切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2506阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2176
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* c} )U:?6  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, Klfg:q:j+b  
    pumped at 790 nm. Across-relaxation process allows for efficient 2 Ya)I k{  
    population of theupper laser level. .GcIwP'aU-  
    *)            !(*  *)注释语句 EdFCaW}""  
    {y)O ?9q  
    diagram shown: 1,2,3,4,5  !指定输出图表 {$D[l hj  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 j8n_:;i*  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 nZZNx  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 !/] F.0  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 :T^!<W4  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 U-Ia$b-5!  
    -^sW{s0Rc  
    include"Units.inc"         !读取“Units.inc”文件中内容 F5UvD[i  
    rk$&sDc/3  
    include"Tm-silicate.inc"    !读取光谱数据 +UbSqp1BS  
    TNe,'S,%  
    ; Basic fiberparameters:    !定义基本光纤参数 X`#,*HkK  
    L_f := 4 { fiberlength }      !光纤长度 n@5Sp2p  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 ,/0Q($oz  
    r_co := 6 um { coreradius }                !纤芯半径 PL$*)#S"$  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 7P1G^)  
    3ARvSz@5  
    ; Parameters of thechannels:                !定义光信道 qLrvKoEX2  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm @}[>*Xy%  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 q#LB 2M  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W DV+M;rs  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um +&hhj~I.  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 $VEG1]/svp  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 ^(z7?T  
    1Q_  C  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm EWOS6Yg7  
    w_s := 7 um                          !信号光的半径 @1+C*  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 eu=G[>  
    loss_s := 0                            !信号光寄生损耗为0 ]0N'Wtbn  
    & \<!{Y<'  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 7$3R}=Z`\q  
    i%BrnjX  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 ,TeJx+z^  
    calc $t*>A+J  
      begin 6,C2PR_+  
        global allow all;                   !声明全局变量 s5/5>a V  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 PJd7t% m;  
        add_ring(r_co, N_Tm); $ti*I;)h4  
        def_ionsystem();              !光谱数据函数 M)v\7a  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 ;]*V6!6RR  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 Xge]3Ub  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 U -RR>j  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 /|7@rH([{  
        finish_fiber();                                   BR&T,x/d  
      end; tG8)!  
    '?| (QU:)F  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 pe^hOzVv  
    show "Outputpowers:"                                   !输出字符串Output powers: Mc8|4/<Z  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) 2_S%vA<L  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) HCBZ*Z-  
    jA'qXc+\  
    &d,chb (  
    ; ------------- {u!Q=D$3  
    diagram 1:                   !输出图表1 _N`'R.va  
    :LE0_ .  
    "Powers vs.Position"          !图表名称 Q?"o.T';  
    )"( ojh  
    x: 0, L_f                      !命令x: 定义x坐标范围 |gXtP-  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 E`E$ }iLs  
    y: 0, 15                      !命令y: 定义y坐标范围 0!4;."S  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 7RXTQ9BS  
    frame          !frame改变坐标系的设置 g)Ep'd-w"  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) m(2(Caz{  
    hx             !平行于x方向网格 NO$n-<ag  
    hy              !平行于y方向网格 GCrIa Z  
    )q.Z}_,)@  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 K)-Gv|*t  
      color = red,  !图形颜色 N=2BrKb)o  
      width = 3,   !width线条宽度 w$5~'Cbi  
      "pump"       !相应的文本字符串标签 J#k3iE}  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 '*4>&V.yX  
      color = blue,     $O\I9CGr$  
      width = 3, p#14  
      "fw signal" qcN{p7=0  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 g>k"R4  
      color = blue, 1yFVF  
      style = fdashed, >Q(+H-w  
      width = 3, !yUn|v>&p  
      "bw signal" Kmk}Yz  
    C-wwQbdG/  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 -|1H-[Y(  
      yscale = 2,            !第二个y轴的缩放比例 G,jv Mb`+  
      color = magenta, /6?A#%hc  
      width = 3, }kNbqwVP  
      style = fdashed, v~l_6V}  
      "n2 (%, right scale)" n jfh4}g:  
    /KL;%:7  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 A~2U9f+\  
      yscale = 2, }JP0q  
      color = red, ]1 V,_^D  
      width = 3, .2K4<UOAbm  
      style = fdashed, S%NS7$`a  
      "n3 (%, right scale)" ' 91-\en0  
    AD$$S.zoD<  
    SH oov  
    ; ------------- N}$$<i2o  
    diagram 2:                    !输出图表2 \vH /bL  
    NZu\ Ae  
    "Variation ofthe Pump Power" ;-aF\}D@n  
    L9lNAiOH  
    x: 0, 10 rL kUIG  
    "pump inputpower (W)", @x S_Tv Ix/7&  
    y: 0, 10 0XkLWl|k  
    y2: 0, 100 TO(2n8'fdO  
    frame Lc&LF*  
    hx +%O_xqq  
    hy a\K__NCrX  
    legpos 150, 150 9/8#e+L  
    r>>4)<C7J  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 V6c>1nZ  
      step = 5, ;~A-32;Y4  
      color = blue, /.knZ_aJ!  
      width = 3, AZj `o  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 qI]PM9  
      finish set_P_in(pump, P_pump_in) DH@]d0N  
    T(GEFnt Y  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 )A@ }mIs"  
      yscale = 2, Y)Os]<N1  
      step = 5, t; 3n  
      color = magenta, k$ ya.b<X/  
      width = 3, P#0U[`ltK  
      "population of level 2 (%, rightscale)", Z+gG.|"k  
      finish set_P_in(pump, P_pump_in) %^`b)   
    "e3T;M+  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 ^| b]E  
      yscale = 2, 3Y;<Q>roT  
      step = 5, jfLkp>2E'  
      color = red, +qWrm |O]  
      width = 3, bOB<m4  
      "population of level 3 (%, rightscale)", "k;j@  
      finish set_P_in(pump, P_pump_in) IIZu&iZo\  
    *mvDh9v  
    35;UE2d)<  
    ; ------------- _mEW]9Sp  
    diagram 3:                         !输出图表3 n?UFFi+a  
    D2,2Yy5 y  
    "Variation ofthe Fiber Length" @4O;dFOQ)  
    I[x+7Y0k9  
    x: 0.1, 5 .wdWs tQ  
    "fiber length(m)", @x p aQ"[w  
    y: 0, 10 (O[:-Aqm  
    "opticalpowers (W)", @y Q; V*M  
    frame E$4_.Z8sRw  
    hx #4yh-D"  
    hy X\=m  
    \68x]q[  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 M%3P@GRg  
      step = 20,             7_=7 ;PQ<  
      color = blue, >qqI6@h]c  
      width = 3, #1-2)ZO.  
      "signal output" k2-:! IE  
    J2KULXF  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 [|vE*&:uO  
       step = 20, color = red, width = 3,"residual pump" A>bpP  
    dj;Zzt3  
    ! set_L(L_f) {restore the original fiber length } z#j)uD  
    >u-6,[(5X*  
    342m=7lK  
    ; ------------- G $F3dx.I  
    diagram 4:                                  !输出图表4 hx5oTJR  
    YKWiZ  
    "TransverseProfiles" #GlQwk3  
    aFbIJm=!  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) Li?_P5+a  
    .{=|N8*py8  
    x: 0, 1.4 * r_co /um CyWMr/'  
    "radialposition (µm)", @x |_} LMkU)  
    y: 0, 1.2 * I_max *cm^2 l>kREfHq!{  
    "intensity (W/ cm&sup2;)", @y 6m\MYay  
    y2: 0, 1.3 * N_Tm 6-+q3#e  
    frame <mk'n6B  
    hx AB:JXMyK  
    hy O^2@9 w  
    H}p5qW.tH:  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 (b*PDhl`+  
      yscale = 2, 3= q,k<=L  
      color = gray, 5;alq]m7  
      width = 3, 9_4bw9 A  
      maxconnect = 1, jG E=7  
      "N_dop (right scale)" ^z^zsNx  
    ov9+6'zya  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 r](%9Y  
      color = red, P@xb  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 8NUVHcB6  
      width = 3, ?R MOy$L  
      "pump" C 7a$>#%  
    nG~#o  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 w y\0o  
      color = blue, 2d:5~fEJp  
      maxconnect = 1, Ocp`6Fj  
      width = 3, P\nz;}nv  
      "signal" wr~Ydmsf  
    %Ums'<xJ  
    e{}oQK  
    ; ------------- DDwj[' R  
    diagram 5:                                  !输出图表5 t!285J8tn  
    ';>A=m9(4%  
    "TransitionCross-sections" ?r}'0dW  
    -yJ%G1R  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) >2)`/B9f4  
    &%\H170S  
    x: 1450, 2050 OBm#E}  
    "wavelength(nm)", @x er44s^$  
    y: 0, 0.6 A7c*qBt  
    "cross-sections(1e-24 m&sup2;)", @y -H+<81"B#  
    frame p "Cxe  
    hx 0LW|5BVbIO  
    hy v*[oe  
    "pa2,-&  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 oWP3Y.  
      color = red, j YVR"D;  
      width = 3, cmu|d  
      "absorption" } Tz<fd/  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 TilCP"(6D  
      color = blue, 6dlV:f_\y  
      width = 3, Kwmtt  
      "emission" 921m'WE  
    5%#V>|@e#  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚