(* !wEz=
i
Demo for program"RP Fiber Power": thulium-doped fiber laser, 6^hCW`jG
pumped at 790 nm. Across-relaxation process allows for efficient vo]$[Cp|4
population of theupper laser level. vI+X9C?
*) !(* *)注释语句 U:O&FE
2)+ddel<Z
diagram shown: 1,2,3,4,5 !指定输出图表 H!uq5`j0K
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 '645Fr[lg
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 @hIHvLpRB
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 g7<u eF
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 u75(\<{
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 E|omC_h
@N+6qO}
include"Units.inc" !读取“Units.inc”文件中内容 5vqh09-FB
Q%^!j_#
include"Tm-silicate.inc" !读取光谱数据 J+0T8
?A
ttA0*
>'
; Basic fiberparameters: !定义基本光纤参数 ~ZZJ/Cu
L_f := 4 { fiberlength } !光纤长度 )w&k&TY4H
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 YV/JZc f
r_co := 6 um { coreradius } !纤芯半径 p& +w
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 lc\f6J>HT
zFeo8S
; Parameters of thechannels: !定义光信道 E|hW{ oX3
l_p := 790 nm {pump wavelength } !泵浦光波长790nm &{H LYxh
dir_p := forward {pump direction (forward or backward) } !前向泵浦 ]R8JBnA
P_pump_in := 5 {input pump power } !输入泵浦功率5W m<| *
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um B>,&{ah/5J
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 ?cD2EX%(
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 cuo'V*nWQ
Jx4"~ 4
l_s := 1940 nm {signal wavelength } !信号光波长1940nm kESnlmy@J
w_s := 7 um !信号光的半径 O2C&XeB:4
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 Vrx3%_NkQ
loss_s := 0 !信号光寄生损耗为0 4]%v%64U
qQx5n
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 Z2hIoCT
|sklY0?l(
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 ?_Y2'O
calc Ob>M]udn
begin Iji9N!Yx
global allow all; !声明全局变量 2C_/T8
set_fiber(L_f, No_z_steps, ''); !光纤参数 7\sR f/
add_ring(r_co, N_Tm); "`8~qZ7k
def_ionsystem(); !光谱数据函数 bO\E)%zp
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 e!JC5Al7
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 |\_d^U&`
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 bf1EMai"
set_R(signal_fw, 1, R_oc); !设置反射率函数 OVgx2_F
finish_fiber(); w.6 Gp;O
end; RYem(%jq
P{_Xg,Z
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 :bV1M5
show "Outputpowers:" !输出字符串Output powers: [Uw/;Kyh
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) ej&ZE
n
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) 9$oU6#U,h
JVk"M=c
dE0p>4F
; ------------- 'k(aZ"
diagram 1: !输出图表1 q]>m#yk
rLzN#Zoi
"Powers vs.Position" !图表名称 Eggdj+
6e.?L
x: 0, L_f !命令x: 定义x坐标范围 {Mx3G*hr
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 ?,0 5!]
y: 0, 15 !命令y: 定义y坐标范围 ZAcH`r*
y2: 0, 100 !命令y2: 定义第二个y坐标范围 [$[1|r
*Q
frame !frame改变坐标系的设置 +X &b
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) "o.g}Pv
hx !平行于x方向网格 F1aI4H<(T
hy !平行于y方向网格 ~i ImM|*0
H^N
5yOj/
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 S LSbEm
color = red, !图形颜色 2AK]x`GY
width = 3, !width线条宽度 lyYi2& %
"pump" !相应的文本字符串标签 FG[YH5
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 Yf=Puy}q
color = blue, Q4vl
width = 3, }uaRS9d
"fw signal" !?u{2D
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 mqFo`Ee
color = blue, l[D5JnWxt
style = fdashed, C_~hX G
width = 3, +^\TG>le
"bw signal" 1<ic
5kB
R<GnPN:c
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 uO,9h0y0W
yscale = 2, !第二个y轴的缩放比例 j jLwHJ
color = magenta, $xl>YYEBMH
width = 3, cB ,l=/?
style = fdashed, [)E.T,fjMQ
"n2 (%, right scale)" 9< $n'g
6~@S,i1
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 vL,:Yn@b
yscale = 2, ^OWA
color = red, ,fa'
width = 3, [G/ti&Od^
style = fdashed, >.)m|,
"n3 (%, right scale)" ^[]@dk9
>m-VBo
CC<(V{Png
; ------------- c{X:0man
diagram 2: !输出图表2 hhU:
nw
1'G&PX
"Variation ofthe Pump Power" SZhW)0
R
rtr\a
x: 0, 10 1"4Pan
"pump inputpower (W)", @x 4%s6 d,6"
y: 0, 10 ipThwp9
y2: 0, 100 E9"P~ nz
frame X*^^W_LH.
hx g$N/pg2>cT
hy N#Y|MfLc
legpos 150, 150 WX9ABh& 5
dpPu&m+
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 Tt.#O~2:9
step = 5, ;;#_[Zl
color = blue, +6$ |No
width = 3, ~Gz
b^
"signal output power (W, leftscale)", !相应的文本字符串标签 BM,]Wjfdj
finish set_P_in(pump, P_pump_in) aA|<W
g
p!OCF]r
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 -szSA
yscale = 2, A./VO
step = 5, 'kC,pN{->
color = magenta, oieJ7\h]m
width = 3, z3bRV{{YqN
"population of level 2 (%, rightscale)", 2.>WR~\
finish set_P_in(pump, P_pump_in) ~mR@L `"l
l[AQyR1+/
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 oE
H""Bd
yscale = 2, s6k@W T?"^
step = 5, 5(+PIKCjC
color = red, IOjp'6Yr
width = 3, 6Kbc:wlR
"population of level 3 (%, rightscale)", xRI7_8Jpyn
finish set_P_in(pump, P_pump_in) /~O>He
Jx jP'8
YcaomPo
; ------------- UK7pQt}9
diagram 3: !输出图表3 hT0[O
=1vl-*uYh
"Variation ofthe Fiber Length" r+D ?_Lk
5uidi
x: 0.1, 5 <?&Y_
"fiber length(m)", @x Bo#,)%80
y: 0, 10 2:6W_[7l!
"opticalpowers (W)", @y QCD
MRh n
frame aWCZ1F
hx ;K$ !c5
hy D"z3SLFW{
2d# 3LnO
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 ~\oF}7l$
step = 20, nqFJNK]a
color = blue, +QZ}c@'r
width = 3, !2o1c
"signal output" "PD^]m
u{'|/g&
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 $0mR_pA\fW
step = 20, color = red, width = 3,"residual pump" $1E'0M`
@,:6wKMc
! set_L(L_f) {restore the original fiber length } Sk6B>O <:
sy]hMGH:3W
7G\a5
; ------------- E
xls_oSp
diagram 4: !输出图表4 Hh1]\4D,4
x<'<E@jpU;
"TransverseProfiles" )z^NJ'v4(
^cnTZzT#Q
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) kdP*{
cp)BPg
x: 0, 1.4 * r_co /um z%Eok
"radialposition (µm)", @x ~z kzuh
y: 0, 1.2 * I_max *cm^2 @"G+kLv0
"intensity (W/ cm²)", @y ]i:_^z)R
y2: 0, 1.3 * N_Tm MtD0e@
frame VrIR!9%:
hx 0#S#v2r5
hy +Zg@X.z
Iysp)
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 ;TC"n!ew
yscale = 2, "OO)m](w
color = gray, jl"su:y
width = 3, j2RdBoCt
maxconnect = 1, }|OwUdE!R9
"N_dop (right scale)" ,gdud[&|;
:OFs"bC
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 :Dj0W8V
color = red, ,x=S)t
maxconnect = 1, !限制图形区域高度,修正为100%的高度 ~Jh1$O,9o
width = 3, L"tzUYxg
"pump" q"e]\Tb=we
%xv*#.<Vj
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 ~JS BZ@
color = blue, c[>xM3=e^q
maxconnect = 1, {ldt/dl~
width = 3, DS1{~_>nFu
"signal" 8Drz
i!}
agkGUK/
WS ^,@>A
; ------------- kW7$Gw]-
diagram 5: !输出图表5 .>a
[
NZ"nG<;5
"TransitionCross-sections" mt]^d;E
#\8"d
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) G1fC'6$3
=<%[P9y
x: 1450, 2050 aH?+^f"D
"wavelength(nm)", @x +ag_ w}
y: 0, 0.6 a D+4uGN
"cross-sections(1e-24 m²)", @y Yi j^hs@eV
frame I.[Lv7U-
hx v`@NwH<r
hy Sh2BU3
}P'c8$
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 cLf<YF
color = red, hv`I`[/J
width = 3, 9:P\)'y?
"absorption" TwsI8X
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 P1R5}i
color = blue, I^Dm 3yz
width = 3, -wT!g;v;%
"emission" ?<` ;lu/eL
nTl2F1(sV7