切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2546阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2176
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* %rwvY`\  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, 2 bc&sU)X  
    pumped at 790 nm. Across-relaxation process allows for efficient N>mW64_H)  
    population of theupper laser level. JT+ c7W7  
    *)            !(*  *)注释语句 qng ~,m  
    HuhQ|~C+~  
    diagram shown: 1,2,3,4,5  !指定输出图表 v~$ V  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 1%Xh[  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 jn(x-fj6R  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 vsGKCrLwh  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 7|,L{~  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 xyL"U*  
    (7 I|lf e  
    include"Units.inc"         !读取“Units.inc”文件中内容 `TBXJ(Y  
    yw1 &I^7  
    include"Tm-silicate.inc"    !读取光谱数据 U1\7Hcs$  
    yRXML\Ge  
    ; Basic fiberparameters:    !定义基本光纤参数 o'2eSm0H  
    L_f := 4 { fiberlength }      !光纤长度 $n<a`PdH  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 BT7{]2?&V  
    r_co := 6 um { coreradius }                !纤芯半径 ]#:WL)@  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 g'.OzD  
    PTe L3L  
    ; Parameters of thechannels:                !定义光信道 n !)$e;l  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm 7;jD>wp 9D  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 ,i:?c  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W q/O2E<=w*c  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um ;;0'BdsL`  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 pz%s_g'  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 ;(C<gt,r}  
    *,\v|]fc  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm X^\D"fmE.  
    w_s := 7 um                          !信号光的半径 'ZbWr*bo  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 ?I+L  
    loss_s := 0                            !信号光寄生损耗为0 b RAD_  
    gAAC>{Wh  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 }gbLWx'iG  
    v,w af`)J  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 "*d6E}wG  
    calc <KMCNCU\+  
      begin T$;S   
        global allow all;                   !声明全局变量 8(1*,CJQg  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 AC RuDY  
        add_ring(r_co, N_Tm); n`,  <g  
        def_ionsystem();              !光谱数据函数 { 4J.  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 mnm ZO}   
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 ,L ig6Z`  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 / VYT](  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 g p:0Y  
        finish_fiber();                                   sq|\!T  
      end; 'f( CN3.!  
    q5;dQ8Y ?  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 J"aw 1  
    show "Outputpowers:"                                   !输出字符串Output powers: w;'XqpP$*|  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) )r e<NE&M  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) s"jvO>[  
    ,,Qg"C  
    g89@>?Mn  
    ; ------------- 3](hMk,}  
    diagram 1:                   !输出图表1 Rqe. =+Qs  
    Q y qOtRk  
    "Powers vs.Position"          !图表名称 {4g';  
    8~Kq "wrbu  
    x: 0, L_f                      !命令x: 定义x坐标范围 ;,77|]<XE  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 _dKMBcl)E  
    y: 0, 15                      !命令y: 定义y坐标范围 AjK5x@\  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 \F|)w|v  
    frame          !frame改变坐标系的设置 |=0vgwd"S  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) Skr (C5T  
    hx             !平行于x方向网格 p9"dm{  
    hy              !平行于y方向网格 IxbQ6  
    I=!kPuw  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 u}du@Aq  
      color = red,  !图形颜色 4R'CL N |t  
      width = 3,   !width线条宽度 u@Hz7Q} P  
      "pump"       !相应的文本字符串标签 7O55mc>cF  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 #Z1%XCt  
      color = blue,     d6n_Hpxw^  
      width = 3, yrxX[Hg?@  
      "fw signal" =Kj{wA O  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 gX" -3w  
      color = blue, )+N{D=YM  
      style = fdashed, ~Dt$}l-9  
      width = 3, i^DMnvV.  
      "bw signal"  }u8(7  
    , 5W7a  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 6{6hz 8  
      yscale = 2,            !第二个y轴的缩放比例 #B\s'j[A"  
      color = magenta, C3'xU`=7  
      width = 3, L\#YFf  
      style = fdashed, q/@2=$]hH3  
      "n2 (%, right scale)" |enLv12Gm  
    Jl_W6gY"Z  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 bMK X9`*o  
      yscale = 2, f2e;N[D  
      color = red, d5^^h<'  
      width = 3, :i&]J$^;  
      style = fdashed, ^6 wWv&G[8  
      "n3 (%, right scale)" |y^=(|eM  
    iqlb,8  
    e@P(+.Ke  
    ; ------------- +,,(8=5 g  
    diagram 2:                    !输出图表2 @k i|# ro  
    35l%iaj]G5  
    "Variation ofthe Pump Power" Krae^z9R  
    -=5~h  
    x: 0, 10 O50_qu33ju  
    "pump inputpower (W)", @x }||u {[  
    y: 0, 10 LK DfV  
    y2: 0, 100 X):7#x@uy  
    frame >ZJ]yhbhK  
    hx Hs)Cf)8u  
    hy Nvd(?+c  
    legpos 150, 150 w=#'8ZuU  
    'LMj.#A<g  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 /0}Z>i K  
      step = 5, O14QlIk  
      color = blue, r#OPW7mhE  
      width = 3, V8/4:Va7 s  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 M{ncWq*_j  
      finish set_P_in(pump, P_pump_in) =803rNe  
    x*H#?.E  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 G4'Ia$  
      yscale = 2, |Y K,&  
      step = 5, ~vz%I^xW  
      color = magenta, Z3JUYEAS  
      width = 3, Q0(6n8i  
      "population of level 2 (%, rightscale)", t+a.,$U  
      finish set_P_in(pump, P_pump_in) Mz&/.A  
    6FzB-],  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 [2-n*a(q  
      yscale = 2, - )(5^OQ  
      step = 5, q;,lv3I  
      color = red, G%sq;XT61  
      width = 3, \2kLj2!  
      "population of level 3 (%, rightscale)", !'H$08Ql}  
      finish set_P_in(pump, P_pump_in) AJ%E.+@=r  
    IW~wO  
    Jw _>I  
    ; ------------- a U\|ZCH\]  
    diagram 3:                         !输出图表3 S46aUkW.  
    d Gp7EB`  
    "Variation ofthe Fiber Length" >eA@s}_8  
    b$klm6nMvm  
    x: 0.1, 5 %)7t2D  
    "fiber length(m)", @x Aax;0qGbH  
    y: 0, 10 kBZ1)?   
    "opticalpowers (W)", @y bY#BK_8 :  
    frame ~5+RK16  
    hx  U${W3Ra  
    hy y.A3hV%6b  
    7 0?iZIK _  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 ;p+'?%Y}  
      step = 20,             &B&8$X  
      color = blue, #DgHF*GG+>  
      width = 3, *|S6iSn9R!  
      "signal output" vS\2zwb}  
    Nbr$G=U  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 $~1vXe  
       step = 20, color = red, width = 3,"residual pump" VaD+:b4  
    ,40OCd!  
    ! set_L(L_f) {restore the original fiber length } 0o+Yjg>\~8  
    ai-s9r'MI?  
    _e@8E6#ce  
    ; ------------- YTyrX  
    diagram 4:                                  !输出图表4 srf}+>u&  
    t}eyfflZ  
    "TransverseProfiles" l\W|a'i  
    ol"|?*3q  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) G{!er:Vwdh  
    ]P3m=/w  
    x: 0, 1.4 * r_co /um Mm$\j*f/  
    "radialposition (µm)", @x {]+t<  
    y: 0, 1.2 * I_max *cm^2 v\,N"X(,  
    "intensity (W/ cm&sup2;)", @y 1_TuA(  
    y2: 0, 1.3 * N_Tm >>J3"XHX  
    frame wNHn.  
    hx tQ{/9bN?P  
    hy 1x|3|snz)  
    ]zlA<w8  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 \Sd8PGl*'  
      yscale = 2, nq{/fD(2  
      color = gray, L"&T3i  
      width = 3, 0:v !'  
      maxconnect = 1, Oin9lg-jR  
      "N_dop (right scale)" r""rJzFz'  
    F_*']:p  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 [@Ac#  
      color = red, nW)+-Wxq  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 uHI(-!O  
      width = 3, G[mqLI{q  
      "pump" 2Xl+}M.:Y  
    $Er=i }`  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 =#u4^%i)  
      color = blue, !ekByD  
      maxconnect = 1, [8 Pt$5]^  
      width = 3, kxhsDD$@p  
      "signal" ARu_S B  
    NVb}uH*i  
    R@K\   
    ; ------------- 6nk }k]Ji  
    diagram 5:                                  !输出图表5 eJo" Z  
    ,4H? +|!  
    "TransitionCross-sections" ,LA'^I?  
    (C. $w  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) y5sH7`2+5  
    .~o{i_JH  
    x: 1450, 2050 FFqK tj's  
    "wavelength(nm)", @x v8-My1toV  
    y: 0, 0.6 =v<w29P(g  
    "cross-sections(1e-24 m&sup2;)", @y st) is4  
    frame ;JkIZ8!  
    hx */e$S[5  
    hy 1)= H2n4)  
    "IU}>y>J  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 f![] :L  
      color = red, X)!XR/?  
      width = 3, ]00s o`  
      "absorption" #1%@R<`  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 J,Ki2'=  
      color = blue, -4x! #|]  
      width = 3, M Z"V\6T]  
      "emission" !kSemDC  
    aA4RC0'  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚