mn
yscale = 2, ZgLO[Bj
step = 5, 7{:| )
color = red, ]S[zD|U%
width = 3, 0}c*u) ,
"population of level 3 (%, rightscale)", jBV2]..
finish set_P_in(pump, P_pump_in) m u(HNj
A?3hNvfx
lC+p2OG^[
; ------------- <w}k9(Ds
diagram 3: !输出图表3 hq/\'Z&!+P
c/I.`@
"Variation ofthe Fiber Length" Roy0?6O
YZf<S:
x: 0.1, 5 n\5` JNCb
"fiber length(m)", @x Ix%h/=I
y: 0, 10 .
x~tEe
"opticalpowers (W)", @y s@f4f__(]
frame _$By c(.c
hx l'VgS:NT
hy 28-6(oG
gqJ&Q
t#f
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 3Qe:d_
step = 20, Bm%:Qc*
color = blue, YcGSZ0vQ
width = 3, ,qpn4`zE~
"signal output" d5]9FIj
$GUSTV
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 <FMW%4
step = 20, color = red, width = 3,"residual pump" [bJ/$A
*8U+2zgfC
! set_L(L_f) {restore the original fiber length } (hd^
^v3ytS
^DVr>u
; ------------- qI<6% ^i
diagram 4: !输出图表4 r~u/M0h `
?{$Q'c_I
"TransverseProfiles" U
n2xZ[4
}.4`zK&SB
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) )dG7$,g
O$Wt\Y<q
x: 0, 1.4 * r_co /um jwTb09
"radialposition (µm)", @x \rcbt6H
y: 0, 1.2 * I_max *cm^2 t</rvAH E
"intensity (W/ cm²)", @y 1okL]VrI
y2: 0, 1.3 * N_Tm zrE
~%YR
frame <[?oP[ j
hx |h*H;@$
hy J:'cj5@
,|"tLN*m
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 D<#+ R"
yscale = 2, ]OM|Oo
color = gray, 9<WMM)
width = 3, t'_Hp},
maxconnect = 1, P`5@$1CJ
"N_dop (right scale)" .jZmQtc
<dD}4c+/t
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 /lm;.7_J+
color = red, mmAikT#k
maxconnect = 1, !限制图形区域高度,修正为100%的高度 [E2afC>zrl
width = 3, B=7bQli}
"pump" i15uHl
cG,B;kMjo
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 y^pk)`y8
color = blue, q0.+ F4
maxconnect = 1, @ ILG3"
width = 3, ln'7kg
"signal" G7pj.rQ
CwTx7
^qa
r{$ip"f
; ------------- iT%aAVs
diagram 5: !输出图表5 @ _U]U
=ILs[p
"TransitionCross-sections" V
z8o
jB:$+k|~.
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) KFdV_e5lU
Cv>|>Ob#
x: 1450, 2050 ~{0:`)2FQ
"wavelength(nm)", @x O>wGc8Of\
y: 0, 0.6 J i :2P*
"cross-sections(1e-24 m²)", @y 7qA0bUee5
frame ^L+*}4Dr
hx wRgmw
4
hy \$/)o1SG
7UejK r
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 0_}OKn)J
color = red, Q$Ga.fI
width = 3, 8t!(!<iF0
"absorption" 4v33{sp
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 n&D<l '4
color = blue, ,icgne1j
width = 3, .|JJyjRA+
"emission" \acJ9N
5:Pp62