切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2170阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2171
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2020-05-28
    (* eAR]~ NiW  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, /2Q@M>  
    pumped at 790 nm. Across-relaxation process allows for efficient xO"fg9a  
    population of theupper laser level. P0WI QG+  
    *)            !(*  *)注释语句 c~bi ~ f  
    sJu^deX  
    diagram shown: 1,2,3,4,5  !指定输出图表 / V}>v  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 ^o^[p %  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 R%B"Gtl)  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 No#1Ikw  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 XG2&_u&  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 Y?G\@ 6  
    B@XnHh5y  
    include"Units.inc"         !读取“Units.inc”文件中内容 UZ#Yd|'PD  
    z=C'qF`  
    include"Tm-silicate.inc"    !读取光谱数据 S?_/Po|  
    z9OhY]PPF  
    ; Basic fiberparameters:    !定义基本光纤参数 Q[?O+  
    L_f := 4 { fiberlength }      !光纤长度 NGZEUtj  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 K8xwPoRL  
    r_co := 6 um { coreradius }                !纤芯半径 A<-Prvryt  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 7 $AEh+f  
    L7oLV?k  
    ; Parameters of thechannels:                !定义光信道 CZaUrr  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm aBv3vSq> Q  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 1haNca_6,  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W mqxgrb7  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um ZuF"GNUC  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 bV|(V>  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 ]*b}^PQM^  
    ,9jq @_  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm e`gOc*  
    w_s := 7 um                          !信号光的半径 S ykblP37  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 )c~1s  
    loss_s := 0                            !信号光寄生损耗为0 rz/^_dV  
    8/lv,m#  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 9gFb=&1k  
    F-K=Ot j  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 iEd%8 F h  
    calc 2p'ujAK  
      begin {c5%.<O  
        global allow all;                   !声明全局变量 #m 2Ss  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 i"|="O0v5  
        add_ring(r_co, N_Tm); Z(g9rz']0  
        def_ionsystem();              !光谱数据函数 zdY+?s)p  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 [X>\!mt  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 9v[cy`\  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 N$u;Q(^  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 llG^+*Y8t  
        finish_fiber();                                   FCO5SX#-g  
      end; Vf?+->-?{  
    XP#j9CF#.  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 Om #m":  
    show "Outputpowers:"                                   !输出字符串Output powers: o#(z*v@  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) <?|v-(E  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) }*vUOQQp*  
    0Vu&UD  
    \;w$"@9  
    ; ------------- ) xRm  
    diagram 1:                   !输出图表1 &n:3n  
    NyHHK8>  
    "Powers vs.Position"          !图表名称 jET$wKw%  
    "r@f&Ssxb  
    x: 0, L_f                      !命令x: 定义x坐标范围 8S;]]*cD~  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 &=bWXNU.  
    y: 0, 15                      !命令y: 定义y坐标范围 G)qNu}  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 xDRNtLj<u  
    frame          !frame改变坐标系的设置 B^4D`0G[4  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) ,SEC~)L  
    hx             !平行于x方向网格 $|0_[~0-n  
    hy              !平行于y方向网格 <PBrW#:'  
    3&*_5<t\X  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 Z+jgFl 4  
      color = red,  !图形颜色 ^a9v5hu  
      width = 3,   !width线条宽度 'EsN{.l?  
      "pump"       !相应的文本字符串标签 %<^B\|d'?  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 UsT+o  
      color = blue,     H)XHlO^  
      width = 3, f-at@C1L%L  
      "fw signal" | CNsa  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 {/f\lS.5g  
      color = blue, AiUICf?{  
      style = fdashed, r >%reS  
      width = 3, wSrq?U5q  
      "bw signal" "S$4pj`<  
    8;'fWV? U  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 dV{N,;z  
      yscale = 2,            !第二个y轴的缩放比例 " oWiQ{\IP  
      color = magenta, O0`k6$=6r  
      width = 3, "wk~[>  
      style = fdashed, P38D-fLq  
      "n2 (%, right scale)" ?NazfK  
    ts2;?`~  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 BIx Z4Ft  
      yscale = 2, $@8$_g|Wz  
      color = red, eBZ^YY<*g  
      width = 3, B?}ZAw>  
      style = fdashed, ^QX3p,Y  
      "n3 (%, right scale)" UNc!6Q-.  
    GyE-fB4C  
     [Tha j  
    ; ------------- =M]f7lJ  
    diagram 2:                    !输出图表2 4AI\'M"d  
    C %l!"s^  
    "Variation ofthe Pump Power" ]?<j]u0J  
    rh;@|/<l  
    x: 0, 10 |T53m;D  
    "pump inputpower (W)", @x 6#NptXB  
    y: 0, 10 kYxb@Zn=|  
    y2: 0, 100 qPgLSZv  
    frame FB<#N+L\  
    hx [UJC/GtjS  
    hy -Fcg}\9  
    legpos 150, 150 W_z2Fs"A  
    2FHWOy /N@  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 #q2 cVN1  
      step = 5, n-q  
      color = blue, MPt:bf#  
      width = 3, INQ0h`T  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 Vc!` BiH  
      finish set_P_in(pump, P_pump_in) `N 0Mm7  
    |R Ux)&  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 u!in>]^  
      yscale = 2, oObm5e*Z  
      step = 5, vfG4PJ 6  
      color = magenta, ]<z4p'F1%  
      width = 3, /I2RU2|B  
      "population of level 2 (%, rightscale)", 1i;-mYGaMn  
      finish set_P_in(pump, P_pump_in) <I.anIB:U  
    N 3IF j  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 RhM]OJd'  
      yscale = 2, #*^vd{fl  
      step = 5, a`.] 8Jy)  
      color = red, y~)rZ-eSB  
      width = 3, L(tA~Z"k  
      "population of level 3 (%, rightscale)", _is<.&f6  
      finish set_P_in(pump, P_pump_in) nZ?BC O  
    M{Ss?G4H  
    vywd&7gK  
    ; ------------- # 4E@y<l$  
    diagram 3:                         !输出图表3 Z5aU7  
    5m,{?M`  
    "Variation ofthe Fiber Length" y74Ph:^ k  
    Y40Hcc+Fx  
    x: 0.1, 5 <1tFwC|4BJ  
    "fiber length(m)", @x -^=sxi,V  
    y: 0, 10 8D[8(5  
    "opticalpowers (W)", @y ZM oV!lu  
    frame rM6^pzxe  
    hx /s.O3x._'  
    hy ..yuEA  
    *@'4 A :A  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 XGE:ZVpW  
      step = 20,             M7"I]$|\  
      color = blue, =|IB=  
      width = 3, k$</7 IuH  
      "signal output" 'LZF^m _<<  
    y=y=W5#;77  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 \tFg10  
       step = 20, color = red, width = 3,"residual pump" %MyA;{-F6  
    Sfc0 ~1  
    ! set_L(L_f) {restore the original fiber length } a' "4:(L  
    UkrqHHpy  
    ;2"#X2B  
    ; ------------- YH33E~f  
    diagram 4:                                  !输出图表4 EL+6u>\- k  
    loVUB'OSv  
    "TransverseProfiles" ?c)PBJ+]  
    XHu Y'\;-  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) Z&W|O>QTl  
    =G9%Hz5~:  
    x: 0, 1.4 * r_co /um bX#IE[Yp}  
    "radialposition (µm)", @x ,)mqd2)+"  
    y: 0, 1.2 * I_max *cm^2 P 3uAS  
    "intensity (W/ cm&sup2;)", @y BcaMeb-Z  
    y2: 0, 1.3 * N_Tm +5Z0-N@  
    frame v)@EK6Nty  
    hx 4,L(  
    hy /G$8j$  
    0T2h3,  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 gwk$|aT@  
      yscale = 2, $Z)Dvy|  
      color = gray, c;_GZ}8  
      width = 3, .J' 8d"+  
      maxconnect = 1, |+Z, 7~!  
      "N_dop (right scale)" /0QGU4=  
    fq/F| c  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 =jdO2MgSg*  
      color = red, f!;i$Oif  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 rDkAeX0  
      width = 3, vlCjh! x  
      "pump" d;&'uiS  
    5VIpA  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 A0.) =q  
      color = blue, ty]JUvR@  
      maxconnect = 1, {= Dtajz  
      width = 3, !!&H'XEJV  
      "signal" xkR--/f  
    H=]$9ZH!  
    E",s]  
    ; ------------- _3<J!$]&p  
    diagram 5:                                  !输出图表5 ey<u  
    :T3I"  
    "TransitionCross-sections" G1M}g8 ]h  
    [0CoQ5:d?&  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) %Qc#v$;+J  
    }xTTz,Oj$  
    x: 1450, 2050 !\Jj}iX3_  
    "wavelength(nm)", @x tr"iluwGc  
    y: 0, 0.6 T/G1v;]  
    "cross-sections(1e-24 m&sup2;)", @y Z"Z&X0O j  
    frame 1\q(xka{  
    hx XOzPi*V**  
    hy 5sC{5LJzC  
    x!bFbi#!"  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 +U&aK dQs  
      color = red, uRG0} >]|U  
      width = 3, (:E_m|00;  
      "absorption" F.c`0u;=  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 qgrRH'  
      color = blue, +<6L>ZAL  
      width = 3, )hj77~{ +  
      "emission" I z~#G6]M  
    e8gJ }8Fj  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚