(* X0:V5
e
Demo for program"RP Fiber Power": thulium-doped fiber laser, 6HroKu
pumped at 790 nm. Across-relaxation process allows for efficient %MG{KG=&o
population of theupper laser level. SEf RU`
*) !(* *)注释语句 G5WQTMzf&
~[8n+p+&X
diagram shown: 1,2,3,4,5 !指定输出图表 F}1h
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 Sg%h}]~
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 ;R5@]Hg6q
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 EdL2t``
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 DWv(|gO
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 1G}f83yR
1`hmD1d
include"Units.inc" !读取“Units.inc”文件中内容 } 6 ,m2u
T`?7z+2A
include"Tm-silicate.inc" !读取光谱数据 @}, |i*H/
Q};n%&n&
; Basic fiberparameters: !定义基本光纤参数 '/OcJVSR
L_f := 4 { fiberlength } !光纤长度 J.EBt3
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 2[Ofa(mkkp
r_co := 6 um { coreradius } !纤芯半径 y^!>'cdV
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 GLO%>&
1NAGGr00
; Parameters of thechannels: !定义光信道 O2pntKI
l_p := 790 nm {pump wavelength } !泵浦光波长790nm 3_ bE12
dir_p := forward {pump direction (forward or backward) } !前向泵浦 jKh:}yl4
P_pump_in := 5 {input pump power } !输入泵浦功率5W t1JU_P
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um ag V z
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 N#``(a
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 W
[*Go
LC1WVK/
l_s := 1940 nm {signal wavelength } !信号光波长1940nm tJG+k)EE
w_s := 7 um !信号光的半径 HLe/|x\@<
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 -9]
ucmN
loss_s := 0 !信号光寄生损耗为0 ~dO+kD
@m5c<(bkfp
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 &k@\k<2Ia
6"Ze%:AZZ
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 M zFFWk
calc >D
jJ*vM
begin h;+{0a
global allow all; !声明全局变量 p4F%FS:`
set_fiber(L_f, No_z_steps, ''); !光纤参数 z''ejq
add_ring(r_co, N_Tm); $7QGi|W*k
def_ionsystem(); !光谱数据函数 oE.Ckz~*d
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 &6^ --cc
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 $`A{-0=x\U
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 ;AG&QdTMh
set_R(signal_fw, 1, R_oc); !设置反射率函数 "MvSF1
finish_fiber(); vbD""
end; sYq:2Wn>8Q
f, '*f:(
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 UX2@eyejQ7
show "Outputpowers:" !输出字符串Output powers: (@ 1>G
^%
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) &cWC&Ws"
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) y>#_LhTX-
^e]O-,UBk
*rgF[
:
; ------------- _l"=#i@L
diagram 1: !输出图表1 {Rdh4ZKh
dWx@<(`OC
"Powers vs.Position" !图表名称 /-knqv
4@+']vN4
x: 0, L_f !命令x: 定义x坐标范围 )oALB vX
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 P L7(0b%
y: 0, 15 !命令y: 定义y坐标范围 A<]
$[2qPj
y2: 0, 100 !命令y2: 定义第二个y坐标范围 X
}`o9]y
frame !frame改变坐标系的设置 v.-r %j{I
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) >~0~h:M+
hx !平行于x方向网格 .Y|wG<E
hy !平行于y方向网格 U(PW$\l
y!dw{Lz
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 <O1os"w
color = red, !图形颜色 [_KV;qS%/
width = 3, !width线条宽度 d
A'0'M
"pump" !相应的文本字符串标签 ;PB_@Zg
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 -e_|^T"
color = blue, Z
l;TS%$
width = 3, T, +=ka$
"fw signal" ,1g_{dMx
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 >=d 5Scix
color = blue, 0x,**6
style = fdashed, 7|o!v);uR
width = 3, mrq,kwM
"bw signal" -dWg1`;
:L {*B$c
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 qw*) R#=
yscale = 2, !第二个y轴的缩放比例 L|Xg4Z
color = magenta, ')}itS8
width = 3, Q_Br{
`c
style = fdashed, `rXb:P7m{j
"n2 (%, right scale)" Zb&pH~ 7
,N_/J4Us
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 Qcks:|5
yscale = 2, o%f:BJS
color = red, Y]=k"]:%
width = 3, aM
xd"cTzx
style = fdashed, H0!$aO
"n3 (%, right scale)" F\hVunPVx
P^# 4m
d/T&J=
; ------------- }a/z.&x]V
diagram 2: !输出图表2 Fg 8lX9L
5HsF#
"Variation ofthe Pump Power" +*w}H
0Z
ZqdoYU'
x: 0, 10 -Bl^TT
"pump inputpower (W)", @x +I-BqA9
y: 0, 10 Ozhn`9L+1!
y2: 0, 100 :\I*_00!
frame yf;TIh%)=
hx $Mj\ 3
hy qo$ls\[X
legpos 150, 150 S*>T%#F6Uo
R8:5N3Fx
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 9J~\.:jH-
step = 5, 2NJ\`1HZ\
color = blue, 7R7+jL,
width = 3, /Wcx%P
"signal output power (W, leftscale)", !相应的文本字符串标签 O) TS$
finish set_P_in(pump, P_pump_in) zd)QCq
$qr6LIKGw
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 !zm;C@}ln
yscale = 2, UX[s5#
step = 5, w[\rS`J
color = magenta,
BdiV
width = 3, K9.Gjw
"population of level 2 (%, rightscale)", :s&dn%5N"
finish set_P_in(pump, P_pump_in) _9t1aP5
F~qZIggD
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 )`(]jx!
yscale = 2, JBLUX,
step = 5, yNEU/>]>2
color = red, 7i{(,:
width = 3, VH~YwO!x
"population of level 3 (%, rightscale)", b- e
finish set_P_in(pump, P_pump_in) oGB|k]6]|
x{8h3.ZQ,
i9De+3VqKK
; ------------- Z~QLjv&$/r
diagram 3: !输出图表3 @{q<"hT
8PH4v\tJEK
"Variation ofthe Fiber Length" /gl8w-6
Dw7Xy}I/
x: 0.1, 5 QRK\74'uY
"fiber length(m)", @x 0IdA!.|
y: 0, 10 q^sZP\i,*;
"opticalpowers (W)", @y )qw;KG0F
frame D*[Jrq,
hx a*LfT<hmU3
hy DpvHIE:W
&Jb\}c}
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 @y~kQ5k
step = 20, "f_qG2A{
color = blue, );VuZsmi
width = 3, s[y.gR.(
"signal output" |idw?qCn
d)bsyZ;U
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 |%F,n2
step = 20, color = red, width = 3,"residual pump" A]5];c
R'zi#FeP
! set_L(L_f) {restore the original fiber length } HnKgD:
Wh| T3&
j}",+Hv
; ------------- ;m#4Q6k)V?
diagram 4: !输出图表4 ~ gff{Nzk
r
*6S1bW
"TransverseProfiles" Ze8.+Ee
}.E^_`
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) e%L[bGW'
YfB)TK\W9/
x: 0, 1.4 * r_co /um 1S!}su,uH
"radialposition (µm)", @x 1n!:L!,`
y: 0, 1.2 * I_max *cm^2 '!`\!=j-`
"intensity (W/ cm²)", @y [bP^RY:
y2: 0, 1.3 * N_Tm V0_tk"
frame @WS77d~S
hx 6Q [
hy ]q{_i
?..BA&zRk
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 th[v"qD9G
yscale = 2, t~j6w sx;
color = gray, UAhWJ$(C
width = 3, 6{]F#ig=
maxconnect = 1, @}g3\xLiK
"N_dop (right scale)" fxPg"R!1i
3MNM<Ih
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 ;[R6rVHe{
color = red, j\~,Gtn>Z
maxconnect = 1, !限制图形区域高度,修正为100%的高度 o4WQA"VxM
width = 3, ?@$xLUHR4
"pump" EUuSN| a
*YeQCt-l
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 <n]P D;.4
color = blue, gtu<#h(
maxconnect = 1, ga%\n!S
width = 3, (vZ-0Ep}
"signal" )^{}ov
'Tjvq%ks
sV
a0eGc
; ------------- X'PZCg W
diagram 5: !输出图表5 !9_(y~g{N
2 wY|E<E
"TransitionCross-sections" 'Y)aGH(
mW%8`$rVEO
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) GT<oYrjU
XlU\D}zS
x: 1450, 2050 e6j1Fa9
"wavelength(nm)", @x Mg`!tFe3
y: 0, 0.6 n>q!m@ }<
"cross-sections(1e-24 m²)", @y =eQB-Xe8Y
frame T3zovnR
hx Mi8)r_l%O
hy R#4l"
rV%T+!n%c
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 )xV37]
color = red, <N= k&\
width = 3, /o;L,mcx*
"absorption" w!20
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 kx;X:I(5&P
color = blue, Z\CvaX
width = 3, Deh3Dtg/k
"emission" +zMPkbP6
|z=`Ur@)