切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2254阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2176
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2020-05-28
    (* {vZAOz7#  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, ELG9ts+5Uj  
    pumped at 790 nm. Across-relaxation process allows for efficient 2"%f:?xV{  
    population of theupper laser level. [;ZC_fD  
    *)            !(*  *)注释语句 * X}2  
    M-q5Jfm  
    diagram shown: 1,2,3,4,5  !指定输出图表 n.R"n9v`  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响  !$!%era`  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 ]<c\+9  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 ?5,I`9  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 tDfHO1pS  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 )UVekkq>Q  
    ^!n|j]aw  
    include"Units.inc"         !读取“Units.inc”文件中内容 /W LZyT2  
    #v9+9X`1L  
    include"Tm-silicate.inc"    !读取光谱数据 >m{>0k(^`  
    8F's9c,  
    ; Basic fiberparameters:    !定义基本光纤参数 "pH;0[r]  
    L_f := 4 { fiberlength }      !光纤长度 _#{qDG=  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注  3SPXJa\i  
    r_co := 6 um { coreradius }                !纤芯半径 i'^! SEt  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 #uCfXJ-  
    UFUEY/q  
    ; Parameters of thechannels:                !定义光信道 bk a%W@Y%  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm OK47Q{.gh  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 J |UFuD  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W *&R|0I{>  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um {MDM=;WP_  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 B7.&yXWgn  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 {k[dg0UV  
    xe3Jxo !U  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm #uICH t3  
    w_s := 7 um                          !信号光的半径 5j9%W18  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 d3#e7rQ8  
    loss_s := 0                            !信号光寄生损耗为0 HEhBOER?  
    YIb7y1\UM  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 o#BI_#b  
    /g!Xe]Ss  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 \b$Y_  
    calc l0g+OMt  
      begin t -fmA?\  
        global allow all;                   !声明全局变量 && PZ;  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 2+ g'ul`  
        add_ring(r_co, N_Tm); . NxskXq)  
        def_ionsystem();              !光谱数据函数 wqJl[~O$  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 _u6MSRX[6$  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 I }8b]  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 6VJS l%X  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 l7IF9b$c  
        finish_fiber();                                   o& $lik  
      end; ,pQ[e$u1  
    }9;mtMR$  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 yw89*:A6  
    show "Outputpowers:"                                   !输出字符串Output powers: |Z+qaq{X  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) 7+hc?H[&'  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) Z/4bxO=m  
    \pSRG=`  
    *Gj`1# Z$  
    ; ------------- Z J1@z.  
    diagram 1:                   !输出图表1 dk]A,TB*2  
    U:[CcN/~3  
    "Powers vs.Position"          !图表名称 cjd-B:l  
    2t>>08T  
    x: 0, L_f                      !命令x: 定义x坐标范围 78?cCj{e  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 -mLu!32I<  
    y: 0, 15                      !命令y: 定义y坐标范围 kqq1;Kd  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 1|:;~9n<t  
    frame          !frame改变坐标系的设置 fGe"1MfU  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) 7| j rk  
    hx             !平行于x方向网格 C 20VSwd  
    hy              !平行于y方向网格 ;sz_W%-;@  
    [MKt\(  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 4E1j0ARQQ  
      color = red,  !图形颜色 -SzCeq(p%5  
      width = 3,   !width线条宽度 G9K& }_,  
      "pump"       !相应的文本字符串标签 "1%k"+&  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 Q7/Jyx|  
      color = blue,     /BhP`a%2Q  
      width = 3, l\d[S]  
      "fw signal" e:_[0#  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 N.SV*G @  
      color = blue, frV_5yK'  
      style = fdashed, D}-HWJQA3  
      width = 3, #Pg?T%('`  
      "bw signal" Y|W#VyM-  
    tq=M 9c  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 Y ._O m}H  
      yscale = 2,            !第二个y轴的缩放比例 {Hv kn{{'  
      color = magenta, 0}T 56aD=!  
      width = 3, 7;?7q  
      style = fdashed, wWq-zGH|&  
      "n2 (%, right scale)" Q trU_c2k  
    %+UTs'I  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 z(>:LX"xz  
      yscale = 2, -OKXfN]  
      color = red, gI@nE:(m  
      width = 3, _eH@G(W(  
      style = fdashed, s= z$;1C  
      "n3 (%, right scale)" ?,[$8V  
    pK/RkA1  
    'gsO}xj  
    ; ------------- A-$ C6q   
    diagram 2:                    !输出图表2 *GdJ<B$  
    U2\k7I  
    "Variation ofthe Pump Power" hl DU.k  
    %Rk0sfLvn  
    x: 0, 10 WW7E*kc  
    "pump inputpower (W)", @x ]2|KG3t  
    y: 0, 10 <UGM/+aO  
    y2: 0, 100 pNu?DF{ 3  
    frame 2<V`  
    hx |t#s h  
    hy i"E_nN"V  
    legpos 150, 150 Z hCjY  
    :cP u  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 Z1 (!syg  
      step = 5, 1WY$Vs  
      color = blue, X [?E{[@Z  
      width = 3, \Z~ <jv  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 LVL#qNIu  
      finish set_P_in(pump, P_pump_in) ICTjUQP  
    t6)R 37  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 " ;\EU4R  
      yscale = 2, qa6HwlC1  
      step = 5,  FE1En  
      color = magenta, 'p%w_VbI  
      width = 3, 7CX5pRNL  
      "population of level 2 (%, rightscale)", -}8r1jQH;  
      finish set_P_in(pump, P_pump_in) X-j<fX_  
    7&V3f=aj6  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 Dd$8{~h"G  
      yscale = 2, '6T  *b  
      step = 5, |I.5]r-EK  
      color = red, $u)#-X;x  
      width = 3, D{4]c)>  
      "population of level 3 (%, rightscale)", z34+1d  
      finish set_P_in(pump, P_pump_in) w7<4D,hk  
    B5;94YIN  
    ZCfd<NS?  
    ; ------------- F5w=tK  
    diagram 3:                         !输出图表3 JNu+e#.Y  
    }F3}"Ik'L  
    "Variation ofthe Fiber Length" F-Ku0z]){?  
    HLE%f;  
    x: 0.1, 5 owO &[D/  
    "fiber length(m)", @x mt-t8~A  
    y: 0, 10 w&&)v~Y_  
    "opticalpowers (W)", @y P>|sCF  
    frame ,^@/I:  
    hx q+XU Cnv  
    hy X8XE_VtP  
    $@WA}\D  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 5ai$W`6  
      step = 20,             a1v?{vu\E  
      color = blue, "YV vmCp  
      width = 3, Z>W&vDeuN  
      "signal output" JS&;7Z$KX  
    G4uOY?0N  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 (IAR-957pN  
       step = 20, color = red, width = 3,"residual pump" h>/L4j*Z  
    ED A6b]  
    ! set_L(L_f) {restore the original fiber length } :,'.b|Tl.b  
    u>2opI~m  
    R>,_C7]u  
    ; ------------- 5N|hsfkx  
    diagram 4:                                  !输出图表4 lhF)$M  
    #5^S@}e  
    "TransverseProfiles" qqu ]r  
    )fc+B_  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) IXR%IggJA  
    z*N%kcw"  
    x: 0, 1.4 * r_co /um asYUb&Hz88  
    "radialposition (µm)", @x XBTjb  
    y: 0, 1.2 * I_max *cm^2 \Iz-<:gA'  
    "intensity (W/ cm&sup2;)", @y b .xG'  
    y2: 0, 1.3 * N_Tm {XLRrU!*  
    frame k,r}X:<6jz  
    hx 2:6lr4{uY  
    hy e~$aJO@B.R  
    /,ISx }  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 &LhR0A  
      yscale = 2, tSunO-\y  
      color = gray, m$$sNPnT  
      width = 3, =K9-  
      maxconnect = 1, zY&/lWW._  
      "N_dop (right scale)" ^=w){]G  
    }DkdF  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 ^<Sy{KY  
      color = red, +`.,6TNVlY  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 E,|OMK#   
      width = 3, x<) T,c5Y  
      "pump" VCUsvhI  
    q>VvXUyK,  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 >NBwtF>  
      color = blue, zUJPINDb  
      maxconnect = 1, ->&amPv  
      width = 3, C33=<r[;N<  
      "signal" sW@_q8lG  
    NO.5Vy  
    J-~:W~Qx4N  
    ; ------------- lJU]sZ9~b  
    diagram 5:                                  !输出图表5 bO+L#Kf  
    qmbhx9V   
    "TransitionCross-sections" }9Awv#+  
    ;VPYWss  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) bVds23q  
     *l-F  
    x: 1450, 2050 +HY.m+T  
    "wavelength(nm)", @x Opf^#6'mq  
    y: 0, 0.6 :ZU-Vi.b  
    "cross-sections(1e-24 m&sup2;)", @y jN sM&s,  
    frame IlMst16q5  
    hx A{\!nq_~N  
    hy O29GPs  
    lC=T{rR  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 Zex`n:Wl?j  
      color = red, =tqChw   
      width = 3, AF"XsEt.e  
      "absorption" :&$ WWv  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 6 G?7>M  
      color = blue, XM?C7/^k  
      width = 3, Xe<kdB3  
      "emission" #|acRZ9 }  
    *!yY7 ~#  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚