切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2486阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2176
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* iW?z2%#  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, .)g7s? K  
    pumped at 790 nm. Across-relaxation process allows for efficient 9Ai 3p  
    population of theupper laser level. 17E,Qnf  
    *)            !(*  *)注释语句 <#ng"1J  
    3/{,}F$  
    diagram shown: 1,2,3,4,5  !指定输出图表 : GdLr  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 O>@ChQF  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 V[;^{,;  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 $=9g,39  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 ,%T sfB  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 <~bvf A=  
    6no&2a|D  
    include"Units.inc"         !读取“Units.inc”文件中内容 l9Av@|  
    @hF$qevX  
    include"Tm-silicate.inc"    !读取光谱数据 >^~W'etX|  
    PJ))p6 9  
    ; Basic fiberparameters:    !定义基本光纤参数 grxlGS~Q  
    L_f := 4 { fiberlength }      !光纤长度 D &Bdl5g  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 8U)*kmq  
    r_co := 6 um { coreradius }                !纤芯半径 Pb}Iiq=  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 mVd%sWD  
    ts/Ha*h  
    ; Parameters of thechannels:                !定义光信道 XS(Q)\"  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm S*NeS#!v  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 xUF5  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W ?~3Pydrb#  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um 3rj7]:Vr  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 {nj`>  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 C <d]0)  
    -KL5sK  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm _Wtwh0[r*  
    w_s := 7 um                          !信号光的半径 no,b_0@N  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 2dCD.9s9~  
    loss_s := 0                            !信号光寄生损耗为0 S=a>rnF  
    -`CE;  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 nC}Y+_wo0  
    P]0/S  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 %$&_!  
    calc Ys>Z=Eky  
      begin .k"unclT0  
        global allow all;                   !声明全局变量 \gGTkH  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 qK)T#sh  
        add_ring(r_co, N_Tm); f<;eNN  
        def_ionsystem();              !光谱数据函数 f_z]kA +H  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 }2''}-Nc  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 C.RXQ`-P}  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 @6Z6@Pq(xQ  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 .|i/ a%J  
        finish_fiber();                                   PQrc#dfc |  
      end; k!V@Q!>,  
    eWr2UXv$  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 r<[G~n  
    show "Outputpowers:"                                   !输出字符串Output powers: 39bw,lRPV  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) Ae* 6&R4  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) "I QM4:  
    PU-L,]K  
    q4SEvP}fLx  
    ; ------------- 0*,] `A=  
    diagram 1:                   !输出图表1 m[nrr6 G"  
    hm0MO,i"  
    "Powers vs.Position"          !图表名称 y9~:[jB  
    K(AZD&D  
    x: 0, L_f                      !命令x: 定义x坐标范围 ;NF:98  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 Ud_0{%@  
    y: 0, 15                      !命令y: 定义y坐标范围 {$I1(DYN  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 t;}`~B  
    frame          !frame改变坐标系的设置 lv#L+}T  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) ;( (|0Xa  
    hx             !平行于x方向网格 Q>I7.c-M|  
    hy              !平行于y方向网格 Jo\karpb  
    F{E`MK~f_  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 C8O<fwNM  
      color = red,  !图形颜色 p2hPLq  
      width = 3,   !width线条宽度 3F$N@K~s  
      "pump"       !相应的文本字符串标签 i)(-Ad_  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 %GGSd0 g  
      color = blue,     jd.w7.8  
      width = 3, _QneaPm%  
      "fw signal" H#3Ma1z  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 [&)*jc16  
      color = blue, A]MX^eY  
      style = fdashed, IeAi'  
      width = 3, Nv=&gOy=  
      "bw signal" & kQj)  
    Qx8O&C?Ti  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 h>A~yDT[  
      yscale = 2,            !第二个y轴的缩放比例 xmejoOF  
      color = magenta, w3M F62:  
      width = 3, F.AP)`6+*  
      style = fdashed, 4veXg/l  
      "n2 (%, right scale)" G[]h1f!  
    >VJ"e`  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 ,U>G$G^  
      yscale = 2, zqLOwzMlLx  
      color = red, Bqw/\Lxwlf  
      width = 3, -HRa6  
      style = fdashed, _$yS4=.  
      "n3 (%, right scale)" u17 9!  
    VuuF _y;  
    M %!O)r#Pn  
    ; ------------- MC1&X'  
    diagram 2:                    !输出图表2 zor  
    f.:0T&%G  
    "Variation ofthe Pump Power" PJAM_K;  
    [j?<&^SW  
    x: 0, 10 =00 sB  
    "pump inputpower (W)", @x lr=quWDY  
    y: 0, 10 ITZ}$=   
    y2: 0, 100 EME}G42KN  
    frame 2>)::9e4  
    hx <1<0odB  
    hy |21*p#>  
    legpos 150, 150 G1:"Gxja  
    :/6u*HwZh  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 v V>=Uvm  
      step = 5, WL;2&S/{@  
      color = blue, ~n%]u! 6  
      width = 3, )Ut9k  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 SKo*8r   
      finish set_P_in(pump, P_pump_in) tdNAR|  
    !!6g<S7)  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 WyUa3$[gO  
      yscale = 2, fz rH}^  
      step = 5, <-HWs@8#  
      color = magenta, _+<AxE9\  
      width = 3, EV_u8?va  
      "population of level 2 (%, rightscale)", Bpv"qU7  
      finish set_P_in(pump, P_pump_in) Is!+ `[ma  
    8< "lEL|  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 K*5Ij]j&  
      yscale = 2, 7e Hj"_;  
      step = 5, <o@__l.  
      color = red, Wv30;7~  
      width = 3, pEY zB;  
      "population of level 3 (%, rightscale)", Q7_#k66gb7  
      finish set_P_in(pump, P_pump_in) r|3<UR%  
    ' &Tz8.jp~  
    uExYgI`<%&  
    ; ------------- 5yf`3vV|3@  
    diagram 3:                         !输出图表3 \7Fp@ .S3  
    lN7YU-ygz  
    "Variation ofthe Fiber Length" @"afEMd  
    :!fU+2$`^(  
    x: 0.1, 5 IW=%2n(<1  
    "fiber length(m)", @x ,PX7}//X^  
    y: 0, 10 l?KP /0`  
    "opticalpowers (W)", @y vH@b  
    frame X`7O%HiX/`  
    hx AZnFOS  
    hy &zHY0fxX  
    Kk>va->R  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 Q.SqOHeJ  
      step = 20,             1t7T\~ +F  
      color = blue, :~~\{fm  
      width = 3, DK<}q1xi  
      "signal output" Obc wmL  
    N._^\FRyn  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 W1[C/dDc  
       step = 20, color = red, width = 3,"residual pump" }KV)F,`  
    r: ,"k:C  
    ! set_L(L_f) {restore the original fiber length } P]4@|u;=6[  
    l(~NpT{=V  
    :D:J_{HJ  
    ; ------------- p9eTrFDy?  
    diagram 4:                                  !输出图表4 cB2~W%H  
    >"D0vj  
    "TransverseProfiles" FeJKXYbk<  
    nDXy$f8  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) WU6F-{M"?  
    uC"Gm;0  
    x: 0, 1.4 * r_co /um dEfP272M  
    "radialposition (µm)", @x |qb-iXW=  
    y: 0, 1.2 * I_max *cm^2 ]GzfU'fOn|  
    "intensity (W/ cm&sup2;)", @y VB~Do?]*k%  
    y2: 0, 1.3 * N_Tm 2&:nHZ)  
    frame _+qtH< F/  
    hx 2~@Cj@P]  
    hy f1I/aRV:+  
     bRx}ih  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 |L6 +e *  
      yscale = 2, vH{JLN2  
      color = gray, m!:sDQn{3  
      width = 3, k'K 1zUBj  
      maxconnect = 1, J_&G\b.9/  
      "N_dop (right scale)" cN| gaL  
    n ZzGak  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 e it%U  
      color = red, _@sSVh$+  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 xUDXg*  
      width = 3, 3NrWt2?  
      "pump" :qvaI,  
    C 4\Q8uK  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 'e7;^s  
      color = blue, S oB6F9  
      maxconnect = 1, e;&fO[ 2  
      width = 3, f6%7:B d  
      "signal" 19i [DR  
    7niI65  
    j8ag}%  
    ; ------------- ''B}^yKEW  
    diagram 5:                                  !输出图表5 U_5\ FM  
    FMAt6HfU  
    "TransitionCross-sections" sT>l ?L  
    uG4Q\,R  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0))  t/a  
    HeM-  
    x: 1450, 2050 ?^ `EI}g  
    "wavelength(nm)", @x tN&X1  
    y: 0, 0.6 3NgyF[c  
    "cross-sections(1e-24 m&sup2;)", @y Ufe@G\uyI  
    frame G4)X~.Fy  
    hx ]PZ\N~T  
    hy \Gy+y`   
    \>  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 >FReGiK$T  
      color = red, CM+/.y T  
      width = 3, rTM0[2N  
      "absorption" usI$  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 ]f3R;d  
      color = blue, A]OVmw  
      width = 3, &y.6Hiy&  
      "emission" d ]Mjr2h  
    SgY\h{{sP  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚