(* hXPocP
Demo for program"RP Fiber Power": thulium-doped fiber laser, jwq\stjD
pumped at 790 nm. Across-relaxation process allows for efficient 8Kk3_ y
population of theupper laser level. lD-V9
*) !(* *)注释语句 7|K3WuLL
\w3%[+c
diagram shown: 1,2,3,4,5 !指定输出图表 >eRZ+|k?N
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 ]L$4Py
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 `,Xb8^M2
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 -E}>h[;qZ
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 NWb}
OXK/
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 xM%`KP.8X
ZWFG?8lJ
include"Units.inc" !读取“Units.inc”文件中内容 _/ct=
</|)"OD9
include"Tm-silicate.inc" !读取光谱数据 })KJ60B
M5F(<,n;
; Basic fiberparameters: !定义基本光纤参数 ,%[LwmET
L_f := 4 { fiberlength } !光纤长度 )
b/n)%6
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 Ri;=aZ5m
r_co := 6 um { coreradius } !纤芯半径 xv^Sh}\}
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 !O 4<I_EY{
AvyQ4xim+
; Parameters of thechannels: !定义光信道 TNJ<!6
l_p := 790 nm {pump wavelength } !泵浦光波长790nm '7t|I6$ow
dir_p := forward {pump direction (forward or backward) } !前向泵浦 -%>8.#~G
P_pump_in := 5 {input pump power } !输入泵浦功率5W E2kW=6VO>|
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um `bzr_fJ
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 9LH=3Qt
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 Jc`Rs"2
i3D<`\;r
l_s := 1940 nm {signal wavelength } !信号光波长1940nm d3Y(SPO
w_s := 7 um !信号光的半径 Wgav>7!9
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 F%9cS
:
loss_s := 0 !信号光寄生损耗为0 |MR%{ZC^i
/731.l
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 jY rym-
P87ld._
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 L'13BRu`
calc d [)_sa
begin `'*F1F
global allow all; !声明全局变量 y+?=E g
set_fiber(L_f, No_z_steps, ''); !光纤参数 CdDH1[J
add_ring(r_co, N_Tm); kNRyOUy
def_ionsystem(); !光谱数据函数 HmhUc,EC
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 c/b%T
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 5.O-(eSa0&
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 mPckf
set_R(signal_fw, 1, R_oc); !设置反射率函数 `E{;85bDH
finish_fiber(); y*}AX%8`e~
end; cT_uJbP+
$<
A8gTJ
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 sk~ za
show "Outputpowers:" !输出字符串Output powers: U&,r4>V@h>
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) F='Xj@&O
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) B{;11u
wDB)&b
NR;q`Xe-
; ------------- 9cVn>Fb
diagram 1: !输出图表1 uFGv%W
N
=x]AC,
"Powers vs.Position" !图表名称 4Sg<r,G
^Yf3"D?&
x: 0, L_f !命令x: 定义x坐标范围 o,g6JTh
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置
DhY;pG,t
y: 0, 15 !命令y: 定义y坐标范围 hm*Th
y2: 0, 100 !命令y2: 定义第二个y坐标范围 Y*`:M(
frame !frame改变坐标系的设置 /uC+.B9k
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) lO551Y^
hx !平行于x方向网格 F"-S~I7'L
hy !平行于y方向网格 NnJ>0|74g
PXOrOK
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 h |s*i
color = red, !图形颜色 )W[KD,0+j
width = 3, !width线条宽度 'u4}t5Bu5
"pump" !相应的文本字符串标签 oN.Mra]D
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 ^fA3<|
color = blue, Sja"(sJ
width = 3, Z|]l"W*w
"fw signal" [P.@1mV
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 C*"Rd
color = blue, vs5
D:cZ}
style = fdashed, `Mo~EHso.
width = 3, EZ:I$X
"bw signal" &i4
(s%z#
6&g!ZE'G
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 WpZy](,
yscale = 2, !第二个y轴的缩放比例 Q'FX:[@x-S
color = magenta, M\:"~XW
width = 3, :GN)7|:
style = fdashed, &@mvw=d
"n2 (%, right scale)" ^JYF1
>g5T;NgH9
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 K?z*3^^X;
yscale = 2, j zxf"X-
color = red, 2&^,IIp
width = 3, (Q}PeKM?jq
style = fdashed, ]3gYuz|
"n3 (%, right scale)" )OARO
<wIp$F.
`77;MGg*
; ------------- S#dyRTmI
diagram 2: !输出图表2 !1ie:z>s
rC=p;BC@dD
"Variation ofthe Pump Power" [+%p!T
m
_t(rn~f6
x: 0, 10 Pur"9jHa4
"pump inputpower (W)", @x S+` !%hJ
y: 0, 10 >i><s>=I`
y2: 0, 100 !nP8ysB
frame asm[-IB2u
hx UiGUaB mF*
hy htdn$kqG
legpos 150, 150 -~rr<D\
sqq/b9 uL/
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 kMwIuy
step = 5, :kf3_?9rc
color = blue, @B>%B EC
width = 3, Ymrpf
"signal output power (W, leftscale)", !相应的文本字符串标签 @O @|M'
finish set_P_in(pump, P_pump_in) \K4CbZ,.
a=}">=]7
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 U 8qKD
yscale = 2, ^>P@5gcoE(
step = 5, ;-<<1Jz/2
color = magenta, Sgjr4axu
width = 3, D_,_.C~O
"population of level 2 (%, rightscale)", N#2nH1C
finish set_P_in(pump, P_pump_in) % @^VrhS
(rY1O:*S
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 ;GSfN
yscale = 2, i?P]}JENM
step = 5, [nhLhl4S
color = red, E|8s2t
width = 3, Bv
|jo&0n
"population of level 3 (%, rightscale)", Eo25ir%
finish set_P_in(pump, P_pump_in) K4VPmkG
]0/~6f
S+e-b'++?
; ------------- TZ[Fu{gZ
diagram 3: !输出图表3 &Hp\("
U_zpLpm^
"Variation ofthe Fiber Length" c,[qjr#\>
$[^ KCNB
x: 0.1, 5 q4IjCu+
"fiber length(m)", @x LcQ\?]w`]
y: 0, 10 _UbR8
"opticalpowers (W)", @y !O%f)v?
frame XQ|j5]
hx JOE{&^j
hy 9g^./k\8%
< 8W:ij.`
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 hc4`'r;
step = 20, '!|E+P-
color = blue, "b+3 &i|
width = 3, [/2@=Uh-
"signal output" t g m{gR
7UEy L
}N
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 []]LyWk
step = 20, color = red, width = 3,"residual pump" 9M-]~.O
dT0z^SG
! set_L(L_f) {restore the original fiber length } 94>7-d
=4%WOI
/[)P^L`
; ------------- s-YV_
diagram 4: !输出图表4 \FaB!7*~
g275{2G9
"TransverseProfiles" fPuQ,J2=
-QHzf&D?
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) -iZ js
neMe<jr
x: 0, 1.4 * r_co /um >Gu>T\jpe.
"radialposition (µm)", @x e715)_HD
y: 0, 1.2 * I_max *cm^2 a0v1LT6
"intensity (W/ cm²)", @y {7MgN'4
y2: 0, 1.3 * N_Tm (UiH3Q9C]%
frame $@
#G+QQ_
hx E(K$|k_>
hy <a/ZOuBzZ
Y&!McM!Jw
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 c=c.p
i"s
yscale = 2, I]S(tx!
color = gray, 0BU:(o&
width = 3, qi5>GX^t]b
maxconnect = 1, $EHn;~w T
"N_dop (right scale)" '&L
j2&OYg
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 p`V9+CA
color = red, 9%hB
maxconnect = 1, !限制图形区域高度,修正为100%的高度 ]KII?{<k
width = 3, IU"!oM ^
"pump" :~YyHX
7}HA_@[
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 @RG3*3(
color = blue, OsuSx^}
maxconnect = 1, 6b5{
width = 3, K Qy\l+\gM
"signal" a/xCl
:=8q
*g_>eNpXD
!P3tTL!*L
; ------------- IaZAP
diagram 5: !输出图表5 jI pcMN<
R5YtCw]i=
"TransitionCross-sections" P_}_D{G
\$++.%0
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) \>CBam8d
*h8XbBZH
x: 1450, 2050 Kof-;T
"wavelength(nm)", @x ,DsT:8
y: 0, 0.6 &b:Zln.j
"cross-sections(1e-24 m²)", @y m*WEge*$t
frame <L[)P{jn?p
hx e&I.kC"j6
hy { l~T~3/i
'3,JL!
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 }T(q "Vf~
color = red, J!qEj{
width = 3, ku8Z;ONeH
"absorption" &]A1 _dy
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 /IR5[67
color = blue, 8&AorYw[
width = 3, m=b+V#4i(
"emission" I(eR3d:
Xrs~ove1V