(* `7`` 1TL
Demo for program"RP Fiber Power": thulium-doped fiber laser, J+Y?'"r
pumped at 790 nm. Across-relaxation process allows for efficient u[wDOw
population of theupper laser level. ed/
"OgA
*) !(* *)注释语句 ,HE{&p2y
N1:)Z`r
diagram shown: 1,2,3,4,5 !指定输出图表 tnb'\}Vn
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 / 8dRql-Ne
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 |t$%kpp
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 \dB z-H'@
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 /^si(BuC^*
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 iy8Ln,4z(
X"f]
include"Units.inc" !读取“Units.inc”文件中内容 Fkqw#s(T
|D;I>O^"R
include"Tm-silicate.inc" !读取光谱数据 Oeg^%Y
sA"B/C|(g
; Basic fiberparameters: !定义基本光纤参数 C1YH\X(r
L_f := 4 { fiberlength } !光纤长度 loyhNT=
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 KpQ@cc
r_co := 6 um { coreradius } !纤芯半径 EUPc+D3
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 a}k5[)et
&6\E'bBt
; Parameters of thechannels: !定义光信道 sw(|EZ7F
l_p := 790 nm {pump wavelength } !泵浦光波长790nm \%W"KLP
dir_p := forward {pump direction (forward or backward) } !前向泵浦 (3m^@2i
P_pump_in := 5 {input pump power } !输入泵浦功率5W @&Af[X4s
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um 6D4u?P,
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 0}>p)k3&A
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 )\izL]=!t
Wjd_|Kui
l_s := 1940 nm {signal wavelength } !信号光波长1940nm 5G#2#Al(F
w_s := 7 um !信号光的半径 k <LFH(
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 Og2w]B[
loss_s := 0 !信号光寄生损耗为0 0bQ"s*K
99Nm? $g
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 ]PH'G>x
3qp\jh=FE
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 UtB~joaR
calc EBUCG"e
begin )c0 Dofhg
global allow all; !声明全局变量 (=Lx9-u
set_fiber(L_f, No_z_steps, ''); !光纤参数 ML1/1GK*i+
add_ring(r_co, N_Tm); Jj+Hj[(@
def_ionsystem(); !光谱数据函数 |s !7U
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 QyEoWKu;
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 RDu{U(!
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 6l(HD([_p
set_R(signal_fw, 1, R_oc); !设置反射率函数 [_tBv" z
finish_fiber(); a7fn{VU8
end; $viZ[Lu!m
g % 8@pjk
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 [jKhC<t}
show "Outputpowers:" !输出字符串Output powers: >Cglhsb:N
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) }}d,xI
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) ]RI+:f
KN\tRE
p}a0z?
; ------------- I^gLiLUN*6
diagram 1: !输出图表1 ";w"dfC^
CGZ3-OW@E
"Powers vs.Position" !图表名称 |#O>DdKHT
lMb&F[KJ7
x: 0, L_f !命令x: 定义x坐标范围 =zwn3L8 fL
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 3c[TPD_:
y: 0, 15 !命令y: 定义y坐标范围 bR83N
y2: 0, 100 !命令y2: 定义第二个y坐标范围 AbOF/g)C
frame !frame改变坐标系的设置 3TnrPO1E
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) ks(BS k4
hx !平行于x方向网格 EpH\;25u
hy !平行于y方向网格 /baSAoh/e
2fMKS
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 r[KX"U-
color = red, !图形颜色 ,\ zx4*
width = 3, !width线条宽度 E Ks4N4k
"pump" !相应的文本字符串标签 V\r2=ok@y
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 /9@VnM
color = blue, e6I7N?j
width = 3, "|d# +C
"fw signal" C.?~D*Q
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 yo!Y%9
color = blue, _ v3VUm#
style = fdashed, *f3?0w
width = 3, PI$K+}E
"bw signal" }6 MoC0
l
!:kwF
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 (cm8x
yscale = 2, !第二个y轴的缩放比例 h~u|v[@{J
color = magenta, 4)E$. F^
width = 3, 9 kLA57
style = fdashed, ?4YLt|sn
"n2 (%, right scale)" =r>u'wRQ
Q-y`IPtA<
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 C?t!Uvs
yscale = 2, }]|e0 w:
color = red, 9qX)FB@'i;
width = 3, ({WV<T&
style = fdashed, T8>aU
"n3 (%, right scale)" T3h 1eU
L_R(K89w
p?'&P!
; ------------- "{M?,jP#
diagram 2: !输出图表2 "g&hsp+i"A
~Nn}FNe
"Variation ofthe Pump Power" dc,qQM
zx;~sUR;
x: 0, 10 ^D A<=C-[!
"pump inputpower (W)", @x ^_\%?K_u
y: 0, 10 sff4N>XAl<
y2: 0, 100 dnCurWjdk
frame ?OVje9
hx Pd;G c@'~
hy o4nDjFhh
legpos 150, 150
aS,
9G^gI}bY
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 my%MXTm2
step = 5, >IJX=24Rc
color = blue, sI6coe5n
width = 3, C!W0L`r
"signal output power (W, leftscale)", !相应的文本字符串标签 /^=8?wK
finish set_P_in(pump, P_pump_in) 1;eWnb(
y'm5Z-@o6
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 '>[Ut@lT;
yscale = 2, W(Rp@=!C
step = 5, 59BB-R,V
color = magenta, R$i-%3
width = 3, 1\-r5e; BE
"population of level 2 (%, rightscale)", eD!mR3Ai@D
finish set_P_in(pump, P_pump_in) d8K|uEHVz
QM@zy
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 PP8627uP
yscale = 2, -9(pOwN
|m
step = 5, y'(a:.%I
color = red, BRXDE7vw
width = 3, in `|.#
"population of level 3 (%, rightscale)", r0*Y~
KHw
finish set_P_in(pump, P_pump_in) 3?
F~H
H`1q8}m
P~s u]+
; ------------- l"/E,X
diagram 3: !输出图表3 -quJX;~
lN*beOj
"Variation ofthe Fiber Length" z0@BBXQ`
IYv.~IQO
x: 0.1, 5 L}rYh`bUP[
"fiber length(m)", @x (C0Wty
y: 0, 10 f4$sH/ 2#v
"opticalpowers (W)", @y ^0 &jy:{
frame zxkO&DGRbN
hx J vq)%t8q>
hy *P8CzF^>\&
zwk&3
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 WjOP2CVv|
step = 20, wsB
color = blue, s"R5'W\U
width = 3, i6<uj
"signal output" l+j
!CvtI
3n~O&{
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 -kHJH><j
step = 20, color = red, width = 3,"residual pump" {vdY(
u;+8Jg+xH/
! set_L(L_f) {restore the original fiber length } _r>kR7A\{
Q]e]\J
*Qyu
QF
; ------------- *7b?.{
diagram 4: !输出图表4 >>|47ps3
"z*.Bk
"TransverseProfiles" ZG-#YF.1
bOSqD[?
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) =J|jCK[r
&j,#5f(
x: 0, 1.4 * r_co /um 70 Ph^e)
"radialposition (µm)", @x k(o(:-+x
y: 0, 1.2 * I_max *cm^2 e=3C*+lq\
"intensity (W/ cm²)", @y yzZzaYv "/
y2: 0, 1.3 * N_Tm z[6avW"q
frame "!CVm{7[
hx c-_1tSh}
hy Kp^"<%RT
41P0)o
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 Z_fwvcZ?05
yscale = 2, 'T$Cw\F&
color = gray, bR,Es~n
width = 3, [XttT
maxconnect = 1, mE_%
"N_dop (right scale)" :,fT^izew
}ice*3'3
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 +r7hc;+G
color = red, \Zh&[D!2
maxconnect = 1, !限制图形区域高度,修正为100%的高度 :aBm,q9i:}
width = 3, WP?]"H
"pump" -<9Qez)y
H4sW%nZ0
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 P(DEf(
color = blue, Zb2PFwcy
maxconnect = 1, nCQ".G
width = 3, y5F"JjQAa
"signal" pL!,1D!
ycSGv4
)
!#~KSO}zW2
; ------------- crOSr/I$
diagram 5: !输出图表5 `Tf}h8*
kvuRT`/
"TransitionCross-sections" ''D7Bat@
> ;#Y0
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) ^/$dSXKF
S=lCzL;j"
x: 1450, 2050 K C"&3
"wavelength(nm)", @x K F_Uu
y: 0, 0.6 ! L|l(<C
"cross-sections(1e-24 m²)", @y MgJ5FRQ
frame ^#C+l
hx po\jhfn
hy ;Z`a[\i':
SjpCf8Z(
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 ^*4#ZvpG2
color = red, .AOc$Nt
width = 3, )P? F ni}
"absorption" n1GX`K
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 0^\H$An*k
color = blue, n#Dy
YVb
width = 3, 3 !8#wn
"emission" &WLN
Z.!<YfA)