(* -/
G#ls|?
Demo for program"RP Fiber Power": thulium-doped fiber laser, * =*\w\
te
pumped at 790 nm. Across-relaxation process allows for efficient [nG[ x|;|
population of theupper laser level. [)?9|yY"`
*) !(* *)注释语句 U{qwhz(
v,Zoy|Lu
diagram shown: 1,2,3,4,5 !指定输出图表 l[i1,4
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 D<:zw/IRE
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响
1/,~0N9
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 v}id/brl
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 (>,b5g
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 nBLb1T
=dwy 4
include"Units.inc" !读取“Units.inc”文件中内容 OsW*@v(
}u1h6rd `
include"Tm-silicate.inc" !读取光谱数据 D^a(|L3;
q&}+O
; Basic fiberparameters: !定义基本光纤参数 @^J>. g
L_f := 4 { fiberlength } !光纤长度 jcjl q-x
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 Q+/P>5O/
r_co := 6 um { coreradius } !纤芯半径 Z
+O<IF%
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 @iMF&\KC
uH(M@7"6_!
; Parameters of thechannels: !定义光信道 0|i|z!N>
l_p := 790 nm {pump wavelength } !泵浦光波长790nm CMyz!jZ3
dir_p := forward {pump direction (forward or backward) } !前向泵浦 acgx')!c
P_pump_in := 5 {input pump power } !输入泵浦功率5W ktRGl>J
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um !]5V{3
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 3[m2F O,Z
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 LM 1Vsh<
x8x-b>|$&<
l_s := 1940 nm {signal wavelength } !信号光波长1940nm Jl6lZd(Np
w_s := 7 um !信号光的半径 L4ct2|w}ul
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 \j-:5M#m
loss_s := 0 !信号光寄生损耗为0 Bj"fUI!dK
<:&{ c-f/
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 d'H gek{T
ZD7qw*3+
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 ,b5vnW\
calc N7KG_o%
begin ^.
global allow all; !声明全局变量 =q|//*t2
set_fiber(L_f, No_z_steps, ''); !光纤参数 )=bW\=[8
add_ring(r_co, N_Tm); OEX\]!3_Fm
def_ionsystem(); !光谱数据函数 <r(D\rmD
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道
t@a&&
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 ^t *Ba>A
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 X<pNc6
set_R(signal_fw, 1, R_oc); !设置反射率函数 VS!v7-_N5
finish_fiber(); BjfTt:kY
end; s,pg4nst56
OF)*kiJ
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 {t.S_|IE
show "Outputpowers:" !输出字符串Output powers: /d/]#T[Z9
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) P2 qC[1hYH
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) XX
"3.zW
VR%*8=
ykH@kv Qt
; ------------- xP;>p|
M
diagram 1: !输出图表1 1C]BaPbL
NB86+2stu
"Powers vs.Position" !图表名称 lDF7~N9J_
rhX?\_7o
x: 0, L_f !命令x: 定义x坐标范围 :7 JP(j2
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 (d*||"
y: 0, 15 !命令y: 定义y坐标范围 94]i|2qj*
y2: 0, 100 !命令y2: 定义第二个y坐标范围 5*Qzw[[=
frame !frame改变坐标系的设置 ts("(zI1E
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) (ip3{d{CT]
hx !平行于x方向网格 ${}9/(x/^
hy !平行于y方向网格 1'iQlnMO@
(
z F_<
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 g!r)yzK
color = red, !图形颜色 #JY>
width = 3, !width线条宽度 F1L[C4'
"pump" !相应的文本字符串标签 <b\8<mTr
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 .7:ecFKk
color = blue, q_L. Sy|)
width = 3, 1mR@Bh
"fw signal" j~>J?w9<O
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 .I $+
E
color = blue,
U z[#ye
style = fdashed, 'A\0^EvVv
width = 3, l<ZHS'-;8
"bw signal" =UWW(^M#[:
4d}n0b\d
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 tB4yj_ZF
yscale = 2, !第二个y轴的缩放比例 {yEL$8MC
color = magenta, IG2z3(j
width = 3, >IA1 \?(
style = fdashed, V?`|Ha}
"n2 (%, right scale)" \%%M >4c
rSm#/)4A
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 :Z_abKt
yscale = 2, gw%L M7yQR
color = red, St>
E\tXp
width = 3, Ml{4)%~Y7f
style = fdashed, 0dI7{o;<|
"n3 (%, right scale)" 'aEN(Mdz1e
=^l`c$G<
)nK+`{;@!
; ------------- mv`b3 $
diagram 2: !输出图表2 0tPwhJ
+&J1D8
"Variation ofthe Pump Power" TV0Y{x*~iH
wyAh%'V
x: 0, 10 8493O x4 O
"pump inputpower (W)", @x 0AoWw-H6V
y: 0, 10 J~ +p7S
y2: 0, 100 Ad>@8^
frame *YX:e@Fm.a
hx KZaiy*>)
hy zzh7 "M3Qn
legpos 150, 150 F&3 :]1
=)N6R
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 9(_n8br1
step = 5, ycvgF6Me<
color = blue, :!fY;c?
width = 3, V>UlL&V
"signal output power (W, leftscale)", !相应的文本字符串标签 8=
82x
finish set_P_in(pump, P_pump_in) >fkV65w{*
f}ch1u>
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 s.KfMJ"u[
yscale = 2, 3Q )"
step = 5, ra_TN;(
color = magenta, |RqCI9N6
width = 3, Ys?0hd<cn
"population of level 2 (%, rightscale)", M-F{I%Vx
finish set_P_in(pump, P_pump_in) z U*Mk
4<5*HpW
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 9+.3GRt7
yscale = 2, #!_ViG )2^
step = 5, e ^`La*n
color = red, o>m*e7l,
width = 3, 1}p:]/;
"population of level 3 (%, rightscale)", o4LVG
finish set_P_in(pump, P_pump_in) lR`.V0xA
yLl:G;
X76rme
; ------------- %j{*`}
diagram 3: !输出图表3 9'|_1Q.b^
XB:E<I'q!3
"Variation ofthe Fiber Length" }?O>.W,/
[<Mls@?
x: 0.1, 5 ~4] J'E >
"fiber length(m)", @x _=cuOo"!
y: 0, 10 BE0Xg
"opticalpowers (W)", @y 60D6UW
frame 9OlJC[
hx fj9&J[
hy +HD2]~{EkL
YhN:t?
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 )2u_[Jc=
step = 20, a\B?J
color = blue, `nc=@" 1
width = 3, CE|
*&G
"signal output" 5CH8;sMK
}b{7+ +
Ah
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 p`!<yq2_
step = 20, color = red, width = 3,"residual pump" 'mF&`BN}b
6J cXhlB`
! set_L(L_f) {restore the original fiber length } @Yw42`>!s
Mi}k>5VT
Zl.,pcL
; ------------- >]Dn,*R
diagram 4: !输出图表4 &7{yk$]*
rV*Ri~Vx
"TransverseProfiles" 6.|[;>Km
EQ"+G[j~x
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) R[QBFL<
RS2uk7MB
x: 0, 1.4 * r_co /um !|mzu1S
"radialposition (µm)", @x {T0Au{88H
y: 0, 1.2 * I_max *cm^2 w.+G+r=
"intensity (W/ cm²)", @y SI=7$8T5=5
y2: 0, 1.3 * N_Tm '+*'sQvH[
frame ]L3MIaO2T
hx &,\my-4c>
hy {qs>yQ6a:-
xlc2,L;i
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 ws$kwSHq
yscale = 2, fOP3`G^\
color = gray, y3P4]sq
width = 3, B f.- 5
maxconnect = 1, {CX06BP
"N_dop (right scale)" \J-D@b;
_Y)Wi[
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 bH%d*
color = red, E0u&hBd3_
maxconnect = 1, !限制图形区域高度,修正为100%的高度 I(z16wQ
width = 3, #f_.
"pump" 3A.lS+P1
\9}DAM_
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 Bt(nm>Ng
color = blue, uu/2C \n}
maxconnect = 1, AH:0h X6+
width = 3, m<J:6^H@
"signal" ghTue*A
Fnd_\`9{
f`[E^zj
; ------------- F><ficT
diagram 5: !输出图表5 ezS@`_pR;
9vCCE[9
"TransitionCross-sections" w/9%C(w6
u7},+E)+B
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) S.?DR3XLc
#1WCSLvtV
x: 1450, 2050 B'b OK`p
"wavelength(nm)", @x [*
|+ it+!
y: 0, 0.6 "kjSg7m*:
"cross-sections(1e-24 m²)", @y p@oz[017/J
frame :4r*Jju<V
hx )G*xI`(@
hy q
w@g7
|w5,%#AeO$
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 X3?RwN:P
color = red, /0XmU@B
width = 3, *n6L3"cO
"absorption" MHA_b^7?
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 2AEVBkF;M
color = blue, 7"OJ,Mx%
width = 3, v[)8 1uY
"emission" beNy5~M$
1Vs>G