切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2549阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2176
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* fk{0d  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, Apfnx7Fv  
    pumped at 790 nm. Across-relaxation process allows for efficient 7x k|+!  
    population of theupper laser level. <Ef[c@3  
    *)            !(*  *)注释语句 #g9ZX16}  
    <]d LX}C)  
    diagram shown: 1,2,3,4,5  !指定输出图表 : ]II-$/8  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 C5 X(U :  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 c$h9/H=~  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 3)N\'xFh@  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 -d=WV:G%e  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 a9Y5  
    y7lWeBnC  
    include"Units.inc"         !读取“Units.inc”文件中内容 tef^ShF]  
    z&}-8JykH  
    include"Tm-silicate.inc"    !读取光谱数据 ^%<pJMgdF  
    {C3Y7<  
    ; Basic fiberparameters:    !定义基本光纤参数 T@ YGB]*Y  
    L_f := 4 { fiberlength }      !光纤长度 C+N k"l9  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 {hdPhL  
    r_co := 6 um { coreradius }                !纤芯半径 +%0z`E\?M#  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 ]?LB?:6  
    r'4:)~]s  
    ; Parameters of thechannels:                !定义光信道 8e2?tmWM  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm A :e;k{J  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 j*R,m1e8  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W A9:NKY{z  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um D E/:['  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 CIC[1,  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 I;MD>%[W,  
    .~D>5 JnEk  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm s0"e'  
    w_s := 7 um                          !信号光的半径 ,kM)7!]N  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 osP\D iQ  
    loss_s := 0                            !信号光寄生损耗为0 sen=0SB/  
    3$/ 4wH^  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 7 hw .B'7  
    dcfe_EuT  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 LIpEQ7;  
    calc %D=]ZV](  
      begin ,xsH|xW  
        global allow all;                   !声明全局变量 pdVQ*=c?M  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 b[ w;i]2  
        add_ring(r_co, N_Tm); Ey `h1 Y  
        def_ionsystem();              !光谱数据函数 E-2 eOT  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 8|g<X1H{M  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 1DJekiWf  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 AC- )BM';  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 LHYLC>J  
        finish_fiber();                                   c-4STPNQi  
      end; 4=<*Vd`p  
    3iNkoBCg  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 Xyx"A(v^l  
    show "Outputpowers:"                                   !输出字符串Output powers: kUl  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) N_gD>6I  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) | A)\ :  
    ^TdZ*($5  
    e":G*2a  
    ; ------------- k!L@GQ  
    diagram 1:                   !输出图表1 *%FA:Y  
    gE7L L=x  
    "Powers vs.Position"          !图表名称 5<YzalNf  
    nms8@[4-  
    x: 0, L_f                      !命令x: 定义x坐标范围 t*S." q  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 M[]A2'fS  
    y: 0, 15                      !命令y: 定义y坐标范围 ['qnn|  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 :l u5Uu~  
    frame          !frame改变坐标系的设置 TLa]O1=Bf.  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) evuZY X@  
    hx             !平行于x方向网格 @mQ:7-,~  
    hy              !平行于y方向网格 _GYMPq\%L#  
    _=XX~^I,  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 3R$Z[D-  
      color = red,  !图形颜色 % ZU/x d  
      width = 3,   !width线条宽度 b7:0#l$  
      "pump"       !相应的文本字符串标签 5]Ajf;W\  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 $&I 'o  
      color = blue,     }Fb!?['G5  
      width = 3, dFXc/VH')  
      "fw signal" Q;/a F`  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 9WG{p[  
      color = blue, (8a#\Y[b  
      style = fdashed, {p<Zbm.  
      width = 3, [1G^/K"  
      "bw signal" K95;rd  
    ^%T7.1'x  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比  vb{i  
      yscale = 2,            !第二个y轴的缩放比例 \%jVg\4 '  
      color = magenta, i'/m4 !>h  
      width = 3, Rd*[%)  
      style = fdashed, @ EuFJ=h  
      "n2 (%, right scale)" cQN sL  
    k=ytuV\  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 S_(d9GK<  
      yscale = 2, a}yXC<}$  
      color = red, QCOo  
      width = 3, |,C#:"z;  
      style = fdashed, .x83Ah`  
      "n3 (%, right scale)" 256LHY|6  
    "\%On >  
    >p\e 0n  
    ; ------------- iI1n2>V3y  
    diagram 2:                    !输出图表2 sy* y\5yJ  
    Y-!YhWsS  
    "Variation ofthe Pump Power" $D1w5o-  
    }GwVKAjP  
    x: 0, 10 knp>m,w  
    "pump inputpower (W)", @x A;XOT6jv?  
    y: 0, 10 p zw8T  
    y2: 0, 100 Nh?| RE0t  
    frame DbI!l`Vn4  
    hx fK}h"iH+K  
    hy ;F:fM!l=  
    legpos 150, 150 hS [SRa'.  
    XKOUQc4!R  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 n 1b(\PA  
      step = 5, IXLO>>`  
      color = blue, @exey  
      width = 3, ed 59B)?l  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 zk_Eb?mhwV  
      finish set_P_in(pump, P_pump_in) K+\nC)oG  
    x+5k <Xi}  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 +\ _{x/u1  
      yscale = 2, {Bvj"mL]j  
      step = 5, }Rvm &?~O  
      color = magenta, H;ZHqcUX  
      width = 3, /hWd/H]  
      "population of level 2 (%, rightscale)", < E|s\u  
      finish set_P_in(pump, P_pump_in) >zvY\{WY  
    +]xFoH  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 0Wvq>R.(]7  
      yscale = 2, Ue:z1p;g  
      step = 5, >T3H qYX5W  
      color = red, l*aj#%ha  
      width = 3, Z [Xa%~5>5  
      "population of level 3 (%, rightscale)", FVsj;  
      finish set_P_in(pump, P_pump_in) <~emx'F|  
    UM%o\BiO  
    FwAKP>6*  
    ; ------------- \kIMDg3}  
    diagram 3:                         !输出图表3 Et2JxbD  
    w?vVVA  
    "Variation ofthe Fiber Length" ^ZeJ[t&!#  
    9v )%dO.  
    x: 0.1, 5 0BPMmk  
    "fiber length(m)", @x 7v}x?I  
    y: 0, 10 \{\MxXW  
    "opticalpowers (W)", @y !eR3@%4  
    frame m4w ') r~  
    hx &a)eJF]:!  
    hy [] W;t\h  
    7k%T<;V  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 [U =Uo*  
      step = 20,             'XOX@UH d  
      color = blue, M(q'%XL^  
      width = 3, ^n.WZUk  
      "signal output" \u OdALZ  
    Tpp&  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 G* b2,9&F  
       step = 20, color = red, width = 3,"residual pump" A~ (l{g  
    u`:hMFTID  
    ! set_L(L_f) {restore the original fiber length } =1;=  
    SjEAuRDvUz  
    H4-qB Z'  
    ; ------------- ^nK7i[yF.k  
    diagram 4:                                  !输出图表4 :6kjEI  
    4\5uY  
    "TransverseProfiles" eL D?jTi'  
    .ae O}^  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) ( n{wg(R  
    *!e(A ]&  
    x: 0, 1.4 * r_co /um `\| ssC8u  
    "radialposition (µm)", @x `D5HC  
    y: 0, 1.2 * I_max *cm^2 i7[uLdQ  
    "intensity (W/ cm&sup2;)", @y ]<uQ.~  
    y2: 0, 1.3 * N_Tm AN:@fZ  
    frame )QiQn=Ce  
    hx K!AAGj`  
    hy JOn yrks  
    lG<hlYckv  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 YA(@5CZ  
      yscale = 2, #<7O08 :  
      color = gray, #!J(4tXny  
      width = 3, 'rP]Nw  
      maxconnect = 1, |dE -^"_  
      "N_dop (right scale)" {Z;t ^:s#  
    #1-xw~_  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 5 x2Ay=s  
      color = red, ?wpB`  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 &:*q_$]Oz  
      width = 3, 3*S{;p  
      "pump" _1Z=q.sC  
    ]LPQYL  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 v0*N)eqDGd  
      color = blue, O!1TthI  
      maxconnect = 1, v`q\6i[-  
      width = 3, RH;:9_*F  
      "signal" 0pe3L   
    0Sl]!PZR1  
    1[nG}  
    ; ------------- }}{!u0N},V  
    diagram 5:                                  !输出图表5 M<?Q4a'Q  
    cvsz%:Vs  
    "TransitionCross-sections" }S_oH9A  
    cX!Pz.C  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) >:sUL<p  
    qUF'{K   
    x: 1450, 2050 SJ' % ^  
    "wavelength(nm)", @x 5__+_hO ;3  
    y: 0, 0.6 em@EDMvI  
    "cross-sections(1e-24 m&sup2;)", @y Jhkvd<L8`m  
    frame Vsq8H}K  
    hx }w-wSkl1  
    hy G)=HB7u[a  
    (AY9oei>  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 fg%&N2/(.B  
      color = red, p 5u_1U0  
      width = 3, kQdt}o])  
      "absorption" V) o,1  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 6&v? )o  
      color = blue, 0O!cN_l|  
      width = 3, yTM{|D]$(  
      "emission" FXKF\1`( H  
    ~o3Hdd_#}N  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚