(* i!0w? /g9
Demo for program"RP Fiber Power": thulium-doped fiber laser, 7Z%EXDm4/c
pumped at 790 nm. Across-relaxation process allows for efficient K/WnK:LU
population of theupper laser level. (bhMo^3/*
*) !(* *)注释语句 )(b,v/:
PL"u^G`
diagram shown: 1,2,3,4,5 !指定输出图表 N;Hoi8W
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 zplAH!s5''
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 (sM$=M<$
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 qZQB"Q.*
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 6=N!()s
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 )M3}6^s]
hA=.${uIO
include"Units.inc" !读取“Units.inc”文件中内容 qmmQHS
L#h uTKX}
include"Tm-silicate.inc" !读取光谱数据 $ljzw@k
_*iy *:(o
; Basic fiberparameters: !定义基本光纤参数 PFR64HK2
L_f := 4 { fiberlength } !光纤长度 /UWv}f
0
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 j(aok5:e
r_co := 6 um { coreradius } !纤芯半径 QC\r|RXW
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 7QSrC/e
I{nrOb1G(
; Parameters of thechannels: !定义光信道 813t=A
l_p := 790 nm {pump wavelength } !泵浦光波长790nm \d-H+t]
dir_p := forward {pump direction (forward or backward) } !前向泵浦 !LI
8Xk
P_pump_in := 5 {input pump power } !输入泵浦功率5W @kstG3@
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um `@<>"ff#F
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 wWYo\WH'
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 o?,c#g
(V(8E%<c
l_s := 1940 nm {signal wavelength } !信号光波长1940nm C>NLZMT
w_s := 7 um !信号光的半径 x*'2%3C~
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 E;1QD/E$
loss_s := 0 !信号光寄生损耗为0 >DM^/EAG{
DhVO}g)2#
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 D( \c?X"
z:1"d
R
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 (e"\%p`
calc )L+>^cJI<
begin R6cd;| fan
global allow all; !声明全局变量 '_q&~M{
set_fiber(L_f, No_z_steps, ''); !光纤参数 aM5Hp>'nI
add_ring(r_co, N_Tm); m'n<.1;1{j
def_ionsystem(); !光谱数据函数 0{^ 0>H0
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 #i;y[dQ
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 PenkqDc}
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 R4_BP5+
set_R(signal_fw, 1, R_oc); !设置反射率函数 ptQCqQ1_d
finish_fiber(); #fVk;]u`[3
end; *-eDUT|O
T)#e=WcP]
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 `g+Kv&546
show "Outputpowers:" !输出字符串Output powers: mI>=S
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) ;$Pjl8\
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) FZBdQhYF
JZup} {a
vqhu%ZyP
; ------------- $Wn!vbL
diagram 1: !输出图表1 u>\u}c
(jI _Dk;
"Powers vs.Position" !图表名称 ?Gnx!3Q
+\x}1bNS%j
x: 0, L_f !命令x: 定义x坐标范围 Ghf/IXq#
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 nPR*mbW
y: 0, 15 !命令y: 定义y坐标范围 Uz_OUTFM
y2: 0, 100 !命令y2: 定义第二个y坐标范围 [;Y*f,UG_-
frame !frame改变坐标系的设置 ' e:rL.
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) e3.q8r
hx !平行于x方向网格 &{e:6t
hy !平行于y方向网格 .b|!FWHNS
.+A2\F.^
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率
myOdf'=
color = red, !图形颜色 yPoa04!{=
width = 3, !width线条宽度 =3;~7bYO
"pump" !相应的文本字符串标签 kXN8hU}iq
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率
TcpaZ
'x
color = blue, &HBC9Bx/(
width = 3, dZkj|Ua~
"fw signal" duV\Kt/g^
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 bLSUF`-z
color = blue, X:JU#sI
style = fdashed, cT|aQM@iW
width = 3, ne|N!!Dmk
"bw signal" #i 5@G*
h4E[\<?
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 %7A?gY81
yscale = 2, !第二个y轴的缩放比例 :Aa5,{v_
color = magenta, O`f[9^fN
width = 3, ==npFjB
style = fdashed, U>hpYqf_
"n2 (%, right scale)" LMRq.wxbbB
|"+UCAU
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 .#{m1mr
yscale = 2, $u cmE
color = red, H~;s$!lG
width = 3, wBz5_ OFVw
style = fdashed, =sUrSVUeU
"n3 (%, right scale)" -ZH6*7!
+[":W?j
*?~&O.R"
; ------------- LMaY}m>
diagram 2: !输出图表2 mvu$
&?*H`5#?G
"Variation ofthe Pump Power" i4\DSQJ
~j yl
x: 0, 10 ^wD@)Dz
"pump inputpower (W)", @x A5^tus/y
y: 0, 10 cuQAXqXC@
y2: 0, 100 ] p*Fq^
frame R6`,}<A]@
hx &~"e["gF=
hy nEgYypwr
legpos 150, 150 YSru5Q
ozkmZ;
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 +:&|]$8<
step = 5, ZjveXrx
color = blue, W[qQDn!r
width = 3, Xcb'qU!2-^
"signal output power (W, leftscale)", !相应的文本字符串标签 s
>7(S%#N
finish set_P_in(pump, P_pump_in) [! YSW'
xeW}`i5_w
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 LvW7>-
yscale = 2, 78kT}kgW
step = 5, ]5+<Rqdbg
color = magenta, /3o@I5
width = 3, &5n0J
"population of level 2 (%, rightscale)", MNocXK
finish set_P_in(pump, P_pump_in) tr<0NV62>
eT@,QA(3
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 cIg+^Tl
yscale = 2, /{!?e<N>
step = 5, bj_oA
i
color = red, cm`x;[e6l
width = 3, eVRjU
"population of level 3 (%, rightscale)", ]dL#k>$0q
finish set_P_in(pump, P_pump_in) %Wa. 2s
*eAzk2
-aQf(=
; ------------- \s_`ZEB
diagram 3: !输出图表3 c}mWAZ=wF
6$
ag<
"Variation ofthe Fiber Length" 94xWMX2
A;7At!kK
x: 0.1, 5 ^ ^k]2oG
"fiber length(m)", @x ~JTp8E9kw
y: 0, 10 a1gaB:w5n
"opticalpowers (W)", @y en-HX3'
frame cc:,,T/i
hx lH"4"r
hy c3C<P
d7qYz7=d
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 c63yJqiW
step = 20, *d&+?!
color = blue, ,o sM|!,
width = 3, %Mr^~7nN
"signal output" ehyCAp0oI
hi^t zpy
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 L]{1@~E:q
step = 20, color = red, width = 3,"residual pump" &'oZ]}^0
>_SqM! ^v
! set_L(L_f) {restore the original fiber length } &nfGRb
4 {rj 4P?
|%12Vr]J
; ------------- 52q<|MW%
diagram 4: !输出图表4 0%"sOth
>%c7|\q[ R
"TransverseProfiles" d< b ,].
%SJFuw"
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) Rp_)LA
Q$8K-5U%
x: 0, 1.4 * r_co /um d'2q~
"radialposition (µm)", @x lFbf9s:$B
y: 0, 1.2 * I_max *cm^2 s> JWNP
"intensity (W/ cm²)", @y Og<nnq
y2: 0, 1.3 * N_Tm evGUl~</~
frame ,O`~ D~$
hx v6KRE3:V
hy agj_l}=gO
#T$yQ;eQ
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 v&Oc,W
yscale = 2, $n* wS,
color = gray, ZHimS7
width = 3, z65Q"A
maxconnect = 1, Ih^ziDcW
"N_dop (right scale)" ")D5ulb\
?V' zG&n@
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 VQ^}f/A
color = red, 1s6L]&B
maxconnect = 1, !限制图形区域高度,修正为100%的高度 /<Yz;\:Jy
width = 3, Zk>#T:{h
"pump" CZw]@2/JuQ
aM|;3j1p
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 2JL\1=k;
color = blue, oe,yCdPs
maxconnect = 1, 0{qe1pb w
width = 3, IM=3n%6
"signal" ]4eIhj?
]? %*3I
=H;F{J"
; ------------- % 9} ?*U
diagram 5: !输出图表5 Z~v-@
#H.DnW
"TransitionCross-sections" Y>Fh<"A|$
0F9p'_C
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) U5yBU9\G
E-Y4TBZ*
x: 1450, 2050 SSysOeD+
"wavelength(nm)", @x odhcU5
y: 0, 0.6 v /x~L$[
"cross-sections(1e-24 m²)", @y HUalD3
\
frame uUJH^pW
hx /&+*X)#v
hy GS+Z(,J>=
f f5 e]^,
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 d[`vd^hI
color = red, _*fOn@Vwo
width = 3, ndHUQ$/(
"absorption" {'z(
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 GD0Q`gWNe
color = blue, +d=w%r)
width = 3, 2Z+:^5
"emission" jJyS^*.X
d8.A8<wUr