(* c} )U:?6
Demo for program"RP Fiber Power": thulium-doped fiber laser, Klfg:q:j+b
pumped at 790 nm. Across-relaxation process allows for efficient 2Ya)I k{
population of theupper laser level. .GcIwP'aU-
*) !(* *)注释语句 EdFCaW}""
{y)O?9q
diagram shown: 1,2,3,4,5 !指定输出图表 {$D[l
hj
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 j8n_:;i*
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 nZZNx
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 !/]F.0
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 :T^!<W4
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 U-Ia$b-5!
-^sW{s0Rc
include"Units.inc" !读取“Units.inc”文件中内容 F5UvD[i
rk$&sDc/3
include"Tm-silicate.inc" !读取光谱数据 +UbSqp1BS
TNe,'S,%
; Basic fiberparameters: !定义基本光纤参数 X`#,*HkK
L_f := 4 { fiberlength } !光纤长度 n@5Sp2p
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 ,/0Q($oz
r_co := 6 um { coreradius } !纤芯半径 PL$*)#S"$
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 7P1G^)
3ARvSz@5
; Parameters of thechannels: !定义光信道 qLrvKoEX2
l_p := 790 nm {pump wavelength } !泵浦光波长790nm @}[ >*Xy%
dir_p := forward {pump direction (forward or backward) } !前向泵浦 q#LB 2M
P_pump_in := 5 {input pump power } !输入泵浦功率5W DV+M;rs
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um +&hhj~I.
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 $VEG1]/svp
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 ^(z7?T
1Q_ C
l_s := 1940 nm {signal wavelength } !信号光波长1940nm EWOS6Yg7
w_s := 7 um !信号光的半径 @1+C*
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 eu=G[>
loss_s := 0 !信号光寄生损耗为0 ]0N'Wtbn
&\<!{Y<'
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 7$3R}=Z`\q
i%BrnjX
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 ,TeJx+z^
calc $t*>A+J
begin 6,C2PR_+
global allow all; !声明全局变量 s5/5>a V
set_fiber(L_f, No_z_steps, ''); !光纤参数 PJd7t%m;
add_ring(r_co, N_Tm); $ti*I;)h4
def_ionsystem(); !光谱数据函数 M)v\7a
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 ;]*V6!6RR
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 Xge]3Ub
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 U-RR>j
set_R(signal_fw, 1, R_oc); !设置反射率函数 /|7@rH([{
finish_fiber(); BR&T,x/d
end; tG8)!
'?| (QU:)F
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 pe^hOzVv
show "Outputpowers:" !输出字符串Output powers: Mc8|4/<Z
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) 2_S%vA<L
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) H CBZ*Z-
jA'qXc+\
&d,chb(
; ------------- {u !Q=D$3
diagram 1: !输出图表1 _N`'R.va
:LE0_ .
"Powers vs.Position" !图表名称 Q?"o.T';
)"( ojh
x: 0, L_f !命令x: 定义x坐标范围
|gXtP-
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 E`E$ }iLs
y: 0, 15 !命令y: 定义y坐标范围 0!4;."S
y2: 0, 100 !命令y2: 定义第二个y坐标范围 7RXTQ9BS
frame !frame改变坐标系的设置 g)Ep'd-w"
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) m(2(Caz{
hx !平行于x方向网格 NO$n-<ag
hy !平行于y方向网格 GCrIaZ
)q.Z}_,)@
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 K)-Gv|*t
color = red, !图形颜色 N=2BrKb)o
width = 3, !width线条宽度 w$5~'Cbi
"pump" !相应的文本字符串标签 J#k3iE}
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 '*4>&V.yX
color = blue, $O\I9CGr$
width = 3, p#14
"fw signal" qcN{p7=0
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 g>k"R4
color = blue, 1yFVF
style = fdashed, >Q(+H-w
width = 3, !yUn|v>&p
"bw signal" Kmk}Yz
C-wwQbdG/
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 -|1H-[Y(
yscale = 2, !第二个y轴的缩放比例 G,jv Mb`+
color = magenta, /6?A#%hc
width = 3, } kNbqwVP
style = fdashed, v~l_6V}
"n2 (%, right scale)" n jfh4}g:
/KL;%:7
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 A~2U9f+\
yscale = 2, }JP0q
color = red, ]1 V,_^D
width = 3, .2K4<UOAbm
style = fdashed, S%NS7$`a
"n3 (%, right scale)" '
91-\en0
AD$$S.zoD<
SHoov
; ------------- N }$$<i2o
diagram 2: !输出图表2 \vH /bL
NZu\ Ae
"Variation ofthe Pump Power" ;-aF\}D@n
L9lN AiOH
x: 0, 10 rLkUIG
"pump inputpower (W)", @x S_Tv Ix/7&
y: 0, 10 0XkLWl|k
y2: 0, 100 TO(2n8'fdO
frame Lc&LF*
hx +%O_xqq
hy a\K__NCrX
legpos 150, 150 9/8#e+L
r>>4)<C7J
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 V6c>1nZ
step = 5, ;~A-32;Y4
color = blue, /.knZ_aJ!
width = 3, AZj`o
"signal output power (W, leftscale)", !相应的文本字符串标签 qI] PM9
finish set_P_in(pump, P_pump_in) DH@]d0N
T(GEFntY
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 )A@
}mIs"
yscale = 2, Y)Os]<N1
step = 5, t;3n
color = magenta, k$ya.b<X/
width = 3, P#0U[`ltK
"population of level 2 (%, rightscale)", Z+gG.|"k
finish set_P_in(pump, P_pump_in) %^`b)
"e3T;M+
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 ^|b ]E
yscale = 2, 3Y;<Q>roT
step = 5, jfLkp>2E'
color = red, +qWrm|O]
width = 3, bOB<m4
"population of level 3 (%, rightscale)", "k;j@
finish set_P_in(pump, P_pump_in) IIZu&iZo\
*mvDh9v
35;UE2d)<
; ------------- _mEW]9Sp
diagram 3: !输出图表3 n?UFFi+a
D2,2Yy5y
"Variation ofthe Fiber Length" @4O;dFOQ)
I[x+7Y0k9
x: 0.1, 5 .wdWs tQ
"fiber length(m)", @x p aQ"[w
y: 0, 10 (O[:-Aqm
"opticalpowers (W)", @y Q;V*M
frame E$4_.Z8sRw
hx #4yh-D"
hy X\=m
\68x]q[
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 M%3P@GRg
step = 20, 7_=7 ;PQ<
color = blue, >qqI6@h]c
width = 3, #1-2)ZO.
"signal output" k2-:!IE
J2KULXF
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 [|vE*&:uO
step = 20, color = red, width = 3,"residual pump" A>bpP
dj;Zzt3
! set_L(L_f) {restore the original fiber length } z#j)uD
>u-6,[(5X*
342m=7lK
; ------------- G
$F3dx.I
diagram 4: !输出图表4 hx5oTJR
YKWiZ
"TransverseProfiles" #GlQwk3
aFbIJm=!
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) Li? _P5+a
.{=|N8*py8
x: 0, 1.4 * r_co /um CyWMr/'
"radialposition (µm)", @x |_}
LMkU)
y: 0, 1.2 * I_max *cm^2 l>kREfHq!{
"intensity (W/ cm²)", @y
6m\MYay
y2: 0, 1.3 * N_Tm 6-+q3#e
frame <mk'n6B
hx AB:JXMyK
hy O^2@9
w
H}p5qW.tH:
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 (b*PDhl`+
yscale = 2, 3=
q,k<=L
color = gray, 5;alq]m7
width = 3, 9_4bw9A
maxconnect = 1, jG E=7
"N_dop (right scale)" ^z^zsNx
ov9+6'zya
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 r](%9Y
color = red, P@xb
maxconnect = 1, !限制图形区域高度,修正为100%的高度 8NUVHcB6
width = 3, ?RMOy$L
"pump" C 7a$>#%
nG~#o
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 w y\0o
color = blue, 2d:5~fEJp
maxconnect = 1, Ocp`6Fj
width = 3, P\nz;}nv
"signal" wr~Ydmsf
%Ums'<xJ
e{}oQK
; ------------- DDwj[' R
diagram 5: !输出图表5 t!285J8tn
';>A=m9(4%
"TransitionCross-sections" ?r}'0dW
-yJ%G1R
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) >2)`/B9f4
&%\H170S
x: 1450, 2050 OBm#E}
"wavelength(nm)", @x er44s^$
y: 0, 0.6 A7c*qBt
"cross-sections(1e-24 m²)", @y -H+<81"B#
frame p "Cxe
hx 0LW|5BVbIO
hy v*[oe
"pa2,-&
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 oWP3Y.
color = red, j YVR"D;
width = 3, cmu| d
"absorption" }Tz<fd/
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 TilCP"(6D
color = blue, 6dlV:f_\y
width = 3, Kwmtt
"emission" 921m'WE
5%#V>|@e#