切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2498阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2176
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* )/|6'L-2  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, J|~26lG  
    pumped at 790 nm. Across-relaxation process allows for efficient ^p=L\SJ  
    population of theupper laser level. &`!^Zq vG  
    *)            !(*  *)注释语句 [j9E pi(  
    z" QJhCh7  
    diagram shown: 1,2,3,4,5  !指定输出图表 ig_2={Q@  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 ^b-18 ~s  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 h(' )"  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 9|W V~  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 la^ DjHA$  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 :c]`D>  
    ,)fkr]`<  
    include"Units.inc"         !读取“Units.inc”文件中内容 Ee2c5C!|C  
    HY}j!X  
    include"Tm-silicate.inc"    !读取光谱数据 I+;-p]~  
    ra6o>lI(,  
    ; Basic fiberparameters:    !定义基本光纤参数 rg QEUDEQ  
    L_f := 4 { fiberlength }      !光纤长度 hOk00az  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 <4`eQ  
    r_co := 6 um { coreradius }                !纤芯半径 |qN'P}L  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 eon!CE0  
    *"{& FEV  
    ; Parameters of thechannels:                !定义光信道 KfY$ka[}"S  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm K_BPZ5w  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 W/+K9S25  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W KMK`F{  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um 'vIx#k4D1  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 }1H=wg>\  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 l!~ mxUb  
    pwX C  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm { T]?o~W  
    w_s := 7 um                          !信号光的半径 0$vj!-Mb^j  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 s8gU7pT49  
    loss_s := 0                            !信号光寄生损耗为0 'mMjjG9  
    (ywo a  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 s(2GFc  
    5g ;ac~g  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 Iy7pt~DJ,  
    calc %$ceJ`%1e  
      begin 8cWZ"v  
        global allow all;                   !声明全局变量 UlovXb  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 `,>wC+}  
        add_ring(r_co, N_Tm); 7C,T&g 1:  
        def_ionsystem();              !光谱数据函数 v."Dnl  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 >'=MH2;  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 SZ!=`a]  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 -_^c6!i  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 ;</Lf=+Vm  
        finish_fiber();                                   0@=MOGQb  
      end; u<tk G B  
    RDQ^dui  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 sd0r'jb  
    show "Outputpowers:"                                   !输出字符串Output powers: }nx=e#[g%2  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) EeQ5vqU  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) f-RK,#^?,  
    Q9?t[ir  
    8Jr?ZDf`  
    ; ------------- B |{I:[  
    diagram 1:                   !输出图表1 cPF<D$B  
    ":W%,`@$  
    "Powers vs.Position"          !图表名称 >yK0iK{  
    0~gO'*2P  
    x: 0, L_f                      !命令x: 定义x坐标范围 lC?Icn|o  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 sq0 PBEqq  
    y: 0, 15                      !命令y: 定义y坐标范围  lhLGG  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 X" R<J#4  
    frame          !frame改变坐标系的设置 r.3KPiYK  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) i6PM<X,{;  
    hx             !平行于x方向网格 _D!g4"  
    hy              !平行于y方向网格 )ZR+lX }  
    ^>$P)=O:v  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 ^HA %q8| n  
      color = red,  !图形颜色 $p* p  
      width = 3,   !width线条宽度 \F6LZZ2Lv  
      "pump"       !相应的文本字符串标签 '\DSTr:N  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 H#d:kilNy  
      color = blue,     d5j_6X  
      width = 3, Ukphd$3J=  
      "fw signal" %Kb9tHg  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 df*w>xS  
      color = blue, x K%=  
      style = fdashed, *TdnB'Gd  
      width = 3, 8\ha@&p  
      "bw signal" ?/#}ZZK^  
    7S^""*Q^  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 x%> e)L<  
      yscale = 2,            !第二个y轴的缩放比例 P>Qpv Sd_#  
      color = magenta, A2H4k|8  
      width = 3, F@<0s&)1  
      style = fdashed, b'@we0V@S  
      "n2 (%, right scale)" ~%y@Xsot>  
    ]dPZ.r  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 *JCQu0  
      yscale = 2, .V'V:;BE%  
      color = red, wo^Sy41bF  
      width = 3, 3TuC+'`G  
      style = fdashed, c9Es%@]  
      "n3 (%, right scale)" SS.jL)  
    rnm03 '{  
    MQ/ A]EeL  
    ; ------------- Q[ieaL6&  
    diagram 2:                    !输出图表2 Pt< s* (  
    V9 }t0$LN  
    "Variation ofthe Pump Power" % g"eV4 j  
    6)gd^{  
    x: 0, 10 v6a]1B   
    "pump inputpower (W)", @x GJ(d&o8  
    y: 0, 10 <I*x0BM=  
    y2: 0, 100 _O:WG&a6  
    frame J]/}ojW3  
    hx V~{ _3YY  
    hy SpTdj^]4>  
    legpos 150, 150 ni CE\B~  
    -0HkTY  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 #&!G"x7  
      step = 5, 'C+;r?1!h  
      color = blue, "i)Yvh[y  
      width = 3, TQ :/RT  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 !UBO_X%dz  
      finish set_P_in(pump, P_pump_in) &x:JD1T}  
    }qPhx6nP  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 j0-McLc  
      yscale = 2, 9L eNe}9v  
      step = 5, uYO|5a<f~  
      color = magenta, *iX e^<6v  
      width = 3, V2&^!#=s  
      "population of level 2 (%, rightscale)", /!FWuRe^  
      finish set_P_in(pump, P_pump_in) EmVuwphv  
    qB6dFl\ (  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 WPuz]Ty  
      yscale = 2, YhKZ|@  
      step = 5, y&T&1o  
      color = red, ]n1dp2aH  
      width = 3, mPZGA\  
      "population of level 3 (%, rightscale)", c$E)P$<j  
      finish set_P_in(pump, P_pump_in) SqPtWEq@P  
    &rq{v!=7  
    P1kB>" bR  
    ; ------------- A/*%J74v  
    diagram 3:                         !输出图表3 #~ v4caNx  
    7G2PMe;$m  
    "Variation ofthe Fiber Length" M7}Q=q\9  
    ~XM[>M\qB  
    x: 0.1, 5 T8J4C=?/  
    "fiber length(m)", @x FVWfDQ$&v  
    y: 0, 10 N0TeqOi4Y  
    "opticalpowers (W)", @y [2Mbk~  
    frame ,i}|5ozj4  
    hx RNJ FSD.  
    hy 3 pWM~(#>-  
    T3J'fjY  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 {5Lj8 N5  
      step = 20,             g$37;d3Tx  
      color = blue, ;6;H*Y0,|E  
      width = 3, s'I)A^i+  
      "signal output" EYzg%\HH  
    :> -1'HC  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 Ggm` ~fS  
       step = 20, color = red, width = 3,"residual pump" >wON\N0V_  
    eb:A1f4L  
    ! set_L(L_f) {restore the original fiber length } mX# "+X|  
    y2Bh?>pg  
    BNm4k7 ]M  
    ; ------------- {ShgJ ;! Q  
    diagram 4:                                  !输出图表4 _kraMQ>  
    AHh#Fx+K  
    "TransverseProfiles" Q s(Bnb;  
    Zc5 :]]  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) ,{}#8r`+*  
    J\co1kO9/  
    x: 0, 1.4 * r_co /um _GaJXWMbk  
    "radialposition (µm)", @x , |E$'  
    y: 0, 1.2 * I_max *cm^2 lJ  
    "intensity (W/ cm&sup2;)", @y :R6Q=g=  
    y2: 0, 1.3 * N_Tm C".1+Um  
    frame 6 vs3O  
    hx v|t{1[C  
    hy kyUl{Zj  
    Buc_9Kzw<+  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 I}0_nge  
      yscale = 2, i?}>.$j  
      color = gray, Iin#Wd-/  
      width = 3, ur%$aX)  
      maxconnect = 1, [Eq<":)  
      "N_dop (right scale)" W Ox_y,  
    p]|LV)R n  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 {[OwMk  
      color = red, ? Nj)6_&  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 /XpSe<3  
      width = 3, 4MvC]_&  
      "pump" MgJ5B(c  
    ocA]M=3~k  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 "~+.Af  
      color = blue, /'&;Q7!)  
      maxconnect = 1, fj']?a!m  
      width = 3, .Ao0;:;(2-  
      "signal" !vqC+o>@  
    LsTffIP  
    s@@1 *VQ  
    ; ------------- R{}qK r  
    diagram 5:                                  !输出图表5 ]|oJ)5P  
    I 48VNX  
    "TransitionCross-sections" p8>%Mflf  
    d0UZ+ RR#  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) d]B= *7]  
    )2j:z#'>  
    x: 1450, 2050 "dCzWFet  
    "wavelength(nm)", @x aC\4}i<  
    y: 0, 0.6 ?Myh 7  
    "cross-sections(1e-24 m&sup2;)", @y g:~+P e  
    frame f\o R:%  
    hx #BJ\{"b_}z  
    hy zJl_ t0  
    otriif@+Z  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 EZj1jpL  
      color = red, 9D_wG\g  
      width = 3, zG% |0  
      "absorption" (cV  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 v*TeTA %  
      color = blue, zy)i1d  
      width = 3, P[i\e7mR  
      "emission" &?<AwtNN  
    0X"\ a'M_  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚