切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1834阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    855
    光币
    1865
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* kI04<!  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, E_$nsM8?  
    pumped at 790 nm. Across-relaxation process allows for efficient q&3(yhx  
    population of theupper laser level. W5Jy"]^I  
    *)            !(*  *)注释语句 zsd<0^ p\{  
    AB0}6g^O  
    diagram shown: 1,2,3,4,5  !指定输出图表 6{udNv X  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 m5] a  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 _,v?rFLE  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 nO'C2)bBSG  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 -qvMMit%7  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 ~*\ *8U@7  
     u+z  
    include"Units.inc"         !读取“Units.inc”文件中内容 hyJ&~i0P{J  
    (RrC<5"  
    include"Tm-silicate.inc"    !读取光谱数据 K0o${%'@7  
    m+7%]$  
    ; Basic fiberparameters:    !定义基本光纤参数 )+Z.J]$O-  
    L_f := 4 { fiberlength }      !光纤长度 @c"s6h&  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 ME!P{ _/  
    r_co := 6 um { coreradius }                !纤芯半径 FYu30  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 DnhbMxh8o  
    E@)'Z6r1  
    ; Parameters of thechannels:                !定义光信道 #PPHxh*S  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm ZQir?1=  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 'r_Fi5[q  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W 0t"Iq71/  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um B]b/(Q+  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 qe?Ns+j<d  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 @q># ]8  
    %qE"A6j  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm hMvJNI6O  
    w_s := 7 um                          !信号光的半径 Ma(Q~G .  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 ?dv-`)S&  
    loss_s := 0                            !信号光寄生损耗为0 bUM4^m  
    |/8!P Km  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 Q3$DX, 8?  
    J{kS4v*J  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 PA*k |  
    calc cUd>ah v  
      begin 2u5\tp?8  
        global allow all;                   !声明全局变量 pV\> ?  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 n) D  
        add_ring(r_co, N_Tm); rK}sQ4z=  
        def_ionsystem();              !光谱数据函数 aR@+Qf  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 \Nf#{  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 0 "TPY(n  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 z%JN|5  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 9AQ,@xP|  
        finish_fiber();                                   L *|P'  
      end; zLg$|@E&  
    *<[\|L:#]Z  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 TXV^f*  
    show "Outputpowers:"                                   !输出字符串Output powers: Ku uiU= (L  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) R-,L"Vv  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) 7)2Q  
    *> Be w  
    XN?my@_HpM  
    ; ------------- tu{paQ  
    diagram 1:                   !输出图表1 ;.=0""-IF  
    c(b`eUOO  
    "Powers vs.Position"          !图表名称 6CGk*s  
    aZa1eE  
    x: 0, L_f                      !命令x: 定义x坐标范围 '"LaaTTs  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 g`.H)36  
    y: 0, 15                      !命令y: 定义y坐标范围 s[/d}S@ >  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 4f ~q$Sf]<  
    frame          !frame改变坐标系的设置 H, GnF  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) &t_TLV 8T  
    hx             !平行于x方向网格 MYz!zI  
    hy              !平行于y方向网格 ;Oq>c=9%  
    3A~<|<}t  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 55] MRv  
      color = red,  !图形颜色 'gD./|Z0  
      width = 3,   !width线条宽度 ,VUOsNN4\  
      "pump"       !相应的文本字符串标签 jeA2y jAC  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 pX!T; Re;  
      color = blue,     /n$R-Q  
      width = 3, 0@E I@X;q  
      "fw signal" 2\|sXC  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 d$E>bo-\   
      color = blue, T?jN/}qg  
      style = fdashed, /M3;~sx  
      width = 3, -!M>;M@  
      "bw signal" r9b(d]  
    9U3}_  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 Uqj$itqUQ  
      yscale = 2,            !第二个y轴的缩放比例 4R8Qn^  
      color = magenta, v/$<#2|  
      width = 3, Ytqx 0  
      style = fdashed, M\JAB ;A  
      "n2 (%, right scale)" jJ2{g> P0P  
    ,qV7$u  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 fT?m~W^  
      yscale = 2, >lek@euqw  
      color = red, _ogN   
      width = 3, as y:[r"  
      style = fdashed, @ IDY7x27  
      "n3 (%, right scale)" ~% `hh9]  
    /Zx"BSu  
    B !rb*"[  
    ; ------------- V}Q`dEk2r  
    diagram 2:                    !输出图表2 8)Vl2z  
    C+t|fSJ  
    "Variation ofthe Pump Power" B7[#z{8'#  
    gdyWuOxa|  
    x: 0, 10 Y[rCF=ZVH  
    "pump inputpower (W)", @x ={6vShG)m  
    y: 0, 10 rF{,]U9`  
    y2: 0, 100 [ {vX*q 3B  
    frame .;,,{ ;  
    hx sdd%u~4,X  
    hy `m"K_\w=/  
    legpos 150, 150 }#=t%uZ/  
    :qShP3^  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 Ex L7 ]3r  
      step = 5, dEX67rUj;  
      color = blue, mOyNl -f  
      width = 3, pMAFZfte!x  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 ]a*26AbU+  
      finish set_P_in(pump, P_pump_in) fNyXDCl  
    +OSSgY$  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 pk;S"cnk  
      yscale = 2, jsKKg^ g  
      step = 5, *8u<?~9F  
      color = magenta, 6vU%Y_n=y]  
      width = 3, N!\1O,  
      "population of level 2 (%, rightscale)", u2I@ fH/  
      finish set_P_in(pump, P_pump_in) ?fc<3q"  
    HuN_$aP  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 2J3y 1  
      yscale = 2, tpgD{BY^wJ  
      step = 5, <p` F/p-  
      color = red, Z`%^?My  
      width = 3, C8(0|XX  
      "population of level 3 (%, rightscale)", ys7 Tq+  
      finish set_P_in(pump, P_pump_in) NKVLd_f k  
    c2Y\bKeN  
    ybIqn0&[  
    ; ------------- #??[;xjs!  
    diagram 3:                         !输出图表3 =#{q#COK$  
    /}eb1o  
    "Variation ofthe Fiber Length" $o)}@TC  
    <Y;w I#C  
    x: 0.1, 5 usi3z9P>n  
    "fiber length(m)", @x LW!4KA]  
    y: 0, 10 WK{F  
    "opticalpowers (W)", @y $g,v]MW  
    frame srKEtd"  
    hx VY=YI}E  
    hy UMPW<> z  
    tq*6]q8c>  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 9R[P pE''  
      step = 20,             6y{CM/DC  
      color = blue, q[. p(6:  
      width = 3, LMp^]*)t  
      "signal output" "837b/>/  
    h=kC3ot\  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 LGYg@DR  
       step = 20, color = red, width = 3,"residual pump" G//hZwf0  
    \@{TF((Y  
    ! set_L(L_f) {restore the original fiber length } _+Pz~_+kS  
    u})8)  
    ,OMdLXr  
    ; ------------- fK^;?4  
    diagram 4:                                  !输出图表4 =W gzj|Kr  
    hSj@<#b>F  
    "TransverseProfiles" z6Nz)$!_i  
    )3 '8T>^<K  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) PM)nw;nS  
    \23m*3"W  
    x: 0, 1.4 * r_co /um pMf ?'l  
    "radialposition (µm)", @x >5 2%^ ?  
    y: 0, 1.2 * I_max *cm^2 r\C"Fx^  
    "intensity (W/ cm&sup2;)", @y gA]3h8%w  
    y2: 0, 1.3 * N_Tm ?lU(FK  
    frame !2.eJ)G  
    hx wOEc~WOd  
    hy 9?sm-qP  
    }Am5b@g"$Y  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 |Rm_8n%m  
      yscale = 2, {_Fh3gjb/  
      color = gray, -6e^`c6{  
      width = 3, {m_y<  
      maxconnect = 1, 7T(&DOGZ  
      "N_dop (right scale)" S>s+ nqcP  
    zu,Yuq  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 e?KzT5j:  
      color = red, Ns\};j?TU*  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 }>b@=5O  
      width = 3, p?4,YV|#  
      "pump" CsjrQ-#9yn  
    _9<Mo;C  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 ~,x4cOdR#  
      color = blue, KppYe9?  
      maxconnect = 1, 5? f!hB|6  
      width = 3, \GZ|fmYn  
      "signal" nL]eGC  
    _Ec"[xW  
    RW<4",  
    ; ------------- j-| !QlB  
    diagram 5:                                  !输出图表5 D"IxQ2}k  
    uF[~YJ>  
    "TransitionCross-sections" R%`fd *g  
    AN)r(86L  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) fk\]wFj  
    ^Iqu^n?2.  
    x: 1450, 2050 (g1Op~EM  
    "wavelength(nm)", @x `w)yR>lqh  
    y: 0, 0.6 *Xh#W7,<  
    "cross-sections(1e-24 m&sup2;)", @y zd{sw}  
    frame S.pXo'}  
    hx `r0lu_.$]4  
    hy &%u m#XE  
    7t/Y5Qf  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 LyG`q3@  
      color = red, & u6ydN1xe  
      width = 3, #L&/o9|  
      "absorption" G?Za/G  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 % pAbkb3m  
      color = blue, `$3ktQ$  
      width = 3, v<mSd2B*  
      "emission" .eyJ<b9  
    wn\ R|'Rdz  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚