切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2638阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2176
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* [mWo&Ph[-  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, Jz%&-e3  
    pumped at 790 nm. Across-relaxation process allows for efficient m> NRIEA6  
    population of theupper laser level. ~~5kAY-  
    *)            !(*  *)注释语句 ,~G _3Oz  
    fRrHWE+  
    diagram shown: 1,2,3,4,5  !指定输出图表 {b/AOR o  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 i7fpl  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 U}Xc@- \ ?  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 z+-k4  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 k,?Y`s  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 Qr0JJoHT  
    sU bZVPDr  
    include"Units.inc"         !读取“Units.inc”文件中内容 <o?qpW$,>  
    3\D jV2t  
    include"Tm-silicate.inc"    !读取光谱数据 T_Y6AII  
    %],.?TS2V  
    ; Basic fiberparameters:    !定义基本光纤参数 &I!2gf  
    L_f := 4 { fiberlength }      !光纤长度 &LL81u6=S  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 o~iL aN\+  
    r_co := 6 um { coreradius }                !纤芯半径 o Y.JK  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 ]"CA P%  
    C|!E' 8Rw  
    ; Parameters of thechannels:                !定义光信道 }#E4t3  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm n:<avl@o<  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 NqF-[G<  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W 9m6w.:S  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um f "-<Z_  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 3`e1:`Hu  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 ^?J:eB!  
    j6v +S  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm YKM(qh2  
    w_s := 7 um                          !信号光的半径 0IA '8_K  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 P_ ZguNH  
    loss_s := 0                            !信号光寄生损耗为0 Vq<|DM3z<  
    'Ob5l:  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 n$=n:$`q  
    qx!IlO  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 Rwy:.)7B$q  
    calc ' GW@P  
      begin Hpsg[d)!  
        global allow all;                   !声明全局变量 TR%?U/_4;r  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 ^NnZYr.  
        add_ring(r_co, N_Tm); 9f"6Jw@F  
        def_ionsystem();              !光谱数据函数 ?tSY=DK\n  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 '*~{1gG `  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 ^d2g"L   
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 Y0eu^p)  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 GzR;`,_O/  
        finish_fiber();                                   T:}Ed_m}q  
      end; -nd6hx  
     u?'X%'K*  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 .OWIlT4K  
    show "Outputpowers:"                                   !输出字符串Output powers: RyM2CQg[  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) , 1`eH[  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) sY#K=5R  
    u>? VD%  
    ~I^]O \?  
    ; ------------- g@EKJFjl  
    diagram 1:                   !输出图表1 em W#ZX  
    h|-r t15  
    "Powers vs.Position"          !图表名称 (PB|.`_<H  
    i$NnHj|  
    x: 0, L_f                      !命令x: 定义x坐标范围 67sb D<r  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 \NSwoP  
    y: 0, 15                      !命令y: 定义y坐标范围 h\ ybh  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 sP&E{{<QTF  
    frame          !frame改变坐标系的设置  43VuH  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) IM@Qe|5  
    hx             !平行于x方向网格 HL!-4kN <$  
    hy              !平行于y方向网格 \o3i9Q9C  
    I7Eg$J&  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 }0!\%7-Q  
      color = red,  !图形颜色 woR)E0'qx  
      width = 3,   !width线条宽度 cCj3,s/p  
      "pump"       !相应的文本字符串标签 c,-< 4e  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 $zbg  
      color = blue,     xGH%4J\  
      width = 3, L_A|  
      "fw signal" p1D-Q7F  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 "?il07+w%  
      color = blue, VEpQT Qp  
      style = fdashed, EgO4:8$h  
      width = 3, < xV!vN  
      "bw signal" /2U.,vw  
    Xgl>kJy<#  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 [[|;Wr} 2  
      yscale = 2,            !第二个y轴的缩放比例 <l6CtK@  
      color = magenta, b"Ulc}$/&  
      width = 3, 2n7[Op  
      style = fdashed, :kUH>O  
      "n2 (%, right scale)" |_rj 12.xo  
    m|y]j4  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 QJTC@o  
      yscale = 2, z/T ZOFaM  
      color = red, $C>EnNx  
      width = 3, Ga h e-%J  
      style = fdashed, &0l Nj@/  
      "n3 (%, right scale)" XR&*g1  
    9QYU J  
    mB :lp=c`  
    ; ------------- 4+~+`3;~v  
    diagram 2:                    !输出图表2 \\T I4A^#  
    PNG'"7O  
    "Variation ofthe Pump Power" #}gc6T~0  
    C6Mb(&  
    x: 0, 10 i a|F  
    "pump inputpower (W)", @x IW46-;l7  
    y: 0, 10 HC0puLt_  
    y2: 0, 100 '2vlfQ@8a~  
    frame WGO=@jkf  
    hx N7;2BUIXJ  
    hy hN}X11  
    legpos 150, 150 9X(bByEO  
    YnMph0\Y^  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 x=Ru@nK;  
      step = 5, aR\=p:%jGI  
      color = blue, m1<B6*iG"  
      width = 3, l nZ=< T  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 z~W@`'f  
      finish set_P_in(pump, P_pump_in) |#sP1w'l]  
    Zf"AqGP  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 uaGg8  
      yscale = 2, s)L7o)56/  
      step = 5, bT;C8i4b\H  
      color = magenta, Oo0$n]*;W  
      width = 3, -{w&ya4X  
      "population of level 2 (%, rightscale)", J3'"-,Hv  
      finish set_P_in(pump, P_pump_in) rd"]$_P8O  
    <ya3|ycnS  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 KW 09qar  
      yscale = 2, toCN{[  
      step = 5, !9!N s(vUM  
      color = red, YF"D;.  
      width = 3, }C'z$i( y  
      "population of level 3 (%, rightscale)", ,Bta)  
      finish set_P_in(pump, P_pump_in) mrJQB I+  
    a@7we=!  
    &3JbAJ|;X  
    ; ------------- ~/NA?E-c  
    diagram 3:                         !输出图表3 W$3p,VTMmB  
    +-oXW>`&  
    "Variation ofthe Fiber Length" p;p G@Vg  
    USbiI %   
    x: 0.1, 5 xJ3#k;  
    "fiber length(m)", @x kxdLJ_  
    y: 0, 10 :?S2s Ne2  
    "opticalpowers (W)", @y *L^{p.K4  
    frame I8[G!u71)_  
    hx :4WwCpgz,  
    hy \Lc pl-;?  
    >Z3}WMgBN  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 x=H*"L=  
      step = 20,             $$8"i+,K  
      color = blue, %xg"e O2x  
      width = 3, <1@_MY o  
      "signal output" :l6sESr  
    Y, 0O&'>  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 { ~Cqb7  
       step = 20, color = red, width = 3,"residual pump" 4Q]+tXes  
    [<%yUy  
    ! set_L(L_f) {restore the original fiber length } n,0}K+}  
    1 t#Tp$  
    *</;:?  
    ; ------------- W=|B3}C?  
    diagram 4:                                  !输出图表4 |mK d5[$  
    4];NX  
    "TransverseProfiles" :n>h[{ o%  
    Qn<< &i~  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) YsTfv1~z#  
    Q0r_+0[7j  
    x: 0, 1.4 * r_co /um l&C%oW  
    "radialposition (µm)", @x ;bZ)q  
    y: 0, 1.2 * I_max *cm^2 :H?p^d e  
    "intensity (W/ cm&sup2;)", @y hsl Js^  
    y2: 0, 1.3 * N_Tm 1.';:/~(  
    frame E]g KJVf9[  
    hx  e%qMrR  
    hy 7f`jl/   
    plp).Gq  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 C 4n5U^  
      yscale = 2, `j<'*v zo  
      color = gray, L$jRg  
      width = 3, MBa/-fD  
      maxconnect = 1, ;`xu)08a  
      "N_dop (right scale)" KcSvf;sx  
    + W +<~E  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 1 ltoLd\{  
      color = red, f[%iRfUFw  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 ]])i"oew  
      width = 3, E(S}c*05O  
      "pump" jm*v0kNy  
    J"SAA0)@  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 bhg"<I  
      color = blue, fygy#&}~  
      maxconnect = 1, Y@pa+~[{h3  
      width = 3, S4 tdW A  
      "signal" iPs()IN.O  
    I=b#tUBh8  
    tBf u{oC  
    ; ------------- RJg# A`  
    diagram 5:                                  !输出图表5 @4&sL](q  
    #_H=pNWe  
    "TransitionCross-sections" d2 d^XMe!  
    AU >d1S.  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) "cti(0F-d  
    'r'uR5jR  
    x: 1450, 2050 O[8Lp?  
    "wavelength(nm)", @x ~JBQjb]  
    y: 0, 0.6 %u!#f<"[  
    "cross-sections(1e-24 m&sup2;)", @y 7-(tTBH  
    frame {wd.aUB  
    hx <;acWT?(  
    hy ?X eRL<n  
    )~WxNn3rx  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 6v.*%E*P  
      color = red, P+]39p{  
      width = 3, )} /9*  
      "absorption" y_a~>S  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 [.0R"|$sy+  
      color = blue, 8mMrGf[Q\  
      width = 3, 2O4U ytN  
      "emission" Ot(EDa9}IJ  
    o fN|%g /  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚