(* =JO|m5z8>
Demo for program"RP Fiber Power": thulium-doped fiber laser, e^&YQl
pumped at 790 nm. Across-relaxation process allows for efficient +@%9pbM"z
population of theupper laser level. Q(k$HP
*) !(* *)注释语句 8<!qT1
6{lWUr
diagram shown: 1,2,3,4,5 !指定输出图表 c#"\&~. P
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 ~8pf.^,fi
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 -ZQ3^'f:0J
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 K!I]/0L
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 ^#3$C?d
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 l`I]eTo)^
GeHDc[7
include"Units.inc" !读取“Units.inc”文件中内容 CM5A-R90
s7xRry
include"Tm-silicate.inc" !读取光谱数据 *$#r%
mZ/B:)_
; Basic fiberparameters: !定义基本光纤参数 $Q{1^
L_f := 4 { fiberlength } !光纤长度 XZ|"7a s
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 hD>:WJ
r_co := 6 um { coreradius } !纤芯半径 Vg
\-^$
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 0BaL!^>
bk6$+T=>
; Parameters of thechannels: !定义光信道 M8cLh!!
l_p := 790 nm {pump wavelength } !泵浦光波长790nm _hh|/4(
dir_p := forward {pump direction (forward or backward) } !前向泵浦 n+Ag |.,|
P_pump_in := 5 {input pump power } !输入泵浦功率5W |!!E5osXq
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um E 3I'3
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 'dU$QO
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 d}l^yln
>P0AGZ
l_s := 1940 nm {signal wavelength } !信号光波长1940nm }(o/+H4
w_s := 7 um !信号光的半径 hLm9"N'Pf
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 y'@l,MN{
loss_s := 0 !信号光寄生损耗为0 3gabk/
X2@o"xU
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 Q.yKbO<[
r`B+ KQ4
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 c(Ha"tBJ
calc l?FNYvL
begin --^D)n
global allow all; !声明全局变量 ok6e=c '
set_fiber(L_f, No_z_steps, ''); !光纤参数 dhVwS$O )
add_ring(r_co, N_Tm); *(>$4$9n
def_ionsystem(); !光谱数据函数 8V|-BP5^
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 ZcWl{e4
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 "5y^s!/
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 Bp/8 >EO`
set_R(signal_fw, 1, R_oc); !设置反射率函数 R3@iN&
finish_fiber(); vy#c(:UQR
end; Y4714
njq-iU
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 sQ)4kF&,
show "Outputpowers:" !输出字符串Output powers: A.h?#%TLL
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) ,3n}*"K
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) f:UN~z'yr
-{7N]q)}
hT]p8m
aRZ
; ------------- X_YD[
diagram 1: !输出图表1 CD tYj
_$cBI_eA7
"Powers vs.Position" !图表名称 eoL)gIM%
8/F2V?iT
x: 0, L_f !命令x: 定义x坐标范围 5Y&@
:Y
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 i,<-+L$z
y: 0, 15 !命令y: 定义y坐标范围 MnS"M[y3
y2: 0, 100 !命令y2: 定义第二个y坐标范围 =|#-Rm^YB
frame !frame改变坐标系的设置 <n:?WP~U
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) }GC{~
SZ4
hx !平行于x方向网格 tV,zz;* Oe
hy !平行于y方向网格 +]e4c;`ko}
gU%GM
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 Y~:7l5C
color = red, !图形颜色 8&;dR
width = 3, !width线条宽度 W&Hf}qs
"pump" !相应的文本字符串标签 vJ'ho
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 }rQ*!2Y?
color = blue, 37[C^R!1c
width = 3, 0IdD
"fw signal" WE"'3u^k
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 y5ExEXa
color = blue, <f*0 XJ#
style = fdashed, jl@8pO$
width = 3, z? aDOh
"bw signal" }* t~&l0
zKutx6=aj
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 ={Hbx>p
yscale = 2, !第二个y轴的缩放比例 Mzd}9x$'J
color = magenta, *,pqpD>
width = 3, `2oi~^.
style = fdashed, ?l (hS\N,
"n2 (%, right scale)" B::?
+W1rm$Q
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 &Xav$6+Z1J
yscale = 2, TGLXvP&
\
color = red, W{h7+X]Y
width = 3, DNy)\+[
style = fdashed, FN
R&
:
"n3 (%, right scale)" O`=Uq0Vv
[Wh 43Z
21[F%,{.),
; ------------- ]5\vYk
diagram 2: !输出图表2 Kv7NCpq'
6xe
|L
"Variation ofthe Pump Power" O+N-x8W{
smU+:~
x: 0, 10 0{yx*}.
"pump inputpower (W)", @x meWAm?8RI
y: 0, 10 4HJrR^
y2: 0, 100 b+hY^$//
frame bsm,lx]bH^
hx &)l:m.
hy rUO{-R
legpos 150, 150 cPbz7
W#[!8d35$
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 2~<0<^j/]
step = 5, (G VGoh&
color = blue, p1nA7;B-m
width = 3, hA8 zXk/'8
"signal output power (W, leftscale)", !相应的文本字符串标签 X`b5h}c
finish set_P_in(pump, P_pump_in) -ZB"Yg$l
d#\n)eGr
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 7'S]
yscale = 2, {E/TC%
step = 5, FScQS.qF
color = magenta, +0 MKh
width = 3, m
C Ge*V}
"population of level 2 (%, rightscale)", Nz;;X\GI
finish set_P_in(pump, P_pump_in) YYHm0pc
q1y4B`
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 &; \v_5N6
yscale = 2, f#5JAR
step = 5, Z-@}~#E
color = red, d%3BJ+J
width = 3, l5FQ!>IM
"population of level 3 (%, rightscale)", ZAZCvN@5
finish set_P_in(pump, P_pump_in) 2XHk}M|
R5"p7>
G$ FBx
; ------------- o3=kF
diagram 3: !输出图表3 `?x$J
6p
8GldVn.u
"Variation ofthe Fiber Length" +QX>:z
\0h/~3
x: 0.1, 5 &pm{7nH
"fiber length(m)", @x kg@h R}
y: 0, 10 ~\ f^L?m
"opticalpowers (W)", @y w>uZ$/
frame 0K ?(xB
hx 7VcVI? ?
hy Q\L5ZJ%y/
}=a4uCE
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 gQWX<
step = 20, ;Oy>-Ij5P
color = blue, "44?n <1
width = 3, Tm52=+u f$
"signal output" I0K!Kcu5Iu
K*$#D1hG
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 c'";36y
step = 20, color = red, width = 3,"residual pump" Ib!rf:
2-aYqMmT;
! set_L(L_f) {restore the original fiber length } u9w&q^0dqG
Cw $^w
AF]!wUKxy
; ------------- 2p>SB/
diagram 4: !输出图表4 Cg pT(E\E
I!gj; a?R
"TransverseProfiles" ,<b|@1\k
KVxb"|[
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) T+R I8.#o
4Z9wzQ>
x: 0, 1.4 * r_co /um ,hLSRj{
"radialposition (µm)", @x k &iDJt
y: 0, 1.2 * I_max *cm^2 mthl?,I|
"intensity (W/ cm²)", @y RJwIN,&1.
y2: 0, 1.3 * N_Tm J"/z?!)IB
frame A(OfG&!
hx Z&jb,eh2
hy ?K {1S
Wxau]uix
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 ?7)(qnbe"
yscale = 2, ^!o}>ls['
color = gray, orH0M!OtS!
width = 3, K#hY bDm
maxconnect = 1, D1 ~x
"N_dop (right scale)" $'YKB8C
Xj~EVD
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 P 4*MV
color = red, #Jz&9I<OKx
maxconnect = 1, !限制图形区域高度,修正为100%的高度 f&|A[i>g
width = 3, /I'u/{KB
"pump" cvE.r330|
:5<9/
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 1] Q2qs
color = blue, Du:p!nO
maxconnect = 1, 8KwCwv
width = 3, "C.7;Rvkp>
"signal" UXPegK!
[[]SkLZHg
!{tiTA
; ------------- ?4[Oh/]R
diagram 5: !输出图表5 M#VC3h$
uk[< 6oxz
"TransitionCross-sections" %m{.l4/!O
bro
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) w&yGYHg
|\|)j>[i
x: 1450, 2050 |"YA<e
%
"wavelength(nm)", @x (
*>/w$%
y: 0, 0.6 AXP`,H
"cross-sections(1e-24 m²)", @y ?Wg{oB@(
frame w zqd
g
hx BBR"HMa4
hy D"XX920$~
gZl w
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 N^
s!!Sbpq
color = red, }PQSCl^I
width = 3, PN"8 Y
"absorption" 4Kn9*V
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 >$naTSJq
color = blue, /8>0;bX+
width = 3, ]TBtLU3
"emission" F|?+>c1}
&^7uv0M<y