(* x A@|I#
Demo for program"RP Fiber Power": thulium-doped fiber laser, Z1E`I89<
pumped at 790 nm. Across-relaxation process allows for efficient Mp}!+K
population of theupper laser level. H!Fr("6}
*) !(* *)注释语句 EY=\C$3J:
sqgD?:@J
diagram shown: 1,2,3,4,5 !指定输出图表 9CgXc5
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 =P@M&Yy'
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 yL^M~lws
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 o;Hd W
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 7R%
PVgS4x
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 f]O5V$!RuE
+-xSuR,
include"Units.inc" !读取“Units.inc”文件中内容 :Q0?ub]
ZdJVs/33Vn
include"Tm-silicate.inc" !读取光谱数据 )m$1al
*rujdQf
; Basic fiberparameters: !定义基本光纤参数 5x93+DkO\
L_f := 4 { fiberlength } !光纤长度 D~[N_
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 &z{dr~
r_co := 6 um { coreradius } !纤芯半径 8,Q.t7v
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 6z%&A]6k:
7M&.UzIY`
; Parameters of thechannels: !定义光信道 oRtY?6^$
l_p := 790 nm {pump wavelength } !泵浦光波长790nm sYW1T @
dir_p := forward {pump direction (forward or backward) } !前向泵浦 V{/)RZ/
P_pump_in := 5 {input pump power } !输入泵浦功率5W t6! p\Y}}
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um _ d(Ks9
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 FcJ.)U
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 M4L~bK
59"Nn\}3gE
l_s := 1940 nm {signal wavelength } !信号光波长1940nm .j+2x[`l
w_s := 7 um !信号光的半径 o{YW
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 ,& \&::R
loss_s := 0 !信号光寄生损耗为0 ?[*@T2Ck
.$}Z:,aB
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 vh:UXE lm
oK(W)[u
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 @ B}c4,
calc &j
wnM
begin CU7iva
global allow all; !声明全局变量 Y`[HjS,
set_fiber(L_f, No_z_steps, ''); !光纤参数 }SJLBy0
add_ring(r_co, N_Tm); ,i$(yx?
def_ionsystem(); !光谱数据函数 !pFKC)
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 =_H*fhXS
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 T{ v<