(* 0+_;6
Demo for program"RP Fiber Power": thulium-doped fiber laser, 54s90
pumped at 790 nm. Across-relaxation process allows for efficient MpJ3*$Dr
population of theupper laser level. PUd/|Rc/}
*) !(* *)注释语句 rb>2l3g*
b!EqYT
diagram shown: 1,2,3,4,5 !指定输出图表 3)^2X
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 %3K'[2F
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 m[N&UM#
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 Y\(?&7Aax
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 K_X(j$2Xc
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 UG]5Dxk
z`dnS]q9
include"Units.inc" !读取“Units.inc”文件中内容 BSEP*#s
bGj<Dojl
include"Tm-silicate.inc" !读取光谱数据 JJ_KfnH
#g
Rns
; Basic fiberparameters: !定义基本光纤参数 G1,u{d-_
L_f := 4 { fiberlength } !光纤长度 ;O .;i,#Z
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 $M4C4_oPy
r_co := 6 um { coreradius } !纤芯半径 xaIe7.Z"xo
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 (b.Mtd
Dx P65wU
; Parameters of thechannels: !定义光信道 7:C2xC
l_p := 790 nm {pump wavelength } !泵浦光波长790nm #vcQ =%;O
dir_p := forward {pump direction (forward or backward) } !前向泵浦 HN&]`cr;
P_pump_in := 5 {input pump power } !输入泵浦功率5W cyI:dvg
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um DeN$YE#*
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 1!ijRr
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 <ou=f'
aQ1n1OBr
l_s := 1940 nm {signal wavelength } !信号光波长1940nm ~Z97L
w_s := 7 um !信号光的半径 r?Pk}Q
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 #W L>ha
v
loss_s := 0 !信号光寄生损耗为0 KZ/2W9r_,
|e&hm
~R1
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 8{Wh4~|+
M[=sQnnSFW
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 <QK2Wc_}-"
calc # 9ZO1\
begin n{%[G2.A
global allow all; !声明全局变量 pH?"@
set_fiber(L_f, No_z_steps, ''); !光纤参数 S'q4va"
add_ring(r_co, N_Tm); xC$CRzAe5p
def_ionsystem(); !光谱数据函数 ZV:0:k.x
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 N..@}}
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 1ZfhDtK(
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 Z&y9m@
set_R(signal_fw, 1, R_oc); !设置反射率函数 \XG\
finish_fiber(); TUR2|J@n
end; _
3jY,*
Ni61o?]Nj
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 MSS0Sx<f
show "Outputpowers:" !输出字符串Output powers: a#P{ [
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) y/Q,[Uzk\
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) OQsF$%*
AkV8}>G?#A
KrD?Z2x
; ------------- 4ko(bW#jL
diagram 1: !输出图表1 <o_(,,P%
f.u+({"ql
"Powers vs.Position" !图表名称 ^WIGd"^
k*= #XbX
x: 0, L_f !命令x: 定义x坐标范围 ?{-y? %y
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 _WHGd&u
y: 0, 15 !命令y: 定义y坐标范围 G9a6 $K)b
y2: 0, 100 !命令y2: 定义第二个y坐标范围 }JBLzk5|
frame !frame改变坐标系的设置 d}]jw4
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) t>(}LV.
hx !平行于x方向网格 #ZpR.$`k
hy !平行于y方向网格 sJ)Pj?"\?
[e`6gGO
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 BjCg!6`XF
color = red, !图形颜色 Z"'tJ3Y.~
width = 3, !width线条宽度 ioS(;2F
"pump" !相应的文本字符串标签 ;_=+h,n
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 8Ir
= @
color = blue, +`~6Weay
width = 3, #R3|nL
"fw signal" AtW<e;!0te
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 SpX6PwM
color = blue, ygfUy
style = fdashed, $/;;}|hqi
width = 3, "~/O>.p
"bw signal" 5j$a3nH
4z> SI\Ss
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 ^N:bT;;$nZ
yscale = 2, !第二个y轴的缩放比例 ]Br6!U4~
color = magenta, `%S#XJU
width = 3, =-|,v*
style = fdashed, V'&`JZK6
"n2 (%, right scale)" xnD"LK
z;ko )
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 '?MT"G
yscale = 2, Ow4H7sl
color = red, % /Y;
width = 3, OtFGo8
style = fdashed, Z</.Ss 4
"n3 (%, right scale)" &F#K=R| .j
$z5
ct![eWsuB
; ------------- wxSJ
diagram 2: !输出图表2 EgT?Hvx:
,c9K]>8m`
"Variation ofthe Pump Power" ?."YP[;
+1=]93gP
x: 0, 10 }MXC0Z~si
"pump inputpower (W)", @x \RDS~u\d
y: 0, 10 FA3YiX(-e
y2: 0, 100 E|v9khN(].
frame 8Xjp5
hx Yb;$z'
hy c}r"O8M
legpos 150, 150 #cy;((z uB
Th>ff)~e
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 tzV^.QWm
step = 5, \olYv!f
color = blue, S{#L7S
width = 3, ;fGh]i
"signal output power (W, leftscale)", !相应的文本字符串标签 A{Dy3tm=
finish set_P_in(pump, P_pump_in) Js}1_K
{IA3`y~
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 ap|$8G
yscale = 2, H^r;,Q$9
step = 5, |Pj]sh[^Y
color = magenta, <Po$|$_~
width = 3, >JckN4v
"population of level 2 (%, rightscale)", rK} =<R
finish set_P_in(pump, P_pump_in) JsD|igqF-
xfK@tLEZ-1
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 LZH~VkK@m}
yscale = 2, 2U.'5uA"L
step = 5, @Tz}y"VG
color = red, <<l1zEf@
width = 3, zSo(+ D
&[
"population of level 3 (%, rightscale)", "cD MFu
finish set_P_in(pump, P_pump_in) &f($= 68
+nU=)x?38
hYB3tT
; ------------- S-%itrB*
diagram 3: !输出图表3 wlsq[xP
<kOdd)X
"Variation ofthe Fiber Length" 8$`$24Wx
n5>OZ3 E@
x: 0.1, 5 6%L#FSI
"fiber length(m)", @x [D_s`'tg
y: 0, 10 DrA\-G_7
"opticalpowers (W)", @y BHN EP |=
frame ^aR^M\38
hx
BDfJ
hy ,4--3 MU
eY\w?pT2
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 ]@{l<ExP
step = 20, zw[ #B #
color = blue, =M9;`EmC
width = 3, R1vuf*A5,
"signal output" Q4ZKgcC
h,|. qfUk
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 )}lO%B'K
step = 20, color = red, width = 3,"residual pump" d}Xb8SaE%c
G3dA`3
! set_L(L_f) {restore the original fiber length } D=@bP B>
OEnCN
*BHp?cn;F2
; ------------- R4vf
diagram 4: !输出图表4 t Z@OAPRx
{5Sy=Y
"TransverseProfiles" ~@mNR^W-W
9";qR,
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) N"8'=wB
_E2W%N
x: 0, 1.4 * r_co /um #
11<=3Yj
"radialposition (µm)", @x ek1<9"y
y: 0, 1.2 * I_max *cm^2 `Z^\<{z
"intensity (W/ cm²)", @y @%BsQm
y2: 0, 1.3 * N_Tm sA2esA@C<o
frame ~s*kuj'%+
hx ZRj/lQ2D
hy B$ jX%e{:S
MO%+rf0~w
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 9AJ"C7
yscale = 2, ),J6:O&
color = gray, _%G;^ b
width = 3, !v.
<H]s)
maxconnect = 1, 6TDa#k5v
"N_dop (right scale)" pi5DDK
I%l2_hs0V
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 bbT1p:RF
color = red, L~Y^O`c
maxconnect = 1, !限制图形区域高度,修正为100%的高度 (_]D\g~
width = 3, @MP ;/o+
"pump" gg/2R?O]
q$PO.#
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 Q^*4FH!W
color = blue, u#UtPF7q
maxconnect = 1,
&H[7UyC
width = 3, KW!+Ws
"signal" fp}5QUm-
P*n/qj8h
hP}-yW6]
; ------------- YC(X=
D
diagram 5: !输出图表5 $[oRbH8g
2!R+5^Iy
"TransitionCross-sections" p'A43
D$+g5u)
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) 3L36
2
iJ`zWpj+{Q
x: 1450, 2050 $,B;\PX
"wavelength(nm)", @x 0g9y4z{H
y: 0, 0.6 f@2F!
"cross-sections(1e-24 m²)", @y "7eL&
frame Ehxu`>@N
hx %aV~RB#
hy izzX$O[=:
Y]7 6y>|e
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 j2%fAs<
color = red, ^B1$|C
D,
width = 3, `O5427Im
"absorption" c
dWg_WBC
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 KciN"g|X
color = blue, djqw5kO:R
width = 3, N<b~,[yCd>
"emission" [=",R&uD$
ZQ>Q=eCs 1