(* LzJNQd'
Demo for program"RP Fiber Power": thulium-doped fiber laser, a76`"(W
pumped at 790 nm. Across-relaxation process allows for efficient K=X13As_
population of theupper laser level. h>A}vI*:
*) !(* *)注释语句 E;C=V2#>[
M4(`o^n
diagram shown: 1,2,3,4,5 !指定输出图表 Cz1o@rt
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 Um\_G@
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 ImVHX~qHJ
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 e4?p(F-x(
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 G%RhNwm
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 7ZRLSq'S
t|y`Bl2
include"Units.inc" !读取“Units.inc”文件中内容 BSib/)p
2
.)`8|c9
include"Tm-silicate.inc" !读取光谱数据 *ioVLt,:R
Jv9yy~
; Basic fiberparameters: !定义基本光纤参数 b#[7A
L_f := 4 { fiberlength } !光纤长度 4Sxt<7[f
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 5Myp#!|x:
r_co := 6 um { coreradius } !纤芯半径 juc;]CHt'
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 >*aqYNft
49m}~J=*
; Parameters of thechannels: !定义光信道 e+=P)Zp/
l_p := 790 nm {pump wavelength } !泵浦光波长790nm SYsbe 5j
dir_p := forward {pump direction (forward or backward) } !前向泵浦 G`"
9/FI7
P_pump_in := 5 {input pump power } !输入泵浦功率5W ;3H#8x-
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um 7-Yn8Gq
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 rF8nz:8
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 ^sA"&Vdr^
#fR~7K R
l_s := 1940 nm {signal wavelength } !信号光波长1940nm b4HUgW3Ac
w_s := 7 um !信号光的半径 EsR$H2"
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 wkwsBi
loss_s := 0 !信号光寄生损耗为0 Y]R;>E5o|
>^fkHbgNQ
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率
,m-/R
8P#jC$<
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 4dwG6-
calc t$W~X~//
begin ^cy.iolt
global allow all; !声明全局变量 0=^A{V!m
set_fiber(L_f, No_z_steps, ''); !光纤参数 yxt`
add_ring(r_co, N_Tm); dUg| {l
def_ionsystem(); !光谱数据函数 4pfv?!Oj
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 OAhCW*B
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 /Ky xOb)
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 |tkhsQ-;
set_R(signal_fw, 1, R_oc); !设置反射率函数 jZ8#86/#{
finish_fiber(); =(x W7Pt~
end; mSu1/?PS
lrXi*u]
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 &>.
w*
show "Outputpowers:" !输出字符串Output powers: OYsG#
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) /v,H%8S
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) DWQ@]\
C=z7Gk=
j\Z/R1RcW
; ------------- `V1D&}H+G
diagram 1: !输出图表1 U[Pll~m2b
LmKG6>Q1#1
"Powers vs.Position" !图表名称 9Xv>FVG!
ma<+!*|
x: 0, L_f !命令x: 定义x坐标范围 pg.z `k
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 $O/@bh1@p
y: 0, 15 !命令y: 定义y坐标范围 ' N@1+v=
y2: 0, 100 !命令y2: 定义第二个y坐标范围 G/*0*&fW
frame !frame改变坐标系的设置 dsh S+d
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) I C6}s
hx !平行于x方向网格 `2M`;$~ 5
hy !平行于y方向网格 uNV\_'9>Y
]ctlK'.
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 AIR\>.~"i*
color = red, !图形颜色 RU1+-
width = 3, !width线条宽度 Y GZX}-
"pump" !相应的文本字符串标签 W\tSXM-Hg
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 ]i3 1@O
color = blue, x[,HK{U|t
width = 3, <3;Sq~^
"fw signal" BN?OvQ
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 UoLvc~n7
color = blue, HW)4#nLhh
style = fdashed, @} 61D
width = 3, y3 R+060\3
"bw signal" F|3 =Cl
q5irKT*Hs
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 1HF=,K+
yscale = 2, !第二个y轴的缩放比例 ?~;8Y=O
color = magenta, .7ZV:m
width = 3, =c-,uW11[
style = fdashed, *)V1Sd#m
"n2 (%, right scale)"
vj+x(
<4gT8kQ$x
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 V0,%g+.^
yscale = 2, wX_s./#JJ
color = red, @c<*l+Qc
width = 3, uIG,2u,
style = fdashed, OIuEC7XM^C
"n3 (%, right scale)" kAF[K,GG
A{5^A)$
V Q6&7@
c
; ------------- ,Qgxf';+$
diagram 2: !输出图表2 .kl _F7
z9k3@\7
"Variation ofthe Pump Power" rpk
)i:k\
1N#KVvK
x: 0, 10 nMK,g>wp
"pump inputpower (W)", @x [>IAS>
y: 0, 10 akuV9S
y2: 0, 100 1rr\l`
frame VpDNp
(2
hx fh0a "#L{
hy $YM>HZe-
legpos 150, 150 fZqMznF
LRqBP|bjCD
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 Q3t9J"=1g
step = 5, ;+%(@C51GE
color = blue, XY[uyR4Z
width = 3, y#'|=0vTvP
"signal output power (W, leftscale)", !相应的文本字符串标签 wic&
$p/%
finish set_P_in(pump, P_pump_in) ^Z:oCTOP
0] 'Bd`e
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 de?Bn+mvi.
yscale = 2, NuLyu=.?
step = 5, gK {-eS
color = magenta, [NE:$@
width = 3, - J9K
"population of level 2 (%, rightscale)", PVGvj c
finish set_P_in(pump, P_pump_in) sx ;7
UN7>c0B
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 ?U~9d"2=
yscale = 2, _5F8F4QY`
step = 5, uyt]\zVT
color = red, xef@-%mcoy
width = 3, xn49[T
"population of level 3 (%, rightscale)", <r_L-
finish set_P_in(pump, P_pump_in)
iw!kV
l$ABOtM@
'lPt.*Y<u
; ------------- 86c@Kk7z
diagram 3: !输出图表3 7!0~sf9A
-!OFt}
"Variation ofthe Fiber Length" Nwu, :}T
Byx8`Cx1
x: 0.1, 5 3g!tk9InG
"fiber length(m)", @x "0JG96&\
y: 0, 10 FOB9J.w4
"opticalpowers (W)", @y F]e]
frame | |=q"h3(
hx !,f{I5/
hy o1x IGP<
fiuF!<#;6
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 N=e-"8
step = 20, N/ 7Q(^
color = blue, V)
#vvnq
width = 3, xh$1Rwa
"signal output" pIKQx5;
biTET|U`$
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 tDF=Iqu)a
step = 20, color = red, width = 3,"residual pump" DYS|"tSk
Bvke@|]kW
! set_L(L_f) {restore the original fiber length } ykY#Y}?^
=YZyH4eI
%d..L-`]ET
; ------------- {ZiZ$itf
diagram 4: !输出图表4 ZeVb< g
MdzG2uZT
"TransverseProfiles" A#:5b5R
Ij +
E/V
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) @<$-*,
Vo@[
x: 0, 1.4 * r_co /um )sWC5\
"radialposition (µm)", @x 0/".2(\}T
y: 0, 1.2 * I_max *cm^2 %nU8 Ca
"intensity (W/ cm²)", @y +}IOTw"O`
y2: 0, 1.3 * N_Tm ?W l=F/
frame >Qk4AMIO
hx ]#n,DU}V
hy k5]M~"
y'ZRoakz)
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 h^{D "
yscale = 2, {fi:]|<1h
color = gray, a@[y)xa$Z
width = 3, 5v51:g>c
maxconnect = 1, +bi%4DA
"N_dop (right scale)" #b[B$
SiN22k+
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 }Wxu =b
color = red, P'^#I[G'
maxconnect = 1, !限制图形区域高度,修正为100%的高度 q&.SB`
width = 3, jOuz-1x,&
"pump" wYTF:Ou^5~
J1,\Q<
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 sq6|J])GgU
color = blue, %<x2=#0
maxconnect = 1, ifA{E}fRZP
width = 3, X@$x(Zc
"signal" =d#3& R]p
Isa]5>
DL&\iR
; ------------- (+'*_
diagram 5: !输出图表5 [[{y?-U
XWQp-H.
"TransitionCross-sections" uj@rv&
^rd]qii"
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) sxq'uF(K
n:c)R8X]
x: 1450, 2050 vi+k#KE
"wavelength(nm)", @x 1-.UkdZ}
y: 0, 0.6 f_}FYeg
"cross-sections(1e-24 m²)", @y &lg+uK
frame wIi_d6?
hx @+LZSd+I
hy c hE~UQ
?zwPF;L*
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 !(=bH"P
color = red, 5f&+(Wqw
width = 3, OS c&n>\t
"absorption" ;\yVwur
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 86J7%;^Xa
color = blue, u_.`I8qa
width = 3, ] -O/{FIv
"emission" RC5b'+E