(* iZ3%'~K<3J
Demo for program"RP Fiber Power": thulium-doped fiber laser, !be6}
pumped at 790 nm. Across-relaxation process allows for efficient {rG`Upp
population of theupper laser level. 2I#4jy/g
*) !(* *)注释语句 |&t 2jD(
xNh#= 6__9
diagram shown: 1,2,3,4,5 !指定输出图表 Uaho.(_GP
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 j:9kJq>mv
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 0}UJP
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 *$Df)iI6
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 7lvUIc?krW
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 ~iZMV ?w
P/'~&*m-
include"Units.inc" !读取“Units.inc”文件中内容 0omg%1vt<A
PL#8~e;'
include"Tm-silicate.inc" !读取光谱数据 Xh/i5}5 t
:H$D-pbJ4
; Basic fiberparameters: !定义基本光纤参数 ?5qo>W<7
L_f := 4 { fiberlength } !光纤长度 uLsGb=m%b
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 >Udb*76
D
r_co := 6 um { coreradius } !纤芯半径 [UVxtM J
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 ~O)Uz|
tj ,*-).4%
; Parameters of thechannels: !定义光信道 '|b {
l_p := 790 nm {pump wavelength } !泵浦光波长790nm a<%WFix
dir_p := forward {pump direction (forward or backward) } !前向泵浦 U/2g N
H
P_pump_in := 5 {input pump power } !输入泵浦功率5W IPU'M*|Q
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um 7 N?x29
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 .(,4a<I?%N
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 Hut
au^l
.[hQ#3)W
l_s := 1940 nm {signal wavelength } !信号光波长1940nm dUtxG ~9
w_s := 7 um !信号光的半径 JrTSu`S('
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 n<p`OKIV3
loss_s := 0 !信号光寄生损耗为0 Tw{H+B"uVz
I)E+
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 xQ62V11R6
aXyu%<@k
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 -L4AM%(9
calc ~pn9x;N%H
begin URDb
global allow all; !声明全局变量 Sq&*K9:z
set_fiber(L_f, No_z_steps, ''); !光纤参数 >eg&i(C+
add_ring(r_co, N_Tm); AC=cz!3iB
def_ionsystem(); !光谱数据函数 I?v)>||Q
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 t@1e9uR
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 (}fbs/8\p
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 ch<Fi%)
set_R(signal_fw, 1, R_oc); !设置反射率函数 X-! yi
finish_fiber(); 0}q ij
end; kx'ncxN~
4:8#&eF
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 J.:"yK""
show "Outputpowers:" !输出字符串Output powers: +vkqig
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) H*3f8A&@s
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) d3T|N\(DL
UM7Ft"
!W/O g 5n
; ------------- Phl't~k
diagram 1: !输出图表1 p8BA an3
-9/YS
"Powers vs.Position" !图表名称 iYA06~d
-8qLshQ
x: 0, L_f !命令x: 定义x坐标范围 8Uvf9,I'
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 %4 cUa| =?
y: 0, 15 !命令y: 定义y坐标范围 Mk=
tS+
y2: 0, 100 !命令y2: 定义第二个y坐标范围 y-}lz#N
frame !frame改变坐标系的设置 gLQWL}0O
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) *9%<}z
hx !平行于x方向网格 AqvRzi(Y
hy !平行于y方向网格 &by,uVb=|{
UuAn`oYhV
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 0G9@A8LU
color = red, !图形颜色 JGSeu =)
width = 3, !width线条宽度 3mZX@h@
"pump" !相应的文本字符串标签 <"/Y`/
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 Eszwg
color = blue, a@zKi;
width = 3, %|Gi'-'|b$
"fw signal" !
2"zz/N{
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 @g[p>t> *
color = blue, 4r-jpVN~
style = fdashed, 5?k_Q"~
width = 3, e}f!zA
"bw signal" q#I/N$F
M9]O!{sq
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 hT^6Ifm
yscale = 2, !第二个y轴的缩放比例 @fT*fv
color = magenta, AZorz Q]s
width = 3, x 3#1
style = fdashed, v*QobI
"n2 (%, right scale)" Iqe4O~)
/J3e[?78u
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 Q <^'v>~n
yscale = 2, {8Hrb^8!
color = red, >
zh%CF$
width = 3, ,Zzh. z::D
style = fdashed, *f.eyg#
"n3 (%, right scale)" }@4m@_gR?
\Yz>=rY
?;+=bKw0
; ------------- O9A.WSJ
>}
diagram 2: !输出图表2 CCp{ZH s
/`D]m?
"Variation ofthe Pump Power" +uKlg#wqc
s}`ydwSg8
x: 0, 10 [xk1}D
"pump inputpower (W)", @x C#p$YQf
y: 0, 10 }Nl-3I.S^
y2: 0, 100 rcq(p(!
frame tn6\0_5n
hx v(FO8*5DZ
hy R"!.|fH6
legpos 150, 150 %D\TLY
nBaY|
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 iF{eGi
step = 5, J@H9nw+Q
color = blue, /t%IU
width = 3, g!V;*[
"signal output power (W, leftscale)", !相应的文本字符串标签 Yj/S(4(h?
finish set_P_in(pump, P_pump_in) d'kQE_y2.
f 7y1V(t
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 EHcqj;@m
yscale = 2, &y mfA{s
step = 5, 4kT| /bp
color = magenta, j?+FS`a!
width = 3, \5k[ "8~
"population of level 2 (%, rightscale)", Y@TZReb
finish set_P_in(pump, P_pump_in) TPq5"mco
I&YYw8&
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 =JOupw
yscale = 2, V(=~p[
step = 5, 6WgGewn
color = red, T}$1<^NK
width = 3, 5sM-E>8G^{
"population of level 3 (%, rightscale)", ZJ 8~f
finish set_P_in(pump, P_pump_in) g>_6O[;t%
E6NkuBQ((
,@/b7BVv
; ------------- X{9D fgW
diagram 3: !输出图表3 %TPnC'2
| 5Mhrb4.
"Variation ofthe Fiber Length" 68*h#&
1V+a;-?
x: 0.1, 5 a_L&*%;
"fiber length(m)", @x )2g\GRg6
y: 0, 10 /wKW
"opticalpowers (W)", @y <)uUAh
frame R4_4 FEo
hx x5WFPY$wM
hy /$! /F@^
*"P
:ySA
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 3K @dW"3
step = 20, Fm`hFBKW
color = blue, $iEM$
width = 3, Vu*yEF}
"signal output" E O52 E|
.D-} 2<z
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 xA`Q4"[I
step = 20, color = red, width = 3,"residual pump" =mn)].Wg
0X~
! set_L(L_f) {restore the original fiber length }
zKx?cEpE
U!XC-RA3
_
g*N~r['dZ
; ------------- q^JJ5{36e
diagram 4: !输出图表4 bVQLj}%
;? '`XB!
"TransverseProfiles" d?oupW}uu
mK%!9F
V
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) 9Y&n$svB
"
nq4!
x: 0, 1.4 * r_co /um -=&r}/&
"radialposition (µm)", @x [`Ol&R4k
y: 0, 1.2 * I_max *cm^2 ZC_b`q<
"intensity (W/ cm²)", @y =V5<>5"M?
y2: 0, 1.3 * N_Tm );kO27dg
frame 1U;je,)
hx hvtg_w6K
hy 7Wmk"gp
e-ljwCD
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 ^cZF#%k
yscale = 2, %ErLL@e
color = gray, "w*VyD
width = 3, 2IFri|;-eb
maxconnect = 1, MSUkCWt!
"N_dop (right scale)" 05gU~6AF
vd|PTHV_
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 >DBaKLu\
color = red, we4e>)
maxconnect = 1, !限制图形区域高度,修正为100%的高度 <*V%!pwIG
width = 3, >~){KV1~
"pump" -;a}'1HOE
N$aLCX
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 beRpA;
color = blue, \L}Soe'
maxconnect = 1, B# |w}hj
width = 3, H1yl88K
"signal" r,(rWptf4
'v GrbmK
I5mnV<QA^
; ------------- v,bes[Ik
diagram 5: !输出图表5 elG<\[
skh6L!6*<
"TransitionCross-sections" EoD;'+d
1#qyD3K
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) %{!*)V\
x~j>Lvw L
x: 1450, 2050 %E}f7GT4
"wavelength(nm)", @x )'?3%$EM
y: 0, 0.6 T6=, A }t-
"cross-sections(1e-24 m²)", @y 0UB)FK,9
frame luACdC
hx n2zJ'
hy ^q-]."W]t~
)s5Q4m!
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 kO{A]LnAH
color = red, qa)X\0
width = 3, 5<wIJ5t
"absorption" y2;uG2IS_g
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 Qh<_/X?
color = blue, }dQW-U
width = 3, .t*MGUg
"emission" Azvj(j
bCHJLtDQ