(* NB5lxaL
Demo for program"RP Fiber Power": thulium-doped fiber laser, GXk
|p8
pumped at 790 nm. Across-relaxation process allows for efficient 2R
^6L@fw
population of theupper laser level. R](cko=
*) !(* *)注释语句 0x<G\ l4
+=d=
diagram shown: 1,2,3,4,5 !指定输出图表 >vR2K^
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 *yY\d.6(
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 jtq^((Ux
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 =GW[UnO
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 .;S1HOHz4
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 1|AY&u%fiP
dt>9mF q
include"Units.inc" !读取“Units.inc”文件中内容 yY*(!^S
+md"X@k5*
include"Tm-silicate.inc" !读取光谱数据 rVRv*W
|f\WVGH
; Basic fiberparameters: !定义基本光纤参数 Ck>]+rl
L_f := 4 { fiberlength } !光纤长度 6!USSipn
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 ]>ndFE6kl
r_co := 6 um { coreradius } !纤芯半径 P!IXcPKW53
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 mB6%. "
nywC]T
; Parameters of thechannels: !定义光信道 ]rNxvFN*j
l_p := 790 nm {pump wavelength } !泵浦光波长790nm =6f)sZpPh
dir_p := forward {pump direction (forward or backward) } !前向泵浦 ]"?<y s
P_pump_in := 5 {input pump power } !输入泵浦功率5W -3y
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um 9g'6zB
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 =;F7h
@:
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 c4r9k-w0E
9]lyV
l_s := 1940 nm {signal wavelength } !信号光波长1940nm ^QG<_Dm]
w_s := 7 um !信号光的半径 .JJ50p
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 f! )yE`4-
loss_s := 0 !信号光寄生损耗为0 ]m7x&N2
ie>mOsz
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 F- M)6&T
hy@b/Y![M
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 CN}0( 2n
calc p:eaZ
begin R3LIN-g(
global allow all; !声明全局变量 B52dZ b
set_fiber(L_f, No_z_steps, ''); !光纤参数 vlipB}
add_ring(r_co, N_Tm); tA,J~|+f:
def_ionsystem(); !光谱数据函数 Y^U^yh_!^
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 U[OUIXUi
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 ;Bw3@c
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 (ip3{d{CT]
set_R(signal_fw, 1, R_oc); !设置反射率函数 ,U+>Q!$`\^
finish_fiber(); 1'iQlnMO@
end; 3+
2&9mm
k,; (`L
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 CC'N"Xb
show "Outputpowers:" !输出字符串Output powers: <b\8<mTr
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) .7:ecFKk
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) f^F"e'1
(H:A|Lw
j~>J?w9<O
; ------------- 4L4u<
diagram 1: !输出图表1 =W2I0nr.
hd[t&?{=
"Powers vs.Position" !图表名称 rOj(THoc{
I3i zLi
x: 0, L_f !命令x: 定义x坐标范围 %K7;ePu
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 Nez '1
y: 0, 15 !命令y: 定义y坐标范围 :_nGh]%
y2: 0, 100 !命令y2: 定义第二个y坐标范围 ^gNbcWc7CU
frame !frame改变坐标系的设置 0]$-}AYM
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) -/*VR$c
hx !平行于x方向网格 g:U
-kK!i
hy !平行于y方向网格 SJ:Teab
sJl>evw
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 B<$6Dj%L
color = red, !图形颜色 +qqCk
width = 3, !width线条宽度 *P5/ S8c
"pump" !相应的文本字符串标签 Goy[P2m
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 FFmXT/K"/j
color = blue, ,OP\^
width = 3, \_i22/Et
"fw signal" lH@goh
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 1=!2|D:C)i
color = blue, &Fjyi"8(r
style = fdashed, %|f@WxNrU
width = 3, $BB^xJ\O
"bw signal" E8<,j})*
Bs>S2]
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 xo n^=Wo;
yscale = 2, !第二个y轴的缩放比例 ]@}hyM[D;
color = magenta, 5$X 8|Ve
width = 3, se}$/Y}t
style = fdashed, X &G]ci
"n2 (%, right scale)" XaoVv2=G~
D5].^*AbZ
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 ymnK `/J!Q
yscale = 2, A 2\3.3
color = red, Y`6<:8[?
width = 3, A_2lG!!
6
style = fdashed, g0s4ZI+T
"n3 (%, right scale)" hgwS_L
5Fq+^
Mpk7$=hjc
; ------------- w_LkS/
diagram 2: !输出图表2 U7,.L
<;jg/
"Variation ofthe Pump Power" +@7c:CAy(
A8AeM`
x: 0, 10 KF!d?
"pump inputpower (W)", @x AXnKhYlu
y: 0, 10 - ku8n%u
y2: 0, 100 I).eQ8:
frame Ywcgt|
hx Z *v`kl
hy c]qh)F$s8
legpos 150, 150 ^%Ln@!P
pE0@m-p
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 yLl:G;
step = 5, X76rme
color = blue, [i>D|X
width = 3, 9'|_1Q.b^
"signal output power (W, leftscale)", !相应的文本字符串标签 -b?s\X
finish set_P_in(pump, P_pump_in) W* n|T{n
vAOThj)
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 <Skf
n`).
yscale = 2, 0wF)bQv1
step = 5, PfhKomt"
color = magenta, qzSm]l?z
width = 3, ?/~Q9My
"population of level 2 (%, rightscale)", d4A:XNKB
finish set_P_in(pump, P_pump_in) YhN:t?
)2u_[Jc=
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 $H/: -v
yscale = 2, X2P8Zq=%a
step = 5, ^$rqyWZYp
color = red, :SZi4:4-J8
width = 3, EYn9ln_]u
"population of level 3 (%, rightscale)", !QME!c>*$
finish set_P_in(pump, P_pump_in) 9tmnx')_
4ZYywD wn
^
7)H;$
; ------------- 8zjJshE/
diagram 3: !输出图表3 L/5th}m
bcAk$tA2
"Variation ofthe Fiber Length" -f?,%6(1
ItZ*$I1<
x: 0.1, 5 9w1`_r[J
"fiber length(m)", @x U_UN& /f
y: 0, 10 3 [O+wVv
"opticalpowers (W)", @y R#rfnP >
frame %"|W
qxv
hx \(zUI
hy _~2o
Ypinbej
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 `84,R!
step = 20, ITz+O=I4R]
color = blue, Lg-!,Y
width = 3, n9Vr*RKM)
"signal output" y6H`FFqK
Oz<#s{Z
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 z.tN<P 7
step = 20, color = red, width = 3,"residual pump" \GK]6VW
P\@efq@!
! set_L(L_f) {restore the original fiber length } X"jtPYCpV{
e=_Ng
j)
/U0,%
; ------------- =t.T9'{
diagram 4: !输出图表4 L9!\\U
wb39s^n
"TransverseProfiles" xE*.,:,&
EbJc%%c
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) tNYuuC%N
"cvhx/\1#
x: 0, 1.4 * r_co /um z0&Y_Up+5
"radialposition (µm)", @x +{%)}?F
y: 0, 1.2 * I_max *cm^2 j&q%@%Gm
"intensity (W/ cm²)", @y RQ 8;_)%
y2: 0, 1.3 * N_Tm E+$D$a
frame ~CHVU3
hx F><ficT
hy _auFt"n
U[Lr+nKo\
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 w/9%C(w6
yscale = 2, HI[Pf%${
color = gray, S.?DR3XLc
width = 3, #1WCSLvtV
maxconnect = 1, `(E$-m-~jH
"N_dop (right scale)" gN]\#s@[
"kjSg7m*:
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 p@oz[017/J
color = red, f*Os~@K
maxconnect = 1, !限制图形区域高度,修正为100%的高度 P#[?Kfi
width = 3, bYr*rEcA
"pump" 1-|aeJ
((=T E
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 =VV><^uzdY
color = blue, #K!"/,d@>J
maxconnect = 1, wEQZ9?\
width = 3, UtRwZ(09
"signal" ,}NTV~
bL5u;iy)
Q(x/&]7=V
; ------------- x~](d8*=
diagram 5: !输出图表5 fm!\**Q1
D&qJ@PR
"TransitionCross-sections" `]a0z|2'!
vhDtjf/*
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) }]=@Y/p
N*)O_Ki
x: 1450, 2050 (k_9<Yb3
"wavelength(nm)", @x TIK'A<
y: 0, 0.6 F3L+X5D.yu
"cross-sections(1e-24 m²)", @y t/l<X]o
frame ]zn3nhBI
hx yq[@Cw
hy Lyit`j~yH
~
ea K]|
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 #aiI]'
color = red, l hST%3Ld
width = 3, ;s -@m<
"absorption" uQ7lC~
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 ? 51i0~O=
color = blue, ,5AEtoF
width = 3, R`B} T<*
"emission" Pz0TAb
+k[w)7Q