(* 9njl,Q:
Demo for program"RP Fiber Power": thulium-doped fiber laser, ?%,NOX
pumped at 790 nm. Across-relaxation process allows for efficient cl4E6\?z
population of theupper laser level. L|=5jn9 :
*) !(* *)注释语句 Q.mJ7T~T
>fPo_@O
diagram shown: 1,2,3,4,5 !指定输出图表 N^Re
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 d!,t_jM0
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 @+u>rS|IB
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 C 0w+
j
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 /A=w`[<
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 r"7n2
#.Rn6|V/4
include"Units.inc" !读取“Units.inc”文件中内容 Luq4q95]
pCIzpEsRs
include"Tm-silicate.inc" !读取光谱数据 isQ(O
@A/k"Ax{r
; Basic fiberparameters: !定义基本光纤参数 Jz@~$L
L_f := 4 { fiberlength } !光纤长度 (f# (B2j
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 "/W[gP[y%
r_co := 6 um { coreradius } !纤芯半径 P?54"$b
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 22\!Z2@T/
AU{"G
; Parameters of thechannels: !定义光信道 drq3=2
l_p := 790 nm {pump wavelength } !泵浦光波长790nm /R)wM#&
dir_p := forward {pump direction (forward or backward) } !前向泵浦 ^kez]>
P_pump_in := 5 {input pump power } !输入泵浦功率5W FfoOJzf~o
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um G95,J/w
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 +#W94s~0V
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 o5 L ^
(Fv
tL*
l_s := 1940 nm {signal wavelength } !信号光波长1940nm rO1!h%&o"
w_s := 7 um !信号光的半径 25^?|9o 7
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 _fGTTw(
loss_s := 0 !信号光寄生损耗为0 x]~TGzS
Wa_qD
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 pfA6?tP`
TCtZ2
<'
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 9Em#Ela
calc dUI5,3*
begin i|YS>Pw~j
global allow all; !声明全局变量 v9*m0|T0M
set_fiber(L_f, No_z_steps, ''); !光纤参数 x(_[D08/TT
add_ring(r_co, N_Tm); jlEz]@
i
def_ionsystem(); !光谱数据函数 VtreOJ+
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 je4l3Hl
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 .g*j]!_]
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 @f!X%)\;x
set_R(signal_fw, 1, R_oc); !设置反射率函数 okNo-\Dh!
finish_fiber(); ?$ r`T]>`2
end; d0cL9&~qW
NFK`,
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 U84W(X
show "Outputpowers:" !输出字符串Output powers: @ZKf3,J0
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) G#M)5'Q]U
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) \l%xuT
1H)mJVIKkB
hsZ/Vnn`
; ------------- ~(5r+Z}*`
diagram 1: !输出图表1 8`Ya7c>
>@ t
"Powers vs.Position" !图表名称 <g4}7l8
2ZH+fV?.
x: 0, L_f !命令x: 定义x坐标范围 taQE
r2Zy
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 2iAC_"n
y: 0, 15 !命令y: 定义y坐标范围 nQ%HtXt;
y2: 0, 100 !命令y2: 定义第二个y坐标范围 JTlk[c
frame !frame改变坐标系的设置 =W(*0"RM
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) yU$MB,1
hx !平行于x方向网格 .8hI
ad
hy !平行于y方向网格 *6uccx7{
WzMYRKZ
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 2|1fb-AR
color = red, !图形颜色 ~6vz2DuB=
width = 3, !width线条宽度 M>Q]{/V7T
"pump" !相应的文本字符串标签 +Y\:Q<eMFg
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 6|TSH$w_
color = blue, 1GY2aZ@
width = 3, {K(mfTqm
"fw signal" *[Hrbln
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 98m|&7
color = blue, K%^n.
style = fdashed, (!j#u)O
width = 3, xU
*:a[g
"bw signal" ngY%T5-
/
)0hsQs
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 So:X!ljN(e
yscale = 2, !第二个y轴的缩放比例 bOY;IB
_
color = magenta, ^;C&
width = 3, yPyu)
style = fdashed, ?J[3_!"t
"n2 (%, right scale)" ^0VL](bD>
[oWkd_dK
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 3v* ~CQy9
yscale = 2, 'CLZ7pV
color = red, L`NIYH<^
width = 3, 99m2aT()
style = fdashed, 8hRcB[F~S
"n3 (%, right scale)" W,q @ww u
M5xJ_yjG
8:cbr/F<
; ------------- 9&Y@g)+2
diagram 2: !输出图表2 OvdT* g=8*
Hl*vS
"Variation ofthe Pump Power" %Bq~b$
bbm\y] !t
x: 0, 10 5/H,UL
"pump inputpower (W)", @x qsj{0 Go
y: 0, 10 jU,Xlgz(A
y2: 0, 100 $JE,u'JQ
frame b*|~F
hx 37AVk`a
hy i1iP'`r
legpos 150, 150 g40Hj Y
%E?Srs}j
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 .RQra+up
step = 5, +z
>)'#
color = blue, 8`=?_zF
width = 3, ZsGvv]P
"signal output power (W, leftscale)", !相应的文本字符串标签 @SQsEq+A?\
finish set_P_in(pump, P_pump_in) 5=>1>HYM
Lp`.fn8Ln
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 A2
l?F
yscale = 2, s.3"2waZ=T
step = 5, !oLn=
color = magenta, {I#_0Q,i
width = 3, A^U84kV=
"population of level 2 (%, rightscale)", &|>@K#V8-;
finish set_P_in(pump, P_pump_in) |OQ]F
hU)t5/h;K
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 ~/OY1~c
yscale = 2, <O#&D|EMd|
step = 5, CEy\1D
color = red, 1 $E(8"l
width = 3, d\z6Ob"t
"population of level 3 (%, rightscale)", ttP7-y
finish set_P_in(pump, P_pump_in) =?sG~
w,{h9f
X2w)J?pv
; ------------- [-~pDkf:
diagram 3: !输出图表3 43=v2P0=Tj
kR]P/4r
"Variation ofthe Fiber Length" 8NN+Z<
z4u.bU
x: 0.1, 5 :;?$5h*|`
"fiber length(m)", @x ]uXJjS f
y: 0, 10 0Tj,TF
"opticalpowers (W)", @y U)}]Z@I-
frame GT{4L]C
hx wO??"${OH
hy E^8|xT'h6
L*z=!Dpo
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 {kpad(E
step = 20, %ms%0%
color = blue, LI,wSTVjC
width = 3, $b8[/],
"signal output" hgU;7R,?ir
qHt/,w='Q
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 !Ko2yn}6l
step = 20, color = red, width = 3,"residual pump" U}92%W?
2>z YJqG|
! set_L(L_f) {restore the original fiber length } .7iRV
HoI6(t
:!gNOR6Lh
; ------------- /t5)&
diagram 4: !输出图表4 T(|'.&a
2mLZ4r>WE
"TransverseProfiles" AD?zBg Zu
%m&6'Rpfk
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) ~nZcA^b#DQ
c*KE3:
x: 0, 1.4 * r_co /um >Kgw2,y+
"radialposition (µm)", @x {Jn0G;
y: 0, 1.2 * I_max *cm^2 <q63?Ms'
"intensity (W/ cm²)", @y 7QO/; zL
y2: 0, 1.3 * N_Tm <G})$f'x2
frame Yf0 KG
hx z/t|'8f
hy -()WTdIy
96WzgHPWo
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 .Fb#j+Lq
yscale = 2, OqtGKda
color = gray, J4bP(=w!
width = 3, Cqd\n#d/~
maxconnect = 1, *%xbn8
"N_dop (right scale)" Ak[X`e T
x0 j5D
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 ?N kKDvv
color = red, .*zN@y3
maxconnect = 1, !限制图形区域高度,修正为100%的高度 x*OdMr\n8?
width = 3, &ALnE:F
"pump" pBtO1x6x/
<rC%$tr
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 Q-x>yau"
color = blue, D
e&,^"%
maxconnect = 1, %
/:1eE`!S
width = 3, M}]
*j
"signal" 9f~qD&~
eV7;#w<]
$6Ma{r C|
; ------------- G'|ql5Zw
diagram 5: !输出图表5 >u=
.W]k8N E
"TransitionCross-sections" {4_s:+v0
^ ` LqNG
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) &'6/H/J
?Q:SVxzUd
x: 1450, 2050 }s,NM%oI
"wavelength(nm)", @x u\LNJo| B
y: 0, 0.6 PUQ",;&y1
"cross-sections(1e-24 m²)", @y FjCGD4x1N
frame .7Mf(1:
hx BU -;P
hy 7@@g|l]
-A#p22D,5
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 a1pp=3Pd?~
color = red, 3IYFvq~
width = 3, y._'o7 %
"absorption" I\*6
>
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 ^ZMbJe%L
color = blue, !Z_+H<fi+I
width = 3, (xgw';g
"emission" $RDlM
suE K;Bk9