(* eAR]~
NiW
Demo for program"RP Fiber Power": thulium-doped fiber laser, /2Q@M>
pumped at 790 nm. Across-relaxation process allows for efficient xO"fg9a
population of theupper laser level. P0WI QG+
*) !(* *)注释语句 c~bi
~ f
sJu^deX
diagram shown: 1,2,3,4,5 !指定输出图表 /V}>v
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 ^o^[p %
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 R%B"Gtl)
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 No#1Ik w
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 XG2&_u&
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 Y?G\@6
B@XnHh5y
include"Units.inc" !读取“Units.inc”文件中内容 UZ#Yd|'PD
z=C'qF`
include"Tm-silicate.inc" !读取光谱数据 S?_/Po|
z9OhY]PPF
; Basic fiberparameters: !定义基本光纤参数 Q[?O+
L_f := 4 { fiberlength } !光纤长度 NGZEUtj
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 K8xwPoRL
r_co := 6 um { coreradius } !纤芯半径 A<-Prvryt
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 7 $AEh+f
L7oLV?k
; Parameters of thechannels: !定义光信道 CZaUrr
l_p := 790 nm {pump wavelength } !泵浦光波长790nm aBv3vSq>Q
dir_p := forward {pump direction (forward or backward) } !前向泵浦 1haNca_6,
P_pump_in := 5 {input pump power } !输入泵浦功率5W mqxgrb7
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um ZuF"GNUC
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 bV|(V>
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 ]*b}^PQM^
,9jq
@_
l_s := 1940 nm {signal wavelength } !信号光波长1940nm e`gOc*
w_s := 7 um !信号光的半径 S
ykblP37
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 )c~1s
loss_s := 0 !信号光寄生损耗为0 rz/^_dV
8/ lv, m#
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 9gFb=&1k
F-K=Otj
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 iEd%8 F h
calc 2p'ujAK
begin {c5%.<O
global allow all; !声明全局变量 #m 2Ss
set_fiber(L_f, No_z_steps, ''); !光纤参数 i"|="O0v5
add_ring(r_co, N_Tm); Z(g9rz']0
def_ionsystem(); !光谱数据函数 zdY+?s)p
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 [X>\!mt
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 9v[cy` \
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 N$u;Q(^
set_R(signal_fw, 1, R_oc); !设置反射率函数 llG^ +*Y8t
finish_fiber(); FCO5SX#-g
end; Vf?+->-?{
XP#j9CF#.
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 Om
#m":
show "Outputpowers:" !输出字符串Output powers: o#(z*v@
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) <?|v-(E
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) }*vUOQQp*
0Vu&UD
\;w$"@9
; ------------- )
xRm
diagram 1: !输出图表1 &n:3n
NyHHK8>
"Powers vs.Position" !图表名称 jET$wKw%
"r@f&Ssxb
x: 0, L_f !命令x: 定义x坐标范围 8S;]]*cD~
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 &=bWXNU.
y: 0, 15 !命令y: 定义y坐标范围 G)qNu }
y2: 0, 100 !命令y2: 定义第二个y坐标范围 xDRNt Lj<u
frame !frame改变坐标系的设置 B^4D`0G[4
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) ,SEC~)L
hx !平行于x方向网格 $|0_[~0-n
hy !平行于y方向网格 <PBrW#:'
3&*_5<t\X
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 Z+jgFl
4
color = red, !图形颜色 ^a9v5hu
width = 3, !width线条宽度 'EsN{.l?
"pump" !相应的文本字符串标签 %<^B\|d'?
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 UsT+o
color = blue, H)XHlO^
width = 3, f-at@C1L%L
"fw signal" |
CNsa
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 {/f\lS.5g
color = blue, AiUICf?{
style = fdashed, r >%reS
width = 3, wSrq?U5q
"bw signal" "S$4pj`<
8;'fWV?
U
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 dV{N,;z
yscale = 2, !第二个y轴的缩放比例 " oWiQ{\IP
color = magenta, O0`k6$=6r
width = 3, "wk~[>
style = fdashed, P38D-fLq
"n2 (%, right scale)" ?NazfK
ts2;?`~
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 BIx Z4Ft
yscale = 2, $@8$_g|Wz
color = red, eBZ^YY<*g
width = 3, B?}ZAw>
style = fdashed, ^QX3p,Y
"n3 (%, right scale)" UNc!6Q-.
GyE-fB4C
[Tha
j
; ------------- =M]f7lJ
diagram 2: !输出图表2 4AI\'M"d
C %l!"s^
"Variation ofthe Pump Power" ]?<j]u0J
rh;@|/<l
x: 0, 10 |T53m;D
"pump inputpower (W)", @x 6#NptXB
y: 0, 10 kYxb@Zn=|
y2: 0, 100 qPgLSZv
frame FB<#N+L\
hx [UJC/GtjS
hy -Fcg}\9
legpos 150, 150 W_z2Fs"A
2FHWOy
/N@
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 #q2cVN1
step = 5, n-q
color = blue, MPt:bf#
width = 3, INQ0h `T
"signal output power (W, leftscale)", !相应的文本字符串标签 Vc!` BiH
finish set_P_in(pump, P_pump_in) `N0Mm7
|RUx)&
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 u!in>]^
yscale = 2, oObm5e*Z
step = 5, vfG4PJ 6
color = magenta, ]<z4p'F1%
width = 3, /I2RU2|B
"population of level 2 (%, rightscale)", 1i;-mYGaMn
finish set_P_in(pump, P_pump_in) <I.anIB:U
N 3IF j
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 RhM]OJd'
yscale = 2, #*^vd{fl
step = 5, a`.] 8Jy)
color = red, y~)rZ-eSB
width = 3, L(tA~Z"k
"population of level 3 (%, rightscale)", _is<.&f6
finish set_P_in(pump, P_pump_in) nZ?BCO
M{Ss?G4H
vywd&7gK
; ------------- # 4E@y<l$
diagram 3: !输出图表3 Z5aU7
5m,{?M`
"Variation ofthe Fiber Length" y74Ph:^k
Y40Hcc+Fx
x: 0.1, 5 <1tFwC|4BJ
"fiber length(m)", @x -^=sxi,V
y: 0, 10 8D[8(5
"opticalpowers (W)", @y ZM oV!lu
frame rM6^pzxe
hx /s.O3x._'
hy ..yuEA
*@'4 A :A
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 XGE:ZVpW
step = 20, M7"I]$|\
color = blue, =|IB=
width = 3, k$</7IuH
"signal output" 'LZF^m _<<
y=y=W5#;77
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 \tFg10
step = 20, color = red, width = 3,"residual pump" %MyA;{-F6
Sfc0 ~1
! set_L(L_f) {restore the original fiber length } a' "4:(L
U krqHHpy
;2"#X2B
; ------------- YH33E~f
diagram 4: !输出图表4 EL+6u>\-k
loVUB'OSv
"TransverseProfiles" ?c)PBJ+]
XHuY'\;-
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) Z&W|O>QTl
=G9%Hz5~:
x: 0, 1.4 * r_co /um bX#IE[Yp}
"radialposition (µm)", @x ,)mqd2)+"
y: 0, 1.2 * I_max *cm^2 P 3uAS
"intensity (W/ cm²)", @y BcaMeb-Z
y2: 0, 1.3 * N_Tm +5Z0-N@
frame v)@EK6Nty
hx 4,L(
hy / G$8 j$
0T 2h3,
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 gwk$|aT@
yscale = 2, $Z)Dvy|
color = gray, c;_GZ}8
width = 3, .J' 8d"+
maxconnect = 1, |+Z,
7~!
"N_dop (right scale)" /0QGU4=
fq/F|c
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 =jdO2MgSg*
color = red, f!;i$Oif
maxconnect = 1, !限制图形区域高度,修正为100%的高度 rDkAeX0
width = 3, vlCjh! x
"pump" d;&'uiS
5VIpA
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 A0.)=q
color = blue, ty]JUvR@
maxconnect = 1, {=
Dtajz
width = 3, !!&H'XEJV
"signal" xkR--/f
H=]$9ZH!
E",s]
; ------------- _3<J!$]&p
diagram 5: !输出图表5 ey<u
:T3I"
"TransitionCross-sections" G1M}g8 ]h
[0CoQ5:d?&
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) %Qc#v$;+J
}xTTz,Oj$
x: 1450, 2050
!\Jj}iX3_
"wavelength(nm)", @x tr"iluwGc
y: 0, 0.6 T/G1v;]
"cross-sections(1e-24 m²)", @y Z"Z&X0Oj
frame 1\q(xka{
hx XOzPi*V**
hy 5sC{5LJzC
x!bFbi#!"
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 +U&aK dQs
color = red, uRG0}>]|U
width = 3, (:E_m|00;
"absorption" F.c`0u;=
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 qgrRH'
color = blue, +<6L>ZAL
width = 3, )hj77~{+
"emission" I z~#G6]M
e8gJ }8Fj