(* C^
~[b
o
Demo for program"RP Fiber Power": thulium-doped fiber laser, -D_xA10
pumped at 790 nm. Across-relaxation process allows for efficient RWGAxq`9f
population of theupper laser level. Lyjp
*) !(* *)注释语句 ","to
Rap_1o9#\
diagram shown: 1,2,3,4,5 !指定输出图表 "Qe2U(Un
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 ~H626vT37
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 Qy'-3GB
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 &c81q2
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 8-Z|$F"
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 -$f$z(h
\r\wqz7
include"Units.inc" !读取“Units.inc”文件中内容 =#?=Lh
IOH6h=
include"Tm-silicate.inc" !读取光谱数据 aN"dk-eK
T'%Rkag>
; Basic fiberparameters: !定义基本光纤参数 +?C7(-U>
L_f := 4 { fiberlength } !光纤长度 2D{`AJ
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 2,'%G\QT
r_co := 6 um { coreradius } !纤芯半径 U 0dhr; l
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 yxy~N\0
^A t,x
; Parameters of thechannels: !定义光信道 9Qc=D"'
l_p := 790 nm {pump wavelength } !泵浦光波长790nm _I#a`G
dir_p := forward {pump direction (forward or backward) } !前向泵浦 o:RO(oA0?
P_pump_in := 5 {input pump power } !输入泵浦功率5W y6Ea_v
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um (fC U+
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 A}0u-W
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0
.v#Tj|w^
+C`zI~8
l_s := 1940 nm {signal wavelength } !信号光波长1940nm )9V8&,
w_s := 7 um !信号光的半径 `g,i`<
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 e\H1IR3
loss_s := 0 !信号光寄生损耗为0 '<hgc
]iH~1 [
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 jsIT{a*]
0"xD>ue&
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 SQI =D8
calc d2<+Pp
begin A!aki}aT~
global allow all; !声明全局变量 rPoq~p[Y
set_fiber(L_f, No_z_steps, ''); !光纤参数 1H7bPl|
add_ring(r_co, N_Tm); %9`\7h7K
def_ionsystem(); !光谱数据函数 (p}N
cn.
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 xw~&OF&
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 @"BkLF
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 jR mo9Bb2
set_R(signal_fw, 1, R_oc); !设置反射率函数 [|oOP$u
finish_fiber(); ~#9(Q
end; C_V5.6T!
4j-%I7
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 fdzaM&
show "Outputpowers:" !输出字符串Output powers: =sh]H$
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) J I[9c,N
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) CJ[^Fi?CH
j<_)Y(x>
'645Fr[lg
; ------------- DzG$\%G2R}
diagram 1: !输出图表1 )W$@phY(I
./E<v
"Powers vs.Position" !图表名称 5jK9cF$>
5SwQ9#
x: 0, L_f !命令x: 定义x坐标范围 >`D$Jz,
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 CC{{@
y: 0, 15 !命令y: 定义y坐标范围 ?<eH!MHF
y2: 0, 100 !命令y2: 定义第二个y坐标范围 n*vhCeL
frame !frame改变坐标系的设置 j\@osjUu
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) QB#rf='
hx !平行于x方向网格 }Jk=ZBVjT7
hy !平行于y方向网格 *WZ?C|6+
ub=Bz1._
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 QAKA3{-(
color = red, !图形颜色 Sv|jR r'
width = 3, !width线条宽度 n~G-X
"pump" !相应的文本字符串标签 p+O,C{^f
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 0N4+6k|
color = blue, @}iY(-V
width = 3, jp P'{mc
"fw signal" b;Uqyc
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 qr_:zXsob_
color = blue, EiWsVic[
style = fdashed, c:sk1I,d~^
width = 3, a<mM
)[U
"bw signal" )NL_))\
C9%2}E3Z$)
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 qQx5n
yscale = 2, !第二个y轴的缩放比例 Z2hIoCT
color = magenta, |sklY0?l(
width = 3, ?_Y2'O
style = fdashed, 6=i@ttAK
"n2 (%, right scale)" a C<
9a lMC
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 R`!'c(V
yscale = 2, !Xf7RT
color = red, ]9/{
width = 3, \rY<DxtOq
style = fdashed, sDzlNMr?P+
"n3 (%, right scale)" fPu,@
L
"fX9bh^
$ @Fvl-lK
; ------------- z]O,Vqpl?
diagram 2: !输出图表2 NoG`J$D
H_<hZUB
"Variation ofthe Pump Power" tX *}l|;(
{m2lVzK
x: 0, 10 F1UTj"<e
"pump inputpower (W)", @x STY\c5
y: 0, 10 I-?Dil3
y2: 0, 100 dpWBY3(7a
frame !<I3^q
hx rLzN#Zoi
hy /agX! E4s
legpos 150, 150 oD>j26Q
iF1E 5{dH
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 3ZEV*=+T5
step = 5, kz+OUA@~
color = blue, ^wm>\o;
width = 3, :M'V**A(
"signal output power (W, leftscale)", !相应的文本字符串标签 ~Dz`O"X3
finish set_P_in(pump, P_pump_in) p{BBqKv
%qj8*1
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 g8^YDrH
yscale = 2, DEcsFC/SK
step = 5, R x>>0%e.
color = magenta, \vQjTM-7
width = 3, eH9Ofhsry
"population of level 2 (%, rightscale)", BQTibd
finish set_P_in(pump, P_pump_in) vq&u19iP
JTn\NSa
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 [TFd|ywn
yscale = 2, !?u{2D
step = 5, mqFo`Ee
color = red, l[D5JnWxt
width = 3, C_~hX G
"population of level 3 (%, rightscale)", +^\TG>le
finish set_P_in(pump, P_pump_in) 1<ic
5kB
e dv&!
uO,9h0y0W
; ------------- j jLwHJ
diagram 3: !输出图表3 $xl>YYEBMH
cB ,l=/?
"Variation ofthe Fiber Length" [)E.T,fjMQ
9< $n'g
x: 0.1, 5
l,n
V*Z
"fiber length(m)", @x
2l#c?]TA
y: 0, 10 f,_EPh>
"opticalpowers (W)", @y Z:2a_Atm
frame 6pCQP
c*A
hx ~Os1ir.
hy Arzyq_ Yk
~dFdO7
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 {hmC=j
step = 20, ZWH9E.uj
color = blue, lPywrTG0
width = 3, s.p4+KJ
"signal output" n8dJ6"L<"
#2~-I
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 AsOkOS3
step = 20, color = red, width = 3,"residual pump" -J<{NF
}+{?
Ms
! set_L(L_f) {restore the original fiber length } BS_ 3|
+nj
2
^-&BGQM
; ------------- K_" denzT+
diagram 4: !输出图表4 \=yWJ
g]V_)}
"TransverseProfiles" kU
{>hG4
{Hu@|Q\~&
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) K#e&yY
2`?58&
x: 0, 1.4 * r_co /um k)t_U3i
"radialposition (µm)", @x oN\IQ7oI
y: 0, 1.2 * I_max *cm^2 h'tb
"intensity (W/ cm²)", @y Ww[Xqmg
y2: 0, 1.3 * N_Tm ruKm_j#J
frame P~H?[
;
hx b-+~D9U<
hy MN.h,^b
%\|9_=9Wn
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 Sz_{ #-
yscale = 2, Lxg,BZV
color = gray, ;tZ;C(;<
width = 3, |K(2_Wp
maxconnect = 1, 1[g -f,
"N_dop (right scale)" U_8 Z&
5x=aJl;G
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 E<~Fi.M;\
color = red, 8?za&v
maxconnect = 1, !限制图形区域高度,修正为100%的高度 j^Vr!y
width = 3, T{"[Ih3Mbl
"pump" 3hi0
:"~SKJm
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 \{8?HjJEM
color = blue, _-M27^\vV
maxconnect = 1, `+\6;nM
width = 3, z[0+9=<Y
"signal" P5K=S.g
cUH.^_a
l@irAtg4
; ------------- QCD
MRh n
diagram 5: !输出图表5 aWCZ1F
n?[JPG2X
"TransitionCross-sections" tpY]Mz[J
$5]}]
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) [B,w\PLub
UD!-.I]
x: 1450, 2050 ){I0
"wavelength(nm)", @x H:k?#7D(
y: 0, 0.6 [qL{w&R
"cross-sections(1e-24 m²)", @y kF@Z4MB}yr
frame ^xt @
hx y v58~w*"
hy 2A95vC'u>|
44x+2@&1
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 &}y?Lt
color = red, a$AR
width = 3, V'q?+p]
a
"absorption" 28!
ke
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 [pRRBMho
color = blue, z8@[]6cW
width = 3, v:1DNR4
"emission"
Nt
w?~%
V"Sa9P{y"