切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2169阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2171
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* PDtaL  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, *VD-c  
    pumped at 790 nm. Across-relaxation process allows for efficient 6r^(VT  
    population of theupper laser level. :vm*miOF  
    *)            !(*  *)注释语句 dhV =;'   
    j]kx~  
    diagram shown: 1,2,3,4,5  !指定输出图表 rH & ^SNc  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 *P9)M%  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 "y62Wo6m)  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 OI1&Z4Lx  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 IV!&jL  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 VFRUiz/C  
    gx #TRp}-  
    include"Units.inc"         !读取“Units.inc”文件中内容 x! Z|^q  
    S3.Pqp_<  
    include"Tm-silicate.inc"    !读取光谱数据 ;i\i+:=  
    ``0knr <  
    ; Basic fiberparameters:    !定义基本光纤参数 s%I) +|  
    L_f := 4 { fiberlength }      !光纤长度 Vo%@bj~>  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 F2lTDuk>C  
    r_co := 6 um { coreradius }                !纤芯半径 R5|c4v{B  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 pOx0f;'G+  
    D4[t@*m>7  
    ; Parameters of thechannels:                !定义光信道 zQ5'q  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm v=@Z,-  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 f%d7?<rw  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W bT0CQ_g21  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um uh@ZHef[l  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 td%EbxJK]`  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0  #6@7XC  
    s [@II]  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm DzH1q r  
    w_s := 7 um                          !信号光的半径 w {6kU   
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 /tDwgxJ  
    loss_s := 0                            !信号光寄生损耗为0 ub7|'+5  
    v2/@Pu!kg  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 qfx=   
    A6pPx1-&  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 6-j><'  
    calc w}X<]u  
      begin A^*0{F?,)  
        global allow all;                   !声明全局变量 K-Y;[+#g1o  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 Z;-=xp  
        add_ring(r_co, N_Tm); FK{Vnj0  
        def_ionsystem();              !光谱数据函数 p^<*v8,~7  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 "NMX>a,(  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 QS\H[?M$  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 {f<2VeJ  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 <$qe2Ft Uq  
        finish_fiber();                                   'MVE5  
      end; -Uh3A\#(  
    ,l1A]Wx  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 }f?$QSF  
    show "Outputpowers:"                                   !输出字符串Output powers: sZxf.  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) |@!4BA  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) Lzm9Kh;  
    Mj2`p#5wKh  
    N7=lSBm  
    ; ------------- tHgu#k0  
    diagram 1:                   !输出图表1  _xjw:  
    (_Ph{IN  
    "Powers vs.Position"          !图表名称 }(FF^Mh  
    I($0&Y\De  
    x: 0, L_f                      !命令x: 定义x坐标范围 PFq1Zai}n|  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 mu@He&w"  
    y: 0, 15                      !命令y: 定义y坐标范围 #Ie/|  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 bvzNur_  
    frame          !frame改变坐标系的设置 Kg4\:A7Sa.  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) /Ps/m!  
    hx             !平行于x方向网格 -Ri/I4Xj  
    hy              !平行于y方向网格 e98f+,E/  
    EX@wenR  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 m~c6b{F3Z-  
      color = red,  !图形颜色 $S(<7[Z  
      width = 3,   !width线条宽度 icS% ])3LF  
      "pump"       !相应的文本字符串标签 ]L)l5@5^  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 w>S;}[fM  
      color = blue,     =[5F~--Tf  
      width = 3, {8]Yqx)1]]  
      "fw signal" 'vCl@x$  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 5! -+5TJI  
      color = blue, "}*5'e.*  
      style = fdashed, [L(qrAQ2|z  
      width = 3, $y{rM%6JU  
      "bw signal" ~xPU#m<  
    &;3iHY;  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 \*yH33B9  
      yscale = 2,            !第二个y轴的缩放比例 W2>VgMR [  
      color = magenta, Y(mnGaVn  
      width = 3, l/xpAx  
      style = fdashed, aoqG*qh}b  
      "n2 (%, right scale)" OKi}aQ2R*  
    !1m7^3l7j  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 Oz{FM6  
      yscale = 2, Dm{9;Abs%  
      color = red, 9u?[{h.`B  
      width = 3, ?COLjk  
      style = fdashed, #|j8vmfn$e  
      "n3 (%, right scale)" NdxPC~Z+  
    \RT3#X+  
    Dbl3ef  
    ; ------------- Wr+/ 9  
    diagram 2:                    !输出图表2 V*6o|#  
    3QhQpPk) ,  
    "Variation ofthe Pump Power" GAP,$xAaW  
    He9Er  
    x: 0, 10 A'6-E{  
    "pump inputpower (W)", @x (l+0*o,(  
    y: 0, 10 QtHK`f>4#n  
    y2: 0, 100 l~ Hu#+O  
    frame j82x$I*  
    hx ^#gJf*'UE  
    hy gT_tR_g  
    legpos 150, 150 -JfqY?Ue_2  
    N(J'h$E  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 #J'V,_ wH  
      step = 5, ]xxE_B7  
      color = blue, PiIP%$72O  
      width = 3, Og-v][  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 O $ARk+  
      finish set_P_in(pump, P_pump_in) #;0F-pt  
    .^xQtnq  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 f = 'AI  
      yscale = 2, RF[Uy?es  
      step = 5, +[Izz~ _p  
      color = magenta, (M# m BS  
      width = 3, 50e vWD  
      "population of level 2 (%, rightscale)", De ([fC  
      finish set_P_in(pump, P_pump_in) <:>[24LJ{  
    oD3]2o/  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 yZ-Ql1 1  
      yscale = 2, eGW h]%  
      step = 5, $9@3dM*E?Z  
      color = red, &3Ry0?RET  
      width = 3, e}NB ,o  
      "population of level 3 (%, rightscale)", #Xk/<It  
      finish set_P_in(pump, P_pump_in) LFAefl\  
    g;~$xXn  
    2WS Wfh  
    ; ------------- Mtaky=l8~I  
    diagram 3:                         !输出图表3 SveP:uJA[  
    >~O/ZDu/@  
    "Variation ofthe Fiber Length" |JiN; O+K  
    /Yj; '\3  
    x: 0.1, 5 !{F\ \D/  
    "fiber length(m)", @x XnKf<|j6k  
    y: 0, 10 " 1h~P,  
    "opticalpowers (W)", @y )}J}d)  
    frame T"e"?JSRJ  
    hx RF [81/w]  
    hy 79uAsI2-Y  
    ZEB,Q~  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 Jq:Wt+a  
      step = 20,             TU1W!=Z  
      color = blue, [U,hb1Wi3  
      width = 3, 2;7n0LOs}  
      "signal output" ~ Ofn&[G  
    a|ZJzuqo  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 G[+{[W  
       step = 20, color = red, width = 3,"residual pump" fskc'%x  
    To;r#h  
    ! set_L(L_f) {restore the original fiber length } /tJ%gF  
    /&em%/  
    Z*Fn2I4  
    ; ------------- >CYz6G j  
    diagram 4:                                  !输出图表4 qgxGq(6K  
    cS>xT cj  
    "TransverseProfiles" ybcCq]cgt  
    @=?#nB&  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) RijFN.s  
    ^V"08  
    x: 0, 1.4 * r_co /um +vYVx<uTQ  
    "radialposition (µm)", @x 7Q|v5@;pU  
    y: 0, 1.2 * I_max *cm^2 'DUY f5nF  
    "intensity (W/ cm&sup2;)", @y ;It1i`!R  
    y2: 0, 1.3 * N_Tm gb26Y!7%  
    frame ;Ouu+#s  
    hx ]YUst]gu3  
    hy d z\yP v~  
    xgIb4Y%  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 p@3 <{kLm  
      yscale = 2,  -K4uqUp  
      color = gray, lGEfI&1%!  
      width = 3, wx^1lC2  
      maxconnect = 1, ej[Y `N  
      "N_dop (right scale)" !Xzy:  
    mpzm6I eu  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 {'o\#4 Wk  
      color = red, <$8e;:#:  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 \O\veB8  
      width = 3, mSp;(oQ  
      "pump" ?dvcmXR  
    {WuUzq`  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 4x$Ts %]  
      color = blue, N lB%Qu  
      maxconnect = 1, wTn"  
      width = 3, mam(h{f$  
      "signal" +?Y(6$o  
    b@[\+P] "  
    '.zr:l  
    ; ------------- Gx-tPW}  
    diagram 5:                                  !输出图表5 ;CA7\&L>  
    I z)~h>-F  
    "TransitionCross-sections" &Fl* ,  
    T0BM:ofx  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) /pz(s+4=  
    L)_L#]Yy  
    x: 1450, 2050 Q46sPMH+_  
    "wavelength(nm)", @x ] dHV^!  
    y: 0, 0.6 D?P1\<A~  
    "cross-sections(1e-24 m&sup2;)", @y zqb3<WP"  
    frame ,8@U-7f,  
    hx E" b" VB  
    hy zbP#y~[  
    3o^  oq  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 3EX41)u  
      color = red, 0& ?/TSC  
      width = 3, TYgn X  
      "absorption" B#(2,j7M  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 J/^|Y6  
      color = blue, =#{i;CC%  
      width = 3, df!n.&\y!  
      "emission" SK {ALe  
    Js!V,={iX  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚