(* }5FdX3YR
Demo for program"RP Fiber Power": thulium-doped fiber laser, h)fi9
pumped at 790 nm. Across-relaxation process allows for efficient 5&\Q0SX(~
population of theupper laser level. #:e52=
*) !(* *)注释语句 D?;$:D"
_6(QbY'JV`
diagram shown: 1,2,3,4,5 !指定输出图表 OcwD<Xy
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 PJsiT4<
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 TnCN2#BO
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 ^LX1&yT@
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 D*I%=);B_
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 N)WAzH
FhHcS>]:.
include"Units.inc" !读取“Units.inc”文件中内容 hj4Kv
/T!S)FD\/v
include"Tm-silicate.inc" !读取光谱数据 #B_
``XV
-P^ 6b(
; Basic fiberparameters: !定义基本光纤参数 +K])&}Dw
L_f := 4 { fiberlength } !光纤长度 U8PSJ0ny
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 8S "vRR
r_co := 6 um { coreradius } !纤芯半径 2r^|
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 E?m(&O
j
wWQv]c%
; Parameters of thechannels: !定义光信道 HE,# pj(D
l_p := 790 nm {pump wavelength } !泵浦光波长790nm
%tT&/F
dir_p := forward {pump direction (forward or backward) } !前向泵浦 !Y8us"
P_pump_in := 5 {input pump power } !输入泵浦功率5W PTXy:>]M
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um qe8dpI;
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布
l}A8
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 6Xu8~%i
%XMwjBM
l_s := 1940 nm {signal wavelength } !信号光波长1940nm y+hC !-
w_s := 7 um !信号光的半径 <b~KR8
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 Es/\/vF7]D
loss_s := 0 !信号光寄生损耗为0 JBo/<W#|
mp:%k\cF|
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 ,W;\6"Iwx'
>gtKyn]
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 Y9F!HM-`
calc }SR}ET&z
begin V\^3I7F
global allow all; !声明全局变量 eQbDs_
set_fiber(L_f, No_z_steps, ''); !光纤参数 v}q3_m]
add_ring(r_co, N_Tm); `9}\kn-</8
def_ionsystem(); !光谱数据函数 QqA~y$'ut
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 id="\12Bw
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 </3Shq
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 dlsVE~_G
set_R(signal_fw, 1, R_oc); !设置反射率函数 Dm?>U1{
finish_fiber(); K+5S7wFDZ
end; =\GuIH2
NHG+l)y:
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 uDJi2,|n
show "Outputpowers:" !输出字符串Output powers: $@<qaR{t \
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) }J"}5O2,b
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) X YO09#>&
cLj@+?/
Mn7nS:
; ------------- UE^_SZ
diagram 1: !输出图表1 !*_5 B'
>bWx!M]
"Powers vs.Position" !图表名称 qPY
OO
+`O8cHx
x: 0, L_f !命令x: 定义x坐标范围 MQ>.^]B]o
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 l=G=J( G
y: 0, 15 !命令y: 定义y坐标范围 KLK
'_)|CT
y2: 0, 100 !命令y2: 定义第二个y坐标范围 ]y= ff6Q
frame !frame改变坐标系的设置 PYX]ld.E
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) c|OIUc
hx !平行于x方向网格 O *^=
hy !平行于y方向网格 x;ym_UZ6e
ij i<+oul
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 (ds-p[`[m
color = red, !图形颜色 y1z<{'2x
width = 3, !width线条宽度 Z".mEF-b
"pump" !相应的文本字符串标签 s\A"B#9r
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 b<o Uy
color = blue, q{I,i(%m8
width = 3, pcwkO
"fw signal" *<?or"P
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 4X,fb`
color = blue, ckFnQhW
style = fdashed, h$7rEs
width = 3, gRA}sF
"bw signal" yDh(4w-~gk
#n&/yYl9(l
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 _X5@%/Vz
yscale = 2, !第二个y轴的缩放比例 )2t!=
ua
color = magenta, .zxP,]"l
width = 3, Cj^:8 ?%
style = fdashed, 3NRxf8
"n2 (%, right scale)" _):V7Zv
3";Rw9
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 Zo`Ku+RL2'
yscale = 2, Du@?j7&l=$
color = red, %%J)@k^vH
width = 3, ? ->:,I=<~
style = fdashed, -+fbK/
"n3 (%, right scale)" h#a;(F4_7
*{/
ww9fT
M =Pn8<h~
; ------------- |Y#KMi ~
diagram 2: !输出图表2 \z>Re$:
v"'Co6fw
"Variation ofthe Pump Power" #>~<rcE(
?
tre)
x: 0, 10 -WiOs;2~/
"pump inputpower (W)", @x #Hm*<s.
y: 0, 10 6f1%5&si
y2: 0, 100 h!# (. P
frame O%RkU?ME
hx U^jxKBq^
hy Uawf,57v<
legpos 150, 150 0uX"KL]Elf
.KiJq:$H
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 Q(@/,%EF
step = 5, 01v7_*'R
color = blue, n#@/A
width = 3, Da_8Q(XFe
"signal output power (W, leftscale)", !相应的文本字符串标签 !O=?n<Ex"
finish set_P_in(pump, P_pump_in) _hP siZY9
~x<nz/^
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 jIY
yscale = 2, "-aak )7w
step = 5, v=!Ap ; 2L
color = magenta, :|hFpLt
width = 3, RiHOX&-7
"population of level 2 (%, rightscale)", 5Z2E))UU
finish set_P_in(pump, P_pump_in) Tj
&PB_v1
h{zE;!+)D
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 FO"8B
yscale = 2, 5f+ziiZ
step = 5, ftBbO8e
color = red, Cj~45)r
width = 3, \QF\Bh
"population of level 3 (%, rightscale)", LW?Zd=
finish set_P_in(pump, P_pump_in) qyXx`'e
>r Nff!Ow
diXb8L7B;
; ------------- /8!s
C D
diagram 3: !输出图表3 mHTZ:84
=n
$@
"Variation ofthe Fiber Length" <^:e)W
!]bXHT&!R
x: 0.1, 5 .ZSG nbJ
"fiber length(m)", @x )c9]}:W&
y: 0, 10 JQVu&S
"opticalpowers (W)", @y $`q8-+{
frame xw60l&s.\L
hx rE?(_LI
hy (s?`*i:2
Lo,z7"8
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 gI^);JrTE
step = 20, $V"NB`T
color = blue, StUiL>9T#
width = 3, gv=mz,z
"signal output" 7 mulNq
f'/@h Na3
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 DJl06-s V
step = 20, color = red, width = 3,"residual pump" a/@<KnT
muLt/.EZ
! set_L(L_f) {restore the original fiber length } .y7&!a35
(]'Q!MjGa
YJgw%UVJ5m
; ------------- \=+s3p5N
diagram 4: !输出图表4 `!MyOI`qS
x}TDb0V
"TransverseProfiles" lD09(|`
oOk.Fq
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) DbSl}N ;
gi`K^L=C
x: 0, 1.4 * r_co /um <YbOO{
"radialposition (µm)", @x # k+Ggw
y: 0, 1.2 * I_max *cm^2 $[VeZ-
"intensity (W/ cm²)", @y 7Dy\-9:v
y2: 0, 1.3 * N_Tm +Ux)m4}j
frame ]d"4G7mu`l
hx RVN"lDGA
hy m{={a5GD
?WWnt^
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 'e-Nt&;
yscale = 2, i|>K
color = gray, "s$v?voo
width = 3, L K9vvQz
maxconnect = 1, P,RCbPC4
"N_dop (right scale)" Egt;Bj#%
GY4:9Lub7
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 GCrh4rxgg
color = red, bG+p
maxconnect = 1, !限制图形区域高度,修正为100%的高度 '<f4POy!
width = 3, CAY^ `K!
"pump" ]sO})
!@-j!Ub
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 Vn1k C
color = blue, k%QhF]
maxconnect = 1, 1?HUXN#,
width = 3, (c(c MC'
"signal" ZZTPAmIr
+SM $#
'DF3|A],
; ------------- ,
j,[4^
diagram 5: !输出图表5 \Ja%u"DA
:c,\8n
"TransitionCross-sections" H;,cUb
D@qq=M
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) G Q&9by=}
mKZ?H$E%%
x: 1450, 2050 n4)G g~PE
"wavelength(nm)", @x yuswWc'
y: 0, 0.6 8E/$nRfOd
"cross-sections(1e-24 m²)", @y wpY%"x#-+=
frame N##T1 Qm)
hx 7&NRE"?G
hy z>k6 T4(
@Th.=
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 U*/
color = red, =,-80WNsX
width = 3, [?W3XUJ,Y
"absorption" m&,d8Gss^
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 /'E+(Y&:J
color = blue, e }/c`7M
width = 3, BmUEo$w
"emission" ]V]~I.
M O* m@