(* ~m;MM)_V
Demo for program"RP Fiber Power": thulium-doped fiber laser, '2qxcc o
pumped at 790 nm. Across-relaxation process allows for efficient O]r3?=
population of theupper laser level. RNrYT|
*) !(* *)注释语句 SYW=L
$rQFM[
diagram shown: 1,2,3,4,5 !指定输出图表 qer'V
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 G]NtX4'4
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 |% YzGgp7
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 K7R])*B.~
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 oTV8rG
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 P@S;>t{TD
cPBy(5^
include"Units.inc" !读取“Units.inc”文件中内容 `J7Lecgo
7[.Q.3FL
include"Tm-silicate.inc" !读取光谱数据 +}L3T"
_Ag/gu2-?
; Basic fiberparameters: !定义基本光纤参数 {'Qk>G
s
L_f := 4 { fiberlength } !光纤长度 Y"
+1,?yH
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 W<hdb!bE
r_co := 6 um { coreradius } !纤芯半径 `zOAltfd
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度
a):Run
@p` CAB
; Parameters of thechannels: !定义光信道 SlJ/OcAf#
l_p := 790 nm {pump wavelength } !泵浦光波长790nm :AcNb
dir_p := forward {pump direction (forward or backward) } !前向泵浦 !m:PBl5
P_pump_in := 5 {input pump power } !输入泵浦功率5W 2WECQl=r
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um a=T7w;\h
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 P(i2bbU
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 0N[DV]
~JRuMP
l_s := 1940 nm {signal wavelength } !信号光波长1940nm 96E7hp !:
w_s := 7 um !信号光的半径 iF_r'+j
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 8cPf0p:
loss_s := 0 !信号光寄生损耗为0 'e)ze^Jq
.q[sk
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 =28H^rK{
r~!%w(N|M
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 `L[32B9
calc \ui~n:aWJ
begin T2PFE4+Dp
global allow all; !声明全局变量 3R[J,go
set_fiber(L_f, No_z_steps, ''); !光纤参数 e^Wv*OD'
add_ring(r_co, N_Tm); 6{r[ Dq
def_ionsystem(); !光谱数据函数 1~u\]Zi=D
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 w58 QX/XG
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 c&?H8G)x
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 Ri6 br
set_R(signal_fw, 1, R_oc); !设置反射率函数 <WKz,jh
finish_fiber(); `lh?Z3W
end; jL).B&
$>s@T(
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 bme#G{[)Y
show "Outputpowers:" !输出字符串Output powers: eKti+n.
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) `ip69 IF2*
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) Ywk[VD+.
AS"|r
QAnfxt6
; ------------- Nv]/L+i
diagram 1: !输出图表1 Uk ;.Hrt.
N6
(w<b
"Powers vs.Position" !图表名称 qa`(,iN
aYCzb7
x: 0, L_f !命令x: 定义x坐标范围 'R5l
=Wf
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 aNU%OeQA
y: 0, 15 !命令y: 定义y坐标范围 $=SYssg7La
y2: 0, 100 !命令y2: 定义第二个y坐标范围 OiEaVPSI;
frame !frame改变坐标系的设置 H0NyxG<
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) \~j(ui|
hx !平行于x方向网格 ]@T `qR
hy !平行于y方向网格 E1w XG
\gv
x)S11
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 J|8YB3K,
color = red, !图形颜色 {#Cm> @')
width = 3, !width线条宽度 &: 8 &;vk
"pump" !相应的文本字符串标签 `;2`H, G'
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 oDI*\S>
color = blue, (Sp~+#XnF
width = 3, rGL{g&_
"fw signal" vrx3O
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 *n?:)(
color = blue, MdjMTe s
style = fdashed, +%$V?y
(
width = 3, ~mo`
"bw signal" p5t#d)
${eh52)`
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 +mv%z3"j;
yscale = 2, !第二个y轴的缩放比例 h;[Ncj]
color = magenta, ToM*tXj
width = 3, [+7X&B
style = fdashed, )`7h,w
J[1
"n2 (%, right scale)" Z}S tA0F_
gq &85([
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 qiJ{X{lI
yscale = 2, Vo8"/]_h
color = red, >maz t=,
width = 3, o-Arfc3Q
style = fdashed, x"De
9SB
"n3 (%, right scale)" .1lc'gu5y
#TF
E zUjt)wF
; ------------- $>m<+nai'
diagram 2: !输出图表2 X/7 49"23
Rx2|VD
"Variation ofthe Pump Power" {Vu:yh\<
niBpbsO
x: 0, 10 &>t1A5
"pump inputpower (W)", @x /omVMu
y: 0, 10 AOUO',v
y2: 0, 100 P .( X]+
frame ~;Kl/Z
hx a a]v7d
hy U%l{>*q
legpos 150, 150 3W0:0I
-3Hq 1
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 aQ\O ]gCE
step = 5, }$U6lh/Ep
color = blue, jX@9849@
width = 3, ~=*_I4,+r
"signal output power (W, leftscale)", !相应的文本字符串标签 4ebGAg ?_
finish set_P_in(pump, P_pump_in) A'2:(m@{T
YgDasKFm'
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 8^T$6A[b
yscale = 2, MLX.MUS
step = 5, ;_*F [
}w
color = magenta, :wm^04<i
width = 3, uM#/
"population of level 2 (%, rightscale)", )cXc"aj@s
finish set_P_in(pump, P_pump_in) dx}!]_mlZ
d?.x./1[qi
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 .jw)e!<\N
yscale = 2, ZS]e}]Zwp
step = 5,
1<5yG7SZ
color = red, i|Wn*~yFOO
width = 3, o 8U2vMH
"population of level 3 (%, rightscale)", cPSu!u}D
finish set_P_in(pump, P_pump_in) 5N/;'ySAE_
Q<qIlNE
HY:n{=o
; ------------- Fy^\U w
diagram 3: !输出图表3 6D<A@DR9J
^xrR3m*d
"Variation ofthe Fiber Length" huIr*)r&p
Z(P#]jI]
x: 0.1, 5 OMU#Sx!6
"fiber length(m)", @x &\r%&IX/
y: 0, 10 3}Pa,uN
"opticalpowers (W)", @y HS7!O
frame o hCPNm
hx H Vy^^$
hy I(e>ff
cae}dHG2
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 [A47OR
step = 20, [(mq8Nb
color = blue, |%} ?*|-
width = 3, Z[VKB3Pb8
"signal output" zoU.\]#C
#0c`"2t&M
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 JQqDUd
step = 20, color = red, width = 3,"residual pump" "O`;zC
Hw
I s7
! set_L(L_f) {restore the original fiber length } ~A)$= "
$O#h4L_
NKRXY~zHh
; ------------- `}bUf epMJ
diagram 4: !输出图表4 tj0vB]c
@tA.^k0`
"TransverseProfiles" KME
#5=~
3^\y>
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) T7v8}_"-
k1<Py$9"
x: 0, 1.4 * r_co /um &zR}jD>
"radialposition (µm)", @x SV~xNzo~
y: 0, 1.2 * I_max *cm^2 $lQi0*s
"intensity (W/ cm²)", @y <KpQu%2(
y2: 0, 1.3 * N_Tm Z7v~;JzC#
frame {D@y-K5
hx 7]Egu D4
hy >h9U~#G=
=YBJ7.Y
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 ^$(|(N[;
yscale = 2, A28w/=e7
color = gray, I.>LG
width = 3, (R,eWWF8~
maxconnect = 1, MG6Tk(3S
"N_dop (right scale)" =P!Vi6[gF~
,ZSuo4
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 cA*%K[9
color = red, p4[W@JV
maxconnect = 1, !限制图形区域高度,修正为100%的高度 R8KL4g-d
width = 3, !\m.&lk'^
"pump" ru&RL
HFV
1li`+~L
F
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 ;?rW`e2
color = blue, _YY)-H
maxconnect = 1, }8svd#S+
width = 3, ,%C$~+xjM
"signal" sw&Qks?V
y|aWUX/a
%[0"[ <1a
; ------------- ^ey\ c1K
diagram 5: !输出图表5 L \$zr,=C
L*_xu _F
"TransitionCross-sections" g N[r*:B
@EQ{lGpU3
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) Kq*^*vWC
[kXe)dMX8
x: 1450, 2050 ldxUq,p
"wavelength(nm)", @x V*?,r<