(* 9zdp8?T
Demo for program"RP Fiber Power": thulium-doped fiber laser, kcy?;b;z
pumped at 790 nm. Across-relaxation process allows for efficient zYf`o0U
population of theupper laser level. A;e[-5@
*) !(* *)注释语句 4"$K66yk@
hFORs.L&G
diagram shown: 1,2,3,4,5 !指定输出图表 +y!B`'J
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 \Mk;Y
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 !V~`e9[rl
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 L2s)B
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 (*63G4Nz\
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 sb
3l4(8g
w(w%~;\kLP
include"Units.inc" !读取“Units.inc”文件中内容 TH_Vw,)
> QwZt
include"Tm-silicate.inc" !读取光谱数据 0qXkWGB
p5<2t SD
; Basic fiberparameters: !定义基本光纤参数 (<ybst6+I
L_f := 4 { fiberlength } !光纤长度 ;Qpp[V`
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 {^TV Zdw
r_co := 6 um { coreradius } !纤芯半径 GO@pwq<
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 b6Jv|1w'
5#~ARk*?a
; Parameters of thechannels: !定义光信道 5t6!K?}
l_p := 790 nm {pump wavelength } !泵浦光波长790nm 0 S3~IeJ
dir_p := forward {pump direction (forward or backward) } !前向泵浦 :tP:X+?O
P_pump_in := 5 {input pump power } !输入泵浦功率5W zV)Ob0M7U
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um ?!H<V@a
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 S>~QuCMY
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 7
4rmxjiN
8Z;wF
l_s := 1940 nm {signal wavelength } !信号光波长1940nm vkmTd4g
w_s := 7 um !信号光的半径 L@*0wx`fU
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 yteJHaq
loss_s := 0 !信号光寄生损耗为0
9XGzQ45R
9moenkL
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 Xrnxpp!#^D
@;>TmLs
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 8+Lig
calc 8Rq+eOP=S
begin jEBZ"Jvb
global allow all; !声明全局变量 MRvtuE|g
set_fiber(L_f, No_z_steps, ''); !光纤参数 Lu&2^USTO
add_ring(r_co, N_Tm); ${n=1-SMU
def_ionsystem(); !光谱数据函数 l" y==y
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 ~__]E53F
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 ]a|3"DP5
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 l[]K5?AS>-
set_R(signal_fw, 1, R_oc); !设置反射率函数 9 F~U%
>GX
finish_fiber(); D$k40Mz
end; XZhX%OT!
/kGRN@
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出
v#/Uq?us
show "Outputpowers:" !输出字符串Output powers: Fy-+? ~
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) *JXiOs
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) DKL< "#.7
;u LD_1%
i70TJk$fs
; ------------- X<s']C9c
diagram 1: !输出图表1 |RQ19m@
620y[iiK$
"Powers vs.Position" !图表名称 jnFCtCB
2Mx9Kd'a
r
x: 0, L_f !命令x: 定义x坐标范围 c }>:>^
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 S5ka;g
y: 0, 15 !命令y: 定义y坐标范围 .fxI)
y2: 0, 100 !命令y2: 定义第二个y坐标范围 "m3:HS
frame !frame改变坐标系的设置 2U,O
e9
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) \RZFq<6>
hx !平行于x方向网格 )5P*O5kQ -
hy !平行于y方向网格 @L|X('i
(x9d7$2
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 5J1A|qII
color = red, !图形颜色 'pOtd7Vr
width = 3, !width线条宽度 Xr~6_N{J
"pump" !相应的文本字符串标签 SymSAq0$F
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 KU[eY}
color = blue, ,J?Hdy:R
width = 3, Sv.z9@S
"fw signal" "iE9X.6NMu
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 fAWjk&9
color = blue, GP ;c$pC
style = fdashed,
GqhnE>
width = 3, +v%V1lf^~
"bw signal" +]Of f^s
zcItZP
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 P%>? O :a
yscale = 2, !第二个y轴的缩放比例 [6qa"Ie
color = magenta, HbF.doXK
width = 3, _)Uw-vhQiT
style = fdashed, B M{GSX
"n2 (%, right scale)" PPT"?lt*&
qWe1`.o
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 J)
v~
yscale = 2, aR.1&3fE
color = red, *!UY;InanX
width = 3, w3:WvA5jt
style = fdashed, !mK[kXo
"n3 (%, right scale)" hNUAwTH6
iC&=-$vu
c+AZ(6O?\
; ------------- R3F>"(P@tS
diagram 2: !输出图表2 a_I!2w<I
Q^/5hA
"Variation ofthe Pump Power" HyXw^ +tsj
EDvK9J
x: 0, 10 tA$,4B?
"pump inputpower (W)", @x ~6@zXHAS
y: 0, 10 8 f%@:}H
y2: 0, 100 +Tc4+q!
frame }gyJaMA
hx (,Yb]/O*
hy 8):I< }s#
legpos 150, 150 wXDF7tJh
noe1*2*T E
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 ^4]#Ri=U
step = 5, m_~
p G
color = blue, NUb^!E"
width = 3, P]T(I/\g
"signal output power (W, leftscale)", !相应的文本字符串标签 Y5=~>*e
finish set_P_in(pump, P_pump_in) &KgR;.R^J
:gY$/1SYD
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 'Z'X`_
yscale = 2, dra'1E
step = 5, 5/DTE:M<
color = magenta, :ORCsl6-
width = 3, y&9S+
"population of level 2 (%, rightscale)", @8Drhx
finish set_P_in(pump, P_pump_in) %0INtq
~j3B'
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 shxr^
yscale = 2, 2 8SlFu?
step = 5, wQ!~c2a<8
color = red, 3/:O8H
width = 3, '*!R
gbj;
"population of level 3 (%, rightscale)",
\8Mkb]QA
finish set_P_in(pump, P_pump_in) >OE.6)'Rm
"$+naY{w
MjE.pb
; ------------- twt
Bt L
diagram 3: !输出图表3 'LFHZ&-
66D<Up'K
"Variation ofthe Fiber Length" PTA;a0A
Y_>z"T
x: 0.1, 5 4DEsB)%X
"fiber length(m)", @x J:f>/
y: 0, 10 {d}-SoxH
"opticalpowers (W)", @y G6JyAC9j
frame 3`TC*
hx JwB:NqB
hy zJI/j
_~W
dpZ7eJ
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 Sn.I
]:l
step = 20, #"ayq,GC<
color = blue, YC&iH>jO3
width = 3, Jkpw8E7
"signal output" 2P$l XGjh
r {)d?Ho=
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 H24g+<Tv
step = 20, color = red, width = 3,"residual pump" ,p1 (0i
;VK;_d
! set_L(L_f) {restore the original fiber length } WeuV+}\b
"x9xJ
="@W)"r
; ------------- =d~]*[8
diagram 4: !输出图表4 BGOI$,
;07!^#:L=Q
"TransverseProfiles" {,IWjt &>
ol!o8M%Q
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) huvg'Yt
GOJi/R.{
x: 0, 1.4 * r_co /um 6xdu}l=%
"radialposition (µm)", @x {N)\It
y: 0, 1.2 * I_max *cm^2 lx$Y-Tb^F
"intensity (W/ cm²)", @y /T#<g:
y2: 0, 1.3 * N_Tm ;T#t)oV
frame hNDhee`%6
hx t
vk^L3=<
hy ejgg.G ^
]|u}P2
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 &@dMk4BH<
yscale = 2, CSr{MF`]e
color = gray, cnLC> _hY
width = 3, ~e{2Y%
maxconnect = 1, |\QR9>
"N_dop (right scale)" ~|DF-t
V
15yIPv+5
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 %M}zi'qQ?
color = red, ,9?'Q;20
maxconnect = 1, !限制图形区域高度,修正为100%的高度 `}zv17wp
width = 3, Maa5a
"pump" wW%I < M
Lj~lfO
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 l06 q1M 3
color = blue, /;OJ=x3i
maxconnect = 1, S
BFhC
width = 3, v~jN,f*
"signal" EAY9~b6~c
jb7=1OPD_
5&}icS
; ------------- *r-Bt1
diagram 5: !输出图表5 ]G1j\ wnF
n|,Es!8:o
"TransitionCross-sections" UD9h5PgT
LL[+QcH
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) hJ}G5pX
etTuukq_Z
x: 1450, 2050 ]6:5<NW
"wavelength(nm)", @x 3_h%g$04s
y: 0, 0.6 fLD9RZ8_
"cross-sections(1e-24 m²)", @y :+R5"my
frame 9txZ6/
hx qh2.N}lW
hy {#[a4@B0
W2<X 5'
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 0(i`~g5
color = red, kBONP^xI
width = 3, _p_F v>>:
"absorption" }K*ri
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 )j9FB
color = blue, ze4/XR
width = 3, Fe= 4^.
"emission" ITsJjcYw
Xs!eV