切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2478阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2176
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* -/ G#ls|?  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, * =*\w\ te  
    pumped at 790 nm. Across-relaxation process allows for efficient [nG[ x|;|  
    population of theupper laser level. [)?9|yY"`  
    *)            !(*  *)注释语句 U{qwhz(  
    v,Zoy|Lu  
    diagram shown: 1,2,3,4,5  !指定输出图表 l[i1,4  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 D<:zw/IRE  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 1/,~0N9  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 v}id/brl  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 (>,b5g  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 nBLb1T  
    =dwy 4  
    include"Units.inc"         !读取“Units.inc”文件中内容 OsW*@v(  
    }u1h6rd `  
    include"Tm-silicate.inc"    !读取光谱数据 D^a(|L3;  
    q&}+O  
    ; Basic fiberparameters:    !定义基本光纤参数 @^J>. g  
    L_f := 4 { fiberlength }      !光纤长度 jcjl q-x  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 Q+/P>5O/  
    r_co := 6 um { coreradius }                !纤芯半径 Z +O< IF%  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 @iMF&\KC  
    uH(M@7"6_!  
    ; Parameters of thechannels:                !定义光信道 0|i|z !N>  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm CMyz!jZ3  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 acgx')!c  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W ktRGl>J  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um !]5V{3  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 3[m2F O,Z  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 LM 1Vsh<  
    x8x-b>|$&<  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm Jl6lZd(Np  
    w_s := 7 um                          !信号光的半径 L4ct2|w}ul  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 \j-:5M#m  
    loss_s := 0                            !信号光寄生损耗为0 Bj"fUI!dK  
    <:&{c-f/  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 d'H gek{T  
    ZD7qw*3+  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 ,b5vnW\  
    calc N7KG_o%  
      begin ^.  
        global allow all;                   !声明全局变量 =q|//*t2  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 )=bW\=[8  
        add_ring(r_co, N_Tm); OEX\]!3_Fm  
        def_ionsystem();              !光谱数据函数 <r(D\rmD  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 t @a&&  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 ^t*Ba>A  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 X<pNc6  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 VS!v7-_N5  
        finish_fiber();                                   BjfTt:kY  
      end; s,pg4nst56  
    OF )*kiJ  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 {t.S_|IE  
    show "Outputpowers:"                                   !输出字符串Output powers: /d/]#T[Z9  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) P2 qC[1hYH  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) XX "3.zW  
    VR%*8=  
    ykH@kv Qt  
    ; ------------- xP;>p| M  
    diagram 1:                   !输出图表1 1C]BaPbL  
    NB86+2stu  
    "Powers vs.Position"          !图表名称 lDF7~N9J_  
    rhX?\_7o  
    x: 0, L_f                      !命令x: 定义x坐标范围 :7JP(j2  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 (d* | |"  
    y: 0, 15                      !命令y: 定义y坐标范围 94]i|2qj*  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 5*Qzw[[=  
    frame          !frame改变坐标系的设置 ts("(zI1E  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) (ip3{d{CT]  
    hx             !平行于x方向网格 ${}9/(x/^  
    hy              !平行于y方向网格 1'iQlnMO@  
    ( z F_<  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 g!r) yzK  
      color = red,  !图形颜色 # JY>  
      width = 3,   !width线条宽度 F1L[C4'  
      "pump"       !相应的文本字符串标签 <b\8<mTr  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 .7:ecFKk  
      color = blue,     q_L. Sy|)  
      width = 3, 1mR@Bh  
      "fw signal" j~>J?w9<O  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 .I$+ E  
      color = blue, Uz[#ye  
      style = fdashed, 'A\0^EvVv  
      width = 3, l<ZHS'-;8  
      "bw signal" =UWW(^M#[:  
    4d}n0b\d  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 tB4yj_ZF  
      yscale = 2,            !第二个y轴的缩放比例 {yEL$8MC  
      color = magenta, IG2z3(j  
      width = 3, >IA1 \?(  
      style = fdashed, V?`|Ha}  
      "n2 (%, right scale)" \%%M>4c  
    rSm#/)4A  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 :Z_abKt  
      yscale = 2, gw%L M7yQR  
      color = red, St> E\tXp  
      width = 3, Ml{4)%~Y7f  
      style = fdashed, 0dI7{o;<|  
      "n3 (%, right scale)" 'aEN(Mdz1e  
    =^l`c$G<  
    )nK+`{;@!  
    ; ------------- mv`b3 $  
    diagram 2:                    !输出图表2 0tPwhJ  
    +&J1D8  
    "Variation ofthe Pump Power" TV0Y{x*~iH  
    wyAh%'V  
    x: 0, 10 8493O x4 O  
    "pump inputpower (W)", @x 0AoWw-H6V  
    y: 0, 10 J~ +p7S  
    y2: 0, 100 Ad>@8^  
    frame *YX:e@Fm.a  
    hx KZaiy*>)  
    hy zzh7 "M3Qn  
    legpos 150, 150 F&3:]1  
    =)N6 R  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 9(_n8br1  
      step = 5, ycvgF6Me<  
      color = blue, :!fY;c?  
      width = 3, V>UlL&V  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 8= 82x  
      finish set_P_in(pump, P_pump_in) >fkV65w{*  
    f}ch1u>  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 s.KfMJ"u[  
      yscale = 2, 3Q)"  
      step = 5, ra_TN ;(  
      color = magenta, |RqCI9N6  
      width = 3, Ys?0hd<cn  
      "population of level 2 (%, rightscale)", M-F{I%Vx  
      finish set_P_in(pump, P_pump_in) z U *Mk  
    4<5*HpW  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 9+.3GRt7  
      yscale = 2, #!_ViG )2^  
      step = 5, e ^`La*n  
      color = red, o>m*e7l,  
      width = 3, 1}p :]/;  
      "population of level 3 (%, rightscale)", o4LVG  
      finish set_P_in(pump, P_pump_in) lR`.V0xA   
    yLl:G;  
    X76rme  
    ; ------------- %j{*`}  
    diagram 3:                         !输出图表3 9'|_1Q.b^  
    XB:E<I'q!3  
    "Variation ofthe Fiber Length" }?O>.W,/  
    [<Mls@?  
    x: 0.1, 5 ~4] J'E >  
    "fiber length(m)", @x _=cuOo"!  
    y: 0, 10 BE0Xg  
    "opticalpowers (W)", @y 60D6UW  
    frame 9 OlJC[  
    hx fj9&J[  
    hy +HD2]~{EkL  
    YhN:t?  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 )2u_c=  
      step = 20,             a\B?J  
      color = blue, `nc=@" 1  
      width = 3, CE| *&G  
      "signal output" 5CH8;sMK  
    }b{7+ + Ah  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 p`!<yq2_  
       step = 20, color = red, width = 3,"residual pump" 'mF&`BN}b  
    6J cXhlB`  
    ! set_L(L_f) {restore the original fiber length } @Yw42`> !s  
    Mi}k>5VT  
    Zl.,pcL  
    ; ------------- >]Dn,*R  
    diagram 4:                                  !输出图表4 &7{yk$]*  
    rV*Ri~Vx  
    "TransverseProfiles" 6.|[;>Km  
    EQ"+G[j~x  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) R[QBFL<  
    RS2uk 7MB  
    x: 0, 1.4 * r_co /um !|mzu1S  
    "radialposition (µm)", @x {T0Au{88H  
    y: 0, 1.2 * I_max *cm^2 w.+G+ r=  
    "intensity (W/ cm&sup2;)", @y SI=7$8T5=5  
    y2: 0, 1.3 * N_Tm '+*'sQvH[  
    frame ]L3MIaO2T  
    hx &,\my-4c>  
    hy {qs>yQ6a:-  
    xlc2,L;i  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 ws$kwSHq  
      yscale = 2, fOP3`G^\  
      color = gray, y3P4]sq  
      width = 3, B f.- 5  
      maxconnect = 1, {CX06BP  
      "N_dop (right scale)" \J-D@b;  
    _Y)Wi[  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 bH%d*  
      color = red, E0u&hBd3_  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 I(z16wQ  
      width = 3, #f_.  
      "pump" 3A.lS+P1  
    \9}DAM_  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 Bt(nm> Ng  
      color = blue, uu/2C \n}  
      maxconnect = 1, AH:0h X6+  
      width = 3, m<J:6^H@  
      "signal" ghTue*A  
    Fnd_\`9{  
    f`[E^ zj  
    ; ------------- F><ficT  
    diagram 5:                                  !输出图表5 ezS@`_pR;  
    9vCCE[9  
    "TransitionCross-sections" w/9%C(w6  
    u7},+E)+B  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) S.?DR3XLc  
    #1WCSLvtV  
    x: 1450, 2050 B'bOK`p  
    "wavelength(nm)", @x [* |+ it+!  
    y: 0, 0.6 "kjSg7m*:  
    "cross-sections(1e-24 m&sup2;)", @y p@oz[017/J  
    frame :4r*Jju<V  
    hx )G*xI`(@  
    hy q w @g7  
    |w5,%#AeO$  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 X3?RwN:P  
      color = red, /0XmU@B  
      width = 3, *n6L3"cO  
      "absorption" MHA_b^7?  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 2AEVBkF;M  
      color = blue, 7"OJ,Mx%  
      width = 3, v[)8 1uY  
      "emission" beNy5~M$  
    1Vs>G  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚