切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2492阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2176
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* ~8m>DSs)D  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, cQ.;dtT0  
    pumped at 790 nm. Across-relaxation process allows for efficient hcgc =$^  
    population of theupper laser level. D'`"_  
    *)            !(*  *)注释语句 LZ)m](+M  
    l>UUaf|O  
    diagram shown: 1,2,3,4,5  !指定输出图表 e^NEj1  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 f 4I#a&DO  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 dl6v <  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 daIL> c"  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 @sHw+to|p)  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 ~Ex.Yp8.  
    T4=3VrS  
    include"Units.inc"         !读取“Units.inc”文件中内容 =_=Z;#`cXk  
    1 j12Qn@]  
    include"Tm-silicate.inc"    !读取光谱数据 &U~r}=  
    uT}TSwgp  
    ; Basic fiberparameters:    !定义基本光纤参数 T#n1@FgC  
    L_f := 4 { fiberlength }      !光纤长度 7vaN&%;E%  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 }=hoATs  
    r_co := 6 um { coreradius }                !纤芯半径 B`B%:#  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 {* j^g6;  
    7_40_kwJi  
    ; Parameters of thechannels:                !定义光信道 ]rg+n c3  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm [b.'3a++  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 9J7J/]7f  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W @y(Wy}  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um e?| URW  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布  l}0V+  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 Ww96|m  
    akhL\-d)al  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm zZ9<4"CIk  
    w_s := 7 um                          !信号光的半径 l^!A  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 gXu^"  
    loss_s := 0                            !信号光寄生损耗为0 }11`98>B6:  
    PDt<lJU+X  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 vV.~76AD5  
    6%.  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 |jk-@ Z*  
    calc A6N~UV*_  
      begin Wzqb>.   
        global allow all;                   !声明全局变量 rMHQzQ0%  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 _@!QY   
        add_ring(r_co, N_Tm); z,bX.*.-  
        def_ionsystem();              !光谱数据函数 (]Ye[j^"7  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 n#>.\F  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 V5O=iMP  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 nU&NopD+*G  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 5e)6ua,  
        finish_fiber();                                   QtY hg$K3  
      end; {^cF(7p  
    q#99iiG1  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 `z}vONXpAX  
    show "Outputpowers:"                                   !输出字符串Output powers: ,g/ _eROJ  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) ])V2}gH  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) l Io9,Ke  
    VU! l50   
    9q1HSJ1)  
    ; ------------- [0u.}c;(  
    diagram 1:                   !输出图表1 3vdu;W=Sz  
    >gk z4.*  
    "Powers vs.Position"          !图表名称 StU  4{  
    Vvm=MBgN  
    x: 0, L_f                      !命令x: 定义x坐标范围 Jcz]J)|5v  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 u>}w-  
    y: 0, 15                      !命令y: 定义y坐标范围 o_Jn_3=  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 lt{lpH  
    frame          !frame改变坐标系的设置 Y=vVxVI\  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) ietRr!$.  
    hx             !平行于x方向网格 +@emX$cFV  
    hy              !平行于y方向网格 'tb(J3ZP  
    qoC]#M$oo#  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 EBoGJ_l  
      color = red,  !图形颜色  8]q  
      width = 3,   !width线条宽度 H2qf'  
      "pump"       !相应的文本字符串标签 Oj4v#GK]  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 ZV'$k\  
      color = blue,     /&PKCtm&~  
      width = 3, kSbO[)p   
      "fw signal" v B h;  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 ;V_.[aX  
      color = blue, &5\^f?'b7  
      style = fdashed, ]} 61vV  
      width = 3, pheE^jUr  
      "bw signal" |K L')&"  
    C:`;d&d  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 >~I#JQ%  
      yscale = 2,            !第二个y轴的缩放比例 Rn`ld@=p[  
      color = magenta, *cbeyB{E  
      width = 3, yND"bF9  
      style = fdashed, >i "qMZ  
      "n2 (%, right scale)" ! z11" c  
    iI5+P`sE&J  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 g;pR^D'M5C  
      yscale = 2, `79[+0hL'  
      color = red, lT8#bA  
      width = 3, ?4XnEDA m  
      style = fdashed, &&=[Ivv  
      "n3 (%, right scale)" hd+]Ok7"  
    UMV)wy|j  
    #j;Tb2&w  
    ; ------------- A)tP()+)  
    diagram 2:                    !输出图表2 J/2j;,8D  
    U@G"`RYl  
    "Variation ofthe Pump Power" +nZUL*Ut/  
    (Uk>?XAr  
    x: 0, 10 7A5p["?Z  
    "pump inputpower (W)", @x L!t@-5~  
    y: 0, 10 7kKuZW@K-  
    y2: 0, 100 !8sgq{x((  
    frame .evbE O5  
    hx ,P{mk%=9  
    hy UtnZNdl v  
    legpos 150, 150 !b8uLjd;  
     qve ./  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 bu>qsU3  
      step = 5, jMM$d,7B  
      color = blue, bLzs?eos  
      width = 3, h.)h@$d  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 A /(lKq  
      finish set_P_in(pump, P_pump_in) 'Gx$Bj  
    )p<WDiX1!e  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 .N,&Uv-  
      yscale = 2, tF*szf|$-  
      step = 5, 7p.>\YtoR}  
      color = magenta, ,R?np9wc  
      width = 3, _]b3,% 2  
      "population of level 2 (%, rightscale)", 5G(3vRX|1  
      finish set_P_in(pump, P_pump_in) !gF9k8\Yr$  
    >-.e AvD  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 `:e U.  
      yscale = 2, hn.bau[  
      step = 5, $= B8qZ+  
      color = red, pd3,pQ  
      width = 3, ]5}=^  
      "population of level 3 (%, rightscale)", n`ViTwd]MQ  
      finish set_P_in(pump, P_pump_in) & $'z  
    o!OMm!  
    nOb?-rR  
    ; ------------- 0fm*`4Q  
    diagram 3:                         !输出图表3 UH? p]4Nz  
    L[g0&b%%-  
    "Variation ofthe Fiber Length" 8'Z:ydj^,  
    n(1')?"mA  
    x: 0.1, 5 (@r `$5D.b  
    "fiber length(m)", @x !ErH~<f%K  
    y: 0, 10 !8 -oR6/$%  
    "opticalpowers (W)", @y ujFzJdp3k  
    frame H#i{?RM@l  
    hx E<E3&;qD  
    hy \25/$Ae}c  
    #>[a{<;Kn  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响  Es5f*P0  
      step = 20,             7y^%7U \  
      color = blue, #m<tJnEO  
      width = 3, GsQ*4=C  
      "signal output" KS}hU~  
    aAE>)#f(  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 WIr2{+#  
       step = 20, color = red, width = 3,"residual pump" r%@Lej5+  
    "{D6J809  
    ! set_L(L_f) {restore the original fiber length } \Q~8?p+  
    m2~&#c\  
    y [#pC<^  
    ; ------------- Rk6deI]  
    diagram 4:                                  !输出图表4 ,Lpixnm]  
    m)v''`9LU  
    "TransverseProfiles" 1'.7_EQ4T  
    {@W93=Vq8  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) p;T{i._iL  
    [XVEBA4GI  
    x: 0, 1.4 * r_co /um r]@0eb   
    "radialposition (µm)", @x m: n` g1  
    y: 0, 1.2 * I_max *cm^2 $ _j[2EU  
    "intensity (W/ cm&sup2;)", @y o*WY=  
    y2: 0, 1.3 * N_Tm ({r*=wAP  
    frame <BFQ:  
    hx ?BA]7M(,4  
    hy fhPkEvJ  
    XfPFo6  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 d^03"t0O]  
      yscale = 2, Vj<:GRNQ,d  
      color = gray, b-ll  
      width = 3, vo>d!rVCV  
      maxconnect = 1, 2H71~~ c  
      "N_dop (right scale)" [.se|]t7X  
    X cr  =  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 ,.iRnR  
      color = red, ]i(-I <`  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 \B F*m"lz  
      width = 3, Y8M]Lwj  
      "pump" *IgE)N >  
    **9x?s  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 :NJ_n6E  
      color = blue, dQoYCS}IaV  
      maxconnect = 1, -;f*VM.a  
      width = 3, vgY3L  
      "signal" 3LDS Z1f  
    ]Chj T}  
    :w}{$v}#D;  
    ; ------------- \(226^|j  
    diagram 5:                                  !输出图表5 L,y6^J!  
    sn7AR88M;  
    "TransitionCross-sections" %CWPbk^  
    s { #3r  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) 'iLpE7  
    P96pm6H_;  
    x: 1450, 2050 5T sUQc  
    "wavelength(nm)", @x ]7-&V-Ct*  
    y: 0, 0.6 `:N# 'i  
    "cross-sections(1e-24 m&sup2;)", @y m/#a0~dB  
    frame *8~86u GU  
    hx n>@oBG)!  
    hy }Zl&]e  
    dJ$"l|$$  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 @`\VBW  
      color = red, *JggU  
      width = 3, /mo(_  
      "absorption" *s@Qtgu  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 vJAZ%aW  
      color = blue, 3u%{dGa  
      width = 3, + QQS={  
      "emission" 2WUT/{:X  
    gV&z2S~"  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚