(* x{_:B
DY
Demo for program"RP Fiber Power": thulium-doped fiber laser, zO BLF|L=
pumped at 790 nm. Across-relaxation process allows for efficient ^Oy97Y
population of theupper laser level. \wR $_X&
*) !(* *)注释语句 ZS*PY,
X}@^$'W
diagram shown: 1,2,3,4,5 !指定输出图表 SJg4P4|
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 &M p??{g
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 5G!0Yy['
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 &\8qN_`
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 7>#?-, B
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 3K2B7loD)~
3
q1LIM
include"Units.inc" !读取“Units.inc”文件中内容 5L6_W-n{
@ev"{dY
include"Tm-silicate.inc" !读取光谱数据 r%`g` It
(X=JT
; Basic fiberparameters: !定义基本光纤参数 0_F6t-
L_f := 4 { fiberlength } !光纤长度 a_jw4"Sb
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 Nm;yL
r_co := 6 um { coreradius } !纤芯半径 usj:I`>
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 >KPxksFR8
7Gwn ,&)
; Parameters of thechannels: !定义光信道 aQjs5RbP~
l_p := 790 nm {pump wavelength } !泵浦光波长790nm ;gS)o#v0
dir_p := forward {pump direction (forward or backward) } !前向泵浦 muh[wo
P_pump_in := 5 {input pump power } !输入泵浦功率5W +rAmy
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um =35g:fL
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布
Iw)}YZmn
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 Yatd$`,hW
in-|",O`Z
l_s := 1940 nm {signal wavelength } !信号光波长1940nm &B1j,$NRc
w_s := 7 um !信号光的半径 6T"4<w[
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 }W2FF
loss_s := 0 !信号光寄生损耗为0 LxdF;JCz:
W|X=R?*ZK
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 JWZG)I]r
ltQo_k
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 <}uhKp>*
calc bsuGZ
begin 7:[u.cd
global allow all; !声明全局变量 (G1KMy
set_fiber(L_f, No_z_steps, ''); !光纤参数 O0Z!*Hy
add_ring(r_co, N_Tm); 4S%s=vw
def_ionsystem(); !光谱数据函数 k^VL{z:EWB
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 h^QLvOuR
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 `!,"">5
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 \#50;
8VJ
set_R(signal_fw, 1, R_oc); !设置反射率函数 0tz7^:|D
finish_fiber(); ={'3j
end; Z
"mqH
t=l@(%O 0_
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 .(J~:U
show "Outputpowers:" !输出字符串Output powers: 0r_3:#Nn
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) !
3 ;;6
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) YCPU84f
1tZ7%0R\g]
_cc37[
; ------------- *XUJv&ZN
diagram 1: !输出图表1 *A&A V||q
5q^5DH_;
"Powers vs.Position" !图表名称 i'cGB5-j
,=a+;D]'
x: 0, L_f !命令x: 定义x坐标范围 t.rlC5
k
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 2v$\mL
y: 0, 15 !命令y: 定义y坐标范围 '048Qykt;
y2: 0, 100 !命令y2: 定义第二个y坐标范围 fw&cv9X(IU
frame !frame改变坐标系的设置 2y"L&3W
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) ;W 3#q:
hx !平行于x方向网格 <lkt'iT=Sz
hy !平行于y方向网格 C1`fJhy
5)c B\N1u
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 7+NBcZuG9
color = red, !图形颜色 zQxTPd
width = 3, !width线条宽度 xe4`D>LUo
"pump" !相应的文本字符串标签 u+;iR/
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 Nf5zQ@o_y
color = blue, X :#}E7]j
width = 3, <@S'vcO
"fw signal" m@i](1*T|
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 n-he|u
color = blue, Y=?Tm,z4
style = fdashed, ]."t
width = 3, {i<L<Y(3
"bw signal" *b4W+E
+Pc2`,pw|
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 %j o,Gv
yscale = 2, !第二个y轴的缩放比例 pzT,fmfk
color = magenta, F! [Gj%~I
width = 3, D nl|B\
style = fdashed, 1f+z[ad&^
"n2 (%, right scale)" V. e30u5
J[{ R:l\
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 C14"lB.
yscale = 2, \ nUJ)w
color = red, M?00n< vM
width = 3, 2Rqpok4
style = fdashed, <lZVEg
"n3 (%, right scale)" `l'Ine11
E{'Y>gB6
R('\i/fy
; ------------- 8 4lT# ^q
diagram 2: !输出图表2 ]pWn%aGv*Y
F AQx8P
"Variation ofthe Pump Power" Y1;jRIOA
P\y ZcL
x: 0, 10 v'Pbx
"pump inputpower (W)", @x q:1n=iEi
y: 0, 10 12V-EG i
y2: 0, 100 ,`8:@<e
frame U
UhlKV|5
hx
6o1[fr
hy +V9 (4la
legpos 150, 150 b5#Jo2C`AJ
,z01*Yx
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 ]*X z~Ox2
step = 5, k]9y+WC2
color = blue, -;O"Y?ME
width = 3, BS2'BS8
"signal output power (W, leftscale)", !相应的文本字符串标签 5`6U:MDq
finish set_P_in(pump, P_pump_in) u}?|d8$h\
mLV0J '
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 N[I ?x5:u
yscale = 2, p@?ud%
step = 5, Uuktq)NU
color = magenta, q>6RO2,
width = 3, BQ=JZ4&
"population of level 2 (%, rightscale)", +Mb}70^
finish set_P_in(pump, P_pump_in) <OrQbrWQa
A>frf[fAW
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 jFl!<ooCo
yscale = 2, q#F+^)DD [
step = 5, v=daafO
color = red, zhe~kI
width = 3, xJin%:O
"population of level 3 (%, rightscale)", PB) vE
finish set_P_in(pump, P_pump_in) n0)y|B#
im9Pj b%
;3iWV"&_A
; ------------- tlYB'8bJY
diagram 3: !输出图表3 RJ-J/NhWyI
iGBHlw;A
"Variation ofthe Fiber Length" L=5Y^f'aU
BO+to.
x: 0.1, 5 %"e hZd0r
"fiber length(m)", @x Of-8n-
y: 0, 10 <.{OIIuk
"opticalpowers (W)", @y 7HJH9@8V
frame s~A:*2 \
hx `,Fc271`
hy 6%V#_]
;)vs=DK:)
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 M
9 N'Hk=
step = 20, Xif>ZL?aXb
color = blue, (S_1C,
width = 3, aqgm
"signal output" `j'gt&
6ZQ$5PY
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 ?[.g~DK,
step = 20, color = red, width = 3,"residual pump" of'H]IZ
(hIe!"s*
! set_L(L_f) {restore the original fiber length } M(:_(4~
{5SJ0'.B2g
(\4YBaGd
; ------------- u&'&E
diagram 4: !输出图表4 -h 21
91ec^g
"TransverseProfiles" o}Zl/&(
Hiih$O+
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) zomg$@j
%1M!4**W
x: 0, 1.4 * r_co /um b{,vZhP-
"radialposition (µm)", @x @9g!5dcT
y: 0, 1.2 * I_max *cm^2 lgC^32y
"intensity (W/ cm²)", @y DCgiTT\
y2: 0, 1.3 * N_Tm &>Z p}.V
frame 85](,YYz
hx Oe0dC9H
hy 9$^v*!<z\
bQwiJ`B&
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 <7oZV^nd *
yscale = 2, u73/#!(1=H
color = gray, 84gj%tw'-
width = 3, 2'WdH1UrBc
maxconnect = 1, tp b(.`G
"N_dop (right scale)" ^ |>)H
{'Gu@l
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 eD N%p
color = red, d-"[-+)-
maxconnect = 1, !限制图形区域高度,修正为100%的高度 6K5KkEp
width = 3, Of{'A
"pump" ;W!hl<``d*
LESF*rh=
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 tUs{/Je
color = blue, ]K%D$x{+\
maxconnect = 1, s`,. &
width = 3, `pXC= []B2
"signal" r<.*:]L
@3>nVa
nb|"dK|
; ------------- |)Sx"B)
diagram 5: !输出图表5 y{\(|j
0'Qo eFKG
"TransitionCross-sections" Pl[WCh
d?(eL(W
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) EB>rY
b"z9Dp v
x: 1450, 2050 #|{^k u
"wavelength(nm)", @x !O#NP!
y: 0, 0.6 d*<