(* B`YTl~4
Demo for program"RP Fiber Power": thulium-doped fiber laser, j
>Ht @Wi
pumped at 790 nm. Across-relaxation process allows for efficient j_/>A=OD
population of theupper laser level. F7A=GF'
*) !(* *)注释语句 ^pxX]G]
\j+1V1t9
diagram shown: 1,2,3,4,5 !指定输出图表 x`U^OLV
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 H
>j
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 bNm#tmSt
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 8G9s<N}5&u
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 QaS1Dh
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 kd>hhiz|
\<.+rqa!
include"Units.inc" !读取“Units.inc”文件中内容 V n7*JS
1=r#d-\tR
include"Tm-silicate.inc" !读取光谱数据 >/g#lS 5
Jk&3%^P{m
; Basic fiberparameters: !定义基本光纤参数 0[A[U_b
L_f := 4 { fiberlength } !光纤长度 6rh5h:
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 . kQkC:~9
r_co := 6 um { coreradius } !纤芯半径 t!* ?dr
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 t
4PK}>QW
3e
#p@sB
; Parameters of thechannels: !定义光信道 +Um( h-;
l_p := 790 nm {pump wavelength } !泵浦光波长790nm 56}U8X
dir_p := forward {pump direction (forward or backward) } !前向泵浦 Bs13^^hu
P_pump_in := 5 {input pump power } !输入泵浦功率5W !_"@^?,q
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um H]P.
x!I
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 * ;-*x6
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 M.Y~1c4f
8R2QZXJb-
l_s := 1940 nm {signal wavelength } !信号光波长1940nm uya.sF0]9B
w_s := 7 um !信号光的半径 4Z1ST;
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 -jW.TT h]
loss_s := 0 !信号光寄生损耗为0 ]@dZ{H|
mi
ik%7>W
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 ,C
K{F
]|!OP
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 uvMy^_}L
calc :imW\@u
begin 2gc/3*F8
global allow all; !声明全局变量 ,">]`|?
set_fiber(L_f, No_z_steps, ''); !光纤参数 +lm{Olm'^
add_ring(r_co, N_Tm); 0x'#_G65y
def_ionsystem(); !光谱数据函数 7/!8e.M\
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 OJ,`
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 zer%W%
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 tU4s'J
set_R(signal_fw, 1, R_oc); !设置反射率函数 Ci?Ss+|
finish_fiber(); Z LB4m`
end; Cf TfL3(J
!5.8]v
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 &wie]
show "Outputpowers:" !输出字符串Output powers: E'G4Y-
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) jB`,u|FG
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) | 1E|hh@k
#EO9UW5
.>CPRVuVI
; ------------- LwrUQ)
diagram 1: !输出图表1 5XO;N s
l9}3XI.=
"Powers vs.Position" !图表名称 [.m`+
?
K;dp
x: 0, L_f !命令x: 定义x坐标范围 GO8GJ;B-U
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 H#@^R(
y: 0, 15 !命令y: 定义y坐标范围 M%Ji0v38
y2: 0, 100 !命令y2: 定义第二个y坐标范围 @$lG@I,[
frame !frame改变坐标系的设置 O?)3VT*
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) bW$J~ ynM
hx !平行于x方向网格 K&bzDzd `
hy !平行于y方向网格 iEd\6EZ
QFw +cy
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 6""G,"B
color = red, !图形颜色 ~5_Ad\n9
width = 3, !width线条宽度 {/"2Vk<H8
"pump" !相应的文本字符串标签 (0j}-iaQEZ
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 TFH \K{DM
color = blue, 9)}[7Mg:C
width = 3, Id'X*U7Q
"fw signal" 0TCBQ~ "
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 K#EvFs`s;
color = blue, }'""(,2
style = fdashed, ]+(6,ct&.
width = 3, FB
_pw!z
"bw signal" ' qWALu
uZc`jNc\
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 .P;*D ws
yscale = 2, !第二个y轴的缩放比例 f%Ns[S~ r
color = magenta, } ~h3c|
width = 3, o}W%I/s
style = fdashed, /]=C{)8
"n2 (%, right scale)" #N#'5w-G
eCN })An
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 >SML"+>
yscale = 2, afv~r>q(-
color = red, #.it]Nv{
width = 3, IOb*GTb
style = fdashed, }R1<
0~g
"n3 (%, right scale)" vI2^tX9
(^@ra$.
bLe<G
; ------------- |(pRaiJ
diagram 2: !输出图表2 L[^9E'L$
U'8bdsF_
"Variation ofthe Pump Power" lp<g\
+s,Qmmb7)
x: 0, 10 Pf|siC^;s~
"pump inputpower (W)", @x ;u;# g
y: 0, 10
f#?fxUH~
y2: 0, 100 m1),;RsH
frame ]F; f`o
hx Q7R~{5r>W
hy fJ/e(t
legpos 150, 150 Q,p}:e
'`eO\huf
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 0/!dUWdKH
step = 5, oX0 D
color = blue, ]3VI|f$$
width = 3, 7bk%mQk
"signal output power (W, leftscale)", !相应的文本字符串标签 0}$Hi
finish set_P_in(pump, P_pump_in) ?%`@ub$
F_;vO%}
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 nyBJb(5"B
yscale = 2, &Rx{.9
step = 5, L%Ow#.[C2
color = magenta, c%&:6QniZ
width = 3, #gp,V#T
"population of level 2 (%, rightscale)", V>R8GSx
finish set_P_in(pump, P_pump_in) UG2nX3?
>Y
#t`6,!
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 ^zt-HDBR_
yscale = 2, {jYOsl
step = 5, &m|wH4\
color = red, Sg6"WV{<
width = 3, c8L~S/t
"population of level 3 (%, rightscale)", Hz.(qW">5*
finish set_P_in(pump, P_pump_in) Z7_m)@%;kk
wm)#[x #
Ys,{8Y,7
; ------------- &K/ya7
diagram 3: !输出图表3 qxFB%KqU
#;%JT
"Variation ofthe Fiber Length" HuwU0:*
PNaay:a|
x: 0.1, 5 'h^0HE\~p
"fiber length(m)", @x l~6?kFy9h
y: 0, 10
/o[?D
"opticalpowers (W)", @y qW!]co
frame &jsVw)Ue
hx o(:[r@Z0z
hy %!du,2
dHK`eS$sb
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 u>TZt]h8
step = 20, AgFVv5
color = blue, u86"Y^d#
width = 3, \
C+(~9@|
"signal output" |lJX 3
n@U n
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 Xlb0/T<g!
step = 20, color = red, width = 3,"residual pump" q|Q k2M
~$p2#AqX
! set_L(L_f) {restore the original fiber length } "FTfk
=!`j7#:
hir4ZO%Zt
; ------------- 2 !At2P2
diagram 4: !输出图表4 T}"6wywM
^}:#
"TransverseProfiles" );Z1a&K5k
#|*F1K
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) _cc#Qlw 7
7.Z@Wr?
x: 0, 1.4 * r_co /um Y=?yhAw
"radialposition (µm)", @x {K9/HqH
y: 0, 1.2 * I_max *cm^2 n84GZ5O>7
"intensity (W/ cm²)", @y xfb]b2
y2: 0, 1.3 * N_Tm ,(;lIP
frame k'#(1(xj
hx Hd,p!_
hy nS&3?lx9_
tkXEHsRT
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 W2z*91$
yscale = 2, ]R=,5kK3
color = gray, RTv
qls
width = 3, ^_ kJKM,
maxconnect = 1, BRk0CLr5
"N_dop (right scale)" ]|sAK%/
BQ @huns3
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 wlEdt1G
color = red, K^B%/T]d
maxconnect = 1, !限制图形区域高度,修正为100%的高度 I('Un@hS
width = 3, @DZB9DDR
"pump" NcP.;u;`
v{9t]s>B
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 V^\8BVw
color = blue, A?`jnRo=\
maxconnect = 1, _L@2_#h!
width = 3, 1}tbH[
"signal" qA!]E^0*Ke
jq+A-T}@
1!.(4gV
; ------------- F35#dIs`&
diagram 5: !输出图表5 (sQr X{~
%zSuK8kxV
"TransitionCross-sections" 8
O 67
;q:jl~
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) J]q%gcM
Y}[ c^$S
x: 1450, 2050 #vzEu
)Ul
"wavelength(nm)", @x L*Me."*
y: 0, 0.6 YSj+\Z$(
"cross-sections(1e-24 m²)", @y V=lfl1Ev0J
frame 3;8!rNN
hx Dc+'<"
hy Zr-U&9.`
{&"L~>/o
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 OQ,NOiNkap
color = red, 3LfC{ER
width = 3, [xT:]Pw}
"absorption" RGK8'i/X
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 :Dd$i_3=
color = blue, gd0Vp Xf'
width = 3, Q7g>4GZC
"emission" 6:]*c[7
;/0 Q1-