切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2605阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2176
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* Lm/^ 8V+  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, IU/*YI%W  
    pumped at 790 nm. Across-relaxation process allows for efficient pQD8#y)`C  
    population of theupper laser level. j*nCIxF  
    *)            !(*  *)注释语句 h 9/68Gc?6  
    3? "GH1e  
    diagram shown: 1,2,3,4,5  !指定输出图表 Z1zC@z4sUj  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 MwZ`NH|n3"  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 4e4$AB"  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 hLF@'ln  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 [z?XVl<  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 BScysoeD  
    aj:+"X-;  
    include"Units.inc"         !读取“Units.inc”文件中内容 ZtiOf}@i\  
    TG($l2  
    include"Tm-silicate.inc"    !读取光谱数据 3ul  
    aG!!z>  
    ; Basic fiberparameters:    !定义基本光纤参数 \y=,=;yv  
    L_f := 4 { fiberlength }      !光纤长度 ;J<kG@  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 ax$0J|}7  
    r_co := 6 um { coreradius }                !纤芯半径 iJAW| dw}  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 U i;o/Z3  
    7~ 2X/  
    ; Parameters of thechannels:                !定义光信道 {=kA8U  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm =+u$ZZ0+]o  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 8K$:9+OY  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W +] uY  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um ,}[,]-nVx  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 [}Nfs3IlBw  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 zOcMc{w0   
    6Rso}hF}}  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm WWY9U  
    w_s := 7 um                          !信号光的半径 i/->g:47P  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 nWh?zf#{  
    loss_s := 0                            !信号光寄生损耗为0 hFKYRZtP.8  
    r$+9grm<  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 YEGXhn5E  
    m{' q(w}  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 X"R;/tZ S4  
    calc mu*wX'.'  
      begin ^+pmZw9 0  
        global allow all;                   !声明全局变量 C>LkU|[  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 om(#P5cSM;  
        add_ring(r_co, N_Tm); btee;3`  
        def_ionsystem();              !光谱数据函数 %'P58  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 ?qdG)jo=  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 [scPs,5Y  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 K[sfsWQ.  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 h><;TAp  
        finish_fiber();                                   \KG{ 11  
      end; Qf"gH <vT  
    HYtkSsXLN  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 X(/W|RY{@  
    show "Outputpowers:"                                   !输出字符串Output powers: Hkpn/,D5  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) E*[X\70  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) W}KtB1J  
    >%xJ e'  
    <53~Y  
    ; ------------- e+S%` Sg  
    diagram 1:                   !输出图表1 H -`7T;t~  
    `w&|~xT  
    "Powers vs.Position"          !图表名称 k;"=y )@o  
    ?g!py[CrE  
    x: 0, L_f                      !命令x: 定义x坐标范围 *.20YruU;j  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 ]NN9FM.2b/  
    y: 0, 15                      !命令y: 定义y坐标范围 7D4P= $UJp  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 #Ez>]`]TB  
    frame          !frame改变坐标系的设置 FFPO?y$  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) kz+P?mopm  
    hx             !平行于x方向网格 '9-8_;  
    hy              !平行于y方向网格 "=HCP,  
    4"0`J  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 !\CoJ.5=  
      color = red,  !图形颜色 e1K,4 Bq  
      width = 3,   !width线条宽度 U<*ZY`B3  
      "pump"       !相应的文本字符串标签 ze]2-B4  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 'AHI;Z~Gk  
      color = blue,     D guAeK  
      width = 3, ,xNuc$8Jd  
      "fw signal" Qu!Lc:oM?  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 >lRX+?  
      color = blue, @2]_jW  
      style = fdashed, lQldW|S>  
      width = 3, x# 0(CcKK  
      "bw signal" -k= 02?0p+  
    ]7Tjt A.\q  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 ]V?\Qv/.=  
      yscale = 2,            !第二个y轴的缩放比例 JZ'`.yK:  
      color = magenta, 9)'L,Xt4:T  
      width = 3, _yumUk-QW  
      style = fdashed, AW1691Q  
      "n2 (%, right scale)" : >4{m)  
    <T{PuS1<o  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 [<7Hy,xr_  
      yscale = 2, 8v_HIx0xu  
      color = red, {!@Pho)Q  
      width = 3, l}># p'$  
      style = fdashed, pl%3RVpoc  
      "n3 (%, right scale)" nxw]B"Eg  
    )EcE{!H6+  
    +-1t]`9k4  
    ; ------------- /X {:~*.z  
    diagram 2:                    !输出图表2 ng^`s}?o  
    Rcfh*"k  
    "Variation ofthe Pump Power" Ns?y) G>:  
    ~bhesWk8!  
    x: 0, 10 d\+smED  
    "pump inputpower (W)", @x wz<YflF  
    y: 0, 10 XzIhFX6  
    y2: 0, 100 "JT R5;`w  
    frame (%D*S_m'  
    hx VD#`1g<  
    hy +h.$ <=  
    legpos 150, 150 !O~EIz  
    p eQD]v  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 M S)(\&N  
      step = 5, a 39Kl_\  
      color = blue, T}jryN;J5  
      width = 3, 615, P/  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 icOh/G=N;  
      finish set_P_in(pump, P_pump_in) VnAJOR7lrx  
    80U07tJ  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 3V>2N)3`A  
      yscale = 2, 9l5l"Wj&  
      step = 5, > r6`bh [4  
      color = magenta, Y<0 [_+(  
      width = 3, CXwDG_e  
      "population of level 2 (%, rightscale)", ,dOd3y'y  
      finish set_P_in(pump, P_pump_in) 9 N[k ?kUZ  
    bsO78a~=P  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 pn<M`,F~q  
      yscale = 2, }J$Q  
      step = 5,  A M8bem~  
      color = red, dcew`$SJp  
      width = 3, ?aR)dQ  
      "population of level 3 (%, rightscale)", 96x0'IsaG  
      finish set_P_in(pump, P_pump_in) GdVq+,Ge  
    }D-h=,];  
    SRuNt3wW6  
    ; ------------- Y; JV9{j  
    diagram 3:                         !输出图表3 8p p^ w  
    Q5b~5a  
    "Variation ofthe Fiber Length" Z6#}6Y{  
    z'GYU=  
    x: 0.1, 5 )>abB?RZ  
    "fiber length(m)", @x O:3LA-vA  
    y: 0, 10 zcnp?%  
    "opticalpowers (W)", @y ^dj avJ  
    frame }c?/-ab>  
    hx >jMq-#*4  
    hy !B_i~Rmg  
    Uv?s<  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 xrd@GTaI  
      step = 20,             ?4vf 2n@  
      color = blue, J-yj&2  
      width = 3, gI a/sD2m>  
      "signal output" Exd$v"s Y  
    g(){wCI  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 oju)8H1o#  
       step = 20, color = red, width = 3,"residual pump" Yz4)Q1  
    uH 1%diL^  
    ! set_L(L_f) {restore the original fiber length } #Ux*":  
    !.9pV.~  
    w],+lN;  
    ; ------------- X+2aP'D  
    diagram 4:                                  !输出图表4 Qvo(2(  
    szW_cjS  
    "TransverseProfiles" F=)9z+l#  
    j}}:&>;  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) )* 5R/oy,  
    Q[?O+  
    x: 0, 1.4 * r_co /um ?\[2Po]n  
    "radialposition (µm)", @x U"\$k&  
    y: 0, 1.2 * I_max *cm^2 0Yk@O) x  
    "intensity (W/ cm&sup2;)", @y :KY920/,  
    y2: 0, 1.3 * N_Tm ernZfd{H  
    frame jzCSxuZ7O  
    hx I{#&!h>]U  
    hy Teq1VK3Hr  
    5MUM{(C  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 <Th) &  
      yscale = 2, d67Q@ ')00  
      color = gray, k+Ew+j1_  
      width = 3, n/*BK;  
      maxconnect = 1, mHcxK@qw  
      "N_dop (right scale)" 1 ?X(q  
    .<ux Z  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 ::bK{yZm   
      color = red, Hjl{M>z  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 1HOYp*{#wP  
      width = 3, X]up5tk~  
      "pump" [4Tiukk(  
    sbnNk(XINQ  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 f%r0K6p  
      color = blue, {c5%.<O  
      maxconnect = 1, #m 2Ss  
      width = 3, P=v 0|Y*q|  
      "signal" |KSd@   
    R7axm<PR=  
    Ut"~I)S{LT  
    ; ------------- $x_6 .AOZ,  
    diagram 5:                                  !输出图表5 Lbb{z  
    v4_p3&aj  
    "TransitionCross-sections" .-Y3oWV  
    xRu m q  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) =apcMW(zn  
    g-B~" tp  
    x: 1450, 2050 Qn`$xY9mT  
    "wavelength(nm)", @x rHhn)m  
    y: 0, 0.6 b'i-/l$  
    "cross-sections(1e-24 m&sup2;)", @y YbS$D  
    frame ="%nW3e@  
    hx QEd>T"@g  
    hy ^(,qkq'u D  
    'EF\=o)^Y  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 GS),rNBur  
      color = red, `LD#fg*  
      width = 3, Yr9>ATR  
      "absorption" B I9~% dm  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 l!Bc0  
      color = blue, ?,Z[)5 ZN  
      width = 3, ;qM I3wF  
      "emission" }` &an$Mu  
    HEZgHL  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚