(* PDtaL
Demo for program"RP Fiber Power": thulium-doped fiber laser, *VD-c
pumped at 790 nm. Across-relaxation process allows for efficient 6r^(VT
population of theupper laser level. :vm*miOF
*) !(* *)注释语句 dhV=;'
j]kx~
diagram shown: 1,2,3,4,5 !指定输出图表 rH & ^SNc
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 *P9)M%
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 "y62Wo6m)
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 OI1&Z4Lx
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 IV!&jL
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 VFRUiz/C
gx#TRp}-
include"Units.inc" !读取“Units.inc”文件中内容 x!
Z|^q
S3.Pqp_<
include"Tm-silicate.inc" !读取光谱数据 ;i\i+:=
``0knr <
; Basic fiberparameters: !定义基本光纤参数 s% I)+|
L_f := 4 { fiberlength } !光纤长度 Vo%@bj~>
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 F2lTDuk>C
r_co := 6 um { coreradius } !纤芯半径 R5|c4v{B
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 pO x0f;'G+
D4[t@*m>7
; Parameters of thechannels: !定义光信道 zQ5'q
l_p := 790 nm {pump wavelength } !泵浦光波长790nm v=@Z,-
dir_p := forward {pump direction (forward or backward) } !前向泵浦 f%d7?<rw
P_pump_in := 5 {input pump power } !输入泵浦功率5W bT0CQ_g21
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um uh@ZHef[l
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 td%EbxJK]`
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 #6@7XC
s [@II]
l_s := 1940 nm {signal wavelength } !信号光波长1940nm DzH1q r
w_s := 7 um !信号光的半径 w
{6kU
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 /tDwgxJ
loss_s := 0 !信号光寄生损耗为0 ub7|'+5
v2/@Pu!kg
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 qfx=
A6pPx1-&
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 6-j><'
calc w}X <]u
begin A^*0{F?,)
global allow all; !声明全局变量 K-Y;[+#g1o
set_fiber(L_f, No_z_steps, ''); !光纤参数 Z;-=x p
add_ring(r_co, N_Tm); FK{Vnj0
def_ionsystem(); !光谱数据函数 p^<*v8,~7
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 "NMX>a,(
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 QS\H[?M$
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 {f<2VeJ
set_R(signal_fw, 1, R_oc); !设置反射率函数 <$qe2FtUq
finish_fiber(); 'M VE5
end; -Uh3A\#(
,l1A]Wx
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 }f?$QSF
show "Outputpowers:" !输出字符串Output powers: sZxf.
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) |@!4BA
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) Lzm9Kh;
Mj2`p#5wKh
N7=lSBm
; ------------- tHgu#k0
diagram 1: !输出图表1
_xjw:
(_Ph{IN
"Powers vs.Position" !图表名称 }(FF^Mh
I($0&Y\De
x: 0, L_f !命令x: 定义x坐标范围 PFq1Zai}n|
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 mu@He&w"
y: 0, 15 !命令y: 定义y坐标范围 #Ie/|
y2: 0, 100 !命令y2: 定义第二个y坐标范围 bvzNur_
frame !frame改变坐标系的设置 Kg4\:A7Sa.
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) /Ps/m!
hx !平行于x方向网格 -Ri/I4Xj
hy !平行于y方向网格 e98f+,E/
EX@wenR
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 m~c6b{F3Z-
color = red, !图形颜色 $ S(<7[Z
width = 3, !width线条宽度 icS%])3LF
"pump" !相应的文本字符串标签 ]L)l5@5^
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 w>S;}[fM
color = blue, =[5F~--Tf
width = 3, {8]Yqx)1]]
"fw signal" 'vCl@x$
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 5!-+5TJI
color = blue, "}*5'e.*
style = fdashed, [L(qrAQ2|z
width = 3, $y{rM%6JU
"bw signal" ~xPU#m<
&;3iHY;
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 \*yH33B9
yscale = 2, !第二个y轴的缩放比例 W2>VgMR [
color = magenta, Y(mnGaVn
width = 3, l/xpAx
style = fdashed, aoqG*qh}b
"n2 (%, right scale)" OKi}aQ2R*
!1m7^3l7j
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 Oz{FM6
yscale = 2, Dm{9;Abs%
color = red, 9u?[{h.`B
width = 3, ?COLjk
style = fdashed, #|j8vmfn$e
"n3 (%, right scale)" NdxPC~Z+
\RT3#X+
Dbl3ef
; ------------- Wr+/9
diagram 2: !输出图表2 V*6o |#
3QhQpPk),
"Variation ofthe Pump Power" GAP,$xAaW
He9Er
x: 0, 10 A'6-E{
"pump inputpower (W)", @x (l+0*o,(
y: 0, 10 QtHK`f>4#n
y2: 0, 100 l~Hu#+O
frame j82x$I*
hx ^#gJf*'UE
hy gT_tR_g
legpos 150, 150 -JfqY?Ue_2
N(J'h$E
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 #J'V,_wH
step = 5, ]xxE_B7
color = blue, PiIP%$72O
width = 3, Og-v][
"signal output power (W, leftscale)", !相应的文本字符串标签 O$ARk+
finish set_P_in(pump, P_pump_in) #;0F-pt
.^xQtnq
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 f
= 'AI
yscale = 2, RF[Uy?es
step = 5, +[Izz~_p
color = magenta, (M#m BS
width = 3, 50e
vWD
"population of level 2 (%, rightscale)", De
([fC
finish set_P_in(pump, P_pump_in) <:>[24LJ{
oD3]2o /
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 yZ-Ql11
yscale = 2, eGW
h]%
step = 5, $9@3dM*E?Z
color = red, &3Ry0?RET
width = 3, e}NB ,o
"population of level 3 (%, rightscale)", #Xk/<It
finish set_P_in(pump, P_pump_in) LFAefl\
g;~$xXn
2WS Wfh
; ------------- Mtaky=l8~I
diagram 3: !输出图表3 SveP:uJA[
>~O/ZDu/@
"Variation ofthe Fiber Length" |JiN;
O+K
/Yj; '\3
x: 0.1, 5 !{F\\D/
"fiber length(m)", @x XnKf<|j6k
y: 0, 10 "
1h~P,
"opticalpowers (W)", @y )}J}d)
frame T"e"?JSRJ
hx RF
[81/w]
hy 79uAsI2-Y
ZEB,Q~
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 Jq:Wt+a
step = 20, TU1W!=Z
color = blue, [U,hb1Wi3
width = 3, 2;7n0LOs}
"signal output" ~
Ofn&[G
a|ZJzuqo
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 G[+{[W
step = 20, color = red, width = 3,"residual pump" fskc'%x
To;r#h
! set_L(L_f) {restore the original fiber length } /tJ%gF
/ &em%/
Z*Fn2I4
; ------------- >CYz6G j
diagram 4: !输出图表4 qgxGq(6K
cS>xT cj
"TransverseProfiles" ybcCq]cgt
@=?#nB&
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) RijFN.s
^V"08
x: 0, 1.4 * r_co /um +vYVx<uTQ
"radialposition (µm)", @x 7Q|v5@;pU
y: 0, 1.2 * I_max *cm^2 'DUYf5nF
"intensity (W/ cm²)", @y ;It1i`!R
y2: 0, 1.3 * N_Tm gb26Y!7%
frame ;Ouu+#s
hx ]YUst]gu3
hy d z\yP
v~
xgIb4Y%
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 p@3 <{kLm
yscale = 2,
-K4 uqUp
color = gray, lGEfI&1%!
width = 3, wx^1lC2
maxconnect = 1, ej[Y
`N
"N_dop (right scale)" !Xzy:
mpzm6Ieu
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 {'o\#4Wk
color = red, <$8e;:#:
maxconnect = 1, !限制图形区域高度,修正为100%的高度 \O\veB8
width = 3, mSp;(oQ
"pump"
?dvcmXR
{WuUzq`
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 4x$Ts %]
color = blue, N
lB%Qu
maxconnect = 1, wTn"
width = 3, mam(h{f$
"signal" +?Y(6$o
b@[\+P] "
'.zr:l
; ------------- Gx-tPW}
diagram 5: !输出图表5 ;CA7\&L>
I z)~h>-F
"TransitionCross-sections" &Fl*,
T0BM:ofx
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) /pz(s+4=
L)_L#]Yy
x: 1450, 2050 Q46sPMH+_
"wavelength(nm)", @x ]dHV^!
y: 0, 0.6 D?P1\<A~
"cross-sections(1e-24 m²)", @y zqb3<WP"
frame ,8@U-7f,
hx E"b"VB
hy zbP#y~[
3o^oq
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 3EX41)u
color = red, 0& ?/TSC
width = 3, TY gn
X
"absorption" B#(2,j7M
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 J/ ^|Y6
color = blue, =#{i;CC%
width = 3, df!n.&\y!
"emission" SK
{ALe
Js!V,={iX