切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2326阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2176
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2020-05-28
    (* i!0w? /g9  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, 7Z%EXDm4/c  
    pumped at 790 nm. Across-relaxation process allows for efficient K/WnK:LU  
    population of theupper laser level. (bhMo^3/*  
    *)            !(*  *)注释语句 )(b, v/:  
     PL"u^G`  
    diagram shown: 1,2,3,4,5  !指定输出图表 N;Hoi8W  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 zplAH!s5''  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 (sM$=M<$  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 qZQB"Q.*  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 6=N!()s  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 )M3} 6^s]  
    hA=.${uIO  
    include"Units.inc"         !读取“Units.inc”文件中内容 qmmQH S  
    L#huTKX}  
    include"Tm-silicate.inc"    !读取光谱数据 $ljzw@k  
    _*iy *:(o  
    ; Basic fiberparameters:    !定义基本光纤参数 PFR64HK2  
    L_f := 4 { fiberlength }      !光纤长度 &#/UWv}f 0  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 j(aok5:e  
    r_co := 6 um { coreradius }                !纤芯半径 QC\r|RXW  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 7QSr C/e  
    I{nrOb1G(  
    ; Parameters of thechannels:                !定义光信道 813t=A  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm \d-H+t]  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 !LI 8Xk  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W @kst G3@  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um `@<>"ff#F  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 wWYo\WH'  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 o?,c#g  
    (V(8E%<c  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm C>NLZM T  
    w_s := 7 um                          !信号光的半径 x*'2%3C~  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 E;1QD/E$  
    loss_s := 0                            !信号光寄生损耗为0 >DM^/EAG{  
    DhVO}g)2#  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 D( \c?X"  
    z:1"d R   
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 (e"\%p`  
    calc )L+>^cJI<  
      begin R6cd;| fan  
        global allow all;                   !声明全局变量 '_q&~M{  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 aM5Hp>'nI  
        add_ring(r_co, N_Tm); m'n<.1;1{j  
        def_ionsystem();              !光谱数据函数 0{^ 0>H0  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 #i;y[dQ  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 PenkqDc}  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 R4_BP5+  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 ptQCqQ1_d  
        finish_fiber();                                   #fVk;]u`[3  
      end; *-eDU T|O  
    T)#e=WcP]  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 `g+Kv&546  
    show "Outputpowers:"                                   !输出字符串Output powers: mI> =S  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) ;$Pjl8\  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) FZBdQhYF  
    JZup} {a  
    vqhu%ZyP  
    ; ------------- $Wn!vbL  
    diagram 1:                   !输出图表1 u>\u}c  
    (jI_Dk;  
    "Powers vs.Position"          !图表名称 ?Gnx!3Q  
    +\x}1bNS%j  
    x: 0, L_f                      !命令x: 定义x坐标范围 Ghf/IXq#  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 nPR*mbW  
    y: 0, 15                      !命令y: 定义y坐标范围 Uz_OUTFM  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 [;Y*f,UG_-  
    frame          !frame改变坐标系的设置 ' e:rL.  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) e3.q8r  
    hx             !平行于x方向网格 &{e:6t  
    hy              !平行于y方向网格 .b|!FWHNS  
    .+A2\F.^  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率  myOdf'=  
      color = red,  !图形颜色 yPoa04!{=  
      width = 3,   !width线条宽度 =3;~7bYO  
      "pump"       !相应的文本字符串标签 kXN8hU}iq  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 TcpaZ 'x  
      color = blue,     &HBC9Bx/(  
      width = 3, dZkj|Ua~  
      "fw signal" duV\Kt/g^  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 bLSUF`-z  
      color = blue, X:JU#sI  
      style = fdashed, cT|aQM@iW  
      width = 3, ne|N!!Dmk  
      "bw signal" #i  5@G*  
    h4E[\<?  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 %7A?gY81  
      yscale = 2,            !第二个y轴的缩放比例 :Aa5,{v _  
      color = magenta, O`f[9^fN  
      width = 3, ==npFjB  
      style = fdashed, U>hpYqf_  
      "n2 (%, right scale)" LMRq.wxbbB  
    |"+UCAU  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 .#{m1mr  
      yscale = 2,  $ucmE  
      color = red, H~; s$!lG  
      width = 3, wBz5_ OFVw  
      style = fdashed, =sUrSVUeU  
      "n3 (%, right scale)" -ZH6*7!  
    +[":W?j  
    *?~&O.R"  
    ; ------------- LMaY}m>  
    diagram 2:                    !输出图表2 mvu$  
    &?*H`5#?G  
    "Variation ofthe Pump Power" i4\DSQJ  
    ~j yl  
    x: 0, 10 ^wD@)Dz  
    "pump inputpower (W)", @x A5^tus/y  
    y: 0, 10 cuQAXqXC@  
    y2: 0, 100 ]p*Fq^  
    frame R6`,}<A]@  
    hx &~"e["gF=  
    hy nEgYypwr  
    legpos 150, 150 YSr u5Q  
    ozkmZ;  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 +:&|]$8<  
      step = 5, ZjveXrx  
      color = blue, W[qQDn!r  
      width = 3, Xcb'qU!2-^  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 s >7(S%#N  
      finish set_P_in(pump, P_pump_in) [!YSW'  
    xeW}`i5_w  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 LvW7>-  
      yscale = 2, 78kT}kgW  
      step = 5, ]5+<Rqdbg  
      color = magenta, /3o@I5  
      width = 3, &5n0J  
      "population of level 2 (%, rightscale)", MNocXK  
      finish set_P_in(pump, P_pump_in) tr<0NV62>  
    eT@, QA(3  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 cIg+^Tl  
      yscale = 2, /{!?e<N>  
      step = 5, bj_oA i  
      color = red, cm`x;[e6l  
      width = 3, e VRjU  
      "population of level 3 (%, rightscale)", ]dL#k>$0q  
      finish set_P_in(pump, P_pump_in) %Wa. 2s  
    *eAzk2  
    - aQf( =  
    ; ------------- \s_`ZEB  
    diagram 3:                         !输出图表3 c}mWAZ=wF  
    6$ ag<  
    "Variation ofthe Fiber Length" 94xWMX2  
    A;7At!kK  
    x: 0.1, 5 ^ ^k]2oG  
    "fiber length(m)", @x ~JTp8E9kw  
    y: 0, 10 a1g aB:w5n  
    "opticalpowers (W)", @y en-HX3'  
    frame cc:,,T /i  
    hx lH"4"r  
    hy c3C<P  
    d7qYz7=d  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 c63yJqiW  
      step = 20,             *d&+? !  
      color = blue, ,o s M|!,  
      width = 3, %Mr^~7nN  
      "signal output" ehyCAp0oI  
    hi^t zpy  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 L]{1@~E:q  
       step = 20, color = red, width = 3,"residual pump" &'oZ]}^ 0  
    >_SqM!^v  
    ! set_L(L_f) {restore the original fiber length } &nfGRb  
    4{rj 4P?  
    |%12Vr]J  
    ; ------------- 52q<|MW%  
    diagram 4:                                  !输出图表4 0%"sOth  
    >%c7|\q[R  
    "TransverseProfiles" d< b,].  
    %SJFuw"  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) Rp_)LA  
    Q$8K-5U%  
    x: 0, 1.4 * r_co /um d'2q~   
    "radialposition (µm)", @x lFbf9s:$B  
    y: 0, 1.2 * I_max *cm^2 s> JWNP  
    "intensity (W/ cm&sup2;)", @y Og<nnq  
    y2: 0, 1.3 * N_Tm evGUl~</~  
    frame ,O`~ D~$  
    hx v 6KRE3:V  
    hy agj_l}=gO  
    #T$yQ;eQ  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 v&Oc,W  
      yscale = 2, $n* wS,  
      color = gray, ZHimS7  
      width = 3, z65Q"A  
      maxconnect = 1, Ih^ziDcW  
      "N_dop (right scale)" ")D5ulb\  
    ?V' zG&n@  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 VQ^}f/A  
      color = red, 1s6L]&B  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 /<Yz;\:Jy  
      width = 3, Zk> #T:{h  
      "pump" CZw]@2/JuQ  
    aM|;3j1p  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 2JL\1=k;  
      color = blue, o e,yCdPs  
      maxconnect = 1, 0{qe1pb w  
      width = 3, IM=3n%6  
      "signal" ]4eIhj?  
    ]? % *3I  
    =H;F{J "  
    ; ------------- % 9} ?*U  
    diagram 5:                                  !输出图表5 Z~v-@  
    #H.DnW  
    "TransitionCross-sections" Y>Fh<"A|$  
    0F9p'_C  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) U5yBU9\G  
    E-Y4TBZ*  
    x: 1450, 2050 SSysOeD+  
    "wavelength(nm)", @x odh cU5  
    y: 0, 0.6 v/x~L$[  
    "cross-sections(1e-24 m&sup2;)", @y HUalD3 \  
    frame uUJH^pW  
    hx /&+*X)#v  
    hy GS+Z(,J>=  
    ff5 e]^,  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 d[`vd^hI  
      color = red, _*fOn@Vwo  
      width = 3, ndHUQ$/(  
      "absorption" {'z(  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 GD0Q`gWNe  
      color = blue, +d=w%r)  
      width = 3, 2Z+:^5  
      "emission" jJyS^*.X  
    d8.A8<wUr  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚