(* /J&DYxl":
Demo for program"RP Fiber Power": thulium-doped fiber laser, 1_Av_X
pumped at 790 nm. Across-relaxation process allows for efficient E2>+V{TF
population of theupper laser level. /Ah&d@b
*) !(* *)注释语句 V s=o@
/s=veiH
diagram shown: 1,2,3,4,5 !指定输出图表 v#X#F9C
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 vEGI
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 }owl7G3
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 "J+4
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 CHD.b%_|
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 ]T2Nr[vu
r}D#(G$
include"Units.inc" !读取“Units.inc”文件中内容 6Q_A-X3hk
%&V%=-O_7
include"Tm-silicate.inc" !读取光谱数据 j4]3}t0q
Y#=MN~##t
; Basic fiberparameters: !定义基本光纤参数 n}(A4^=4KQ
L_f := 4 { fiberlength } !光纤长度 MPw?HpM
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 jcBZ#|B7;
r_co := 6 um { coreradius } !纤芯半径 1v,R<1)&
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 D&~%w!
$z 5kA9
; Parameters of thechannels: !定义光信道 LGX+_"
l_p := 790 nm {pump wavelength } !泵浦光波长790nm OIjSH~a.
dir_p := forward {pump direction (forward or backward) } !前向泵浦 x',6VTz^
P_pump_in := 5 {input pump power } !输入泵浦功率5W }@tgc?CD
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um 1)zXv
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 ~{vB2
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 {s*2d P)
mo(>SnS<
l_s := 1940 nm {signal wavelength } !信号光波长1940nm i27)c)\BM
w_s := 7 um !信号光的半径 O7uCTB+
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 Y~UAE.
loss_s := 0 !信号光寄生损耗为0 f#w
u~*c
257$ !
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 W7!iYxO
W-/V5=?
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 ecQ,DOX|b
calc [K'gvLt1
begin `+>K)5hrR
global allow all; !声明全局变量 n9`]}bnX
set_fiber(L_f, No_z_steps, ''); !光纤参数 V'MY+#
add_ring(r_co, N_Tm); %2g<zdab
def_ionsystem(); !光谱数据函数 ;z N1Qb
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 }^p<Y5{b
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 H6|eUU[&
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 x-%RRm<V
set_R(signal_fw, 1, R_oc); !设置反射率函数 cGdYfi
finish_fiber(); d%-/U!z?
end; w-LENdw
Ot:}Ncq^\O
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 SPt/$uYJ
show "Outputpowers:" !输出字符串Output powers: uZ\+{j=
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) e3~{l~Rb
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) 32%Fdz1S
tpO'<b
G'PZ=+!XO/
; ------------- &vn2u bauS
diagram 1: !输出图表1 ~ A=Gra
nhjT2Sl
"Powers vs.Position" !图表名称 0.w7S6v|&
^+CHp(X
x: 0, L_f !命令x: 定义x坐标范围 fFr9]
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 A~<!@`NjB
y: 0, 15 !命令y: 定义y坐标范围 m_@XoS
yxI
y2: 0, 100 !命令y2: 定义第二个y坐标范围 0H_uxkB~
frame !frame改变坐标系的设置 0`-b57lF&
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) 9!W$S[ABRB
hx !平行于x方向网格 |('o g *$
hy !平行于y方向网格 Vdd
WulyMcJ
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 3,6f}:CG
color = red, !图形颜色 =|ODa/2p
width = 3, !width线条宽度 .SER,],P
"pump" !相应的文本字符串标签 rVl 8?uy
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 hd~#I<8;2
color = blue, <r t$~}
width = 3, 7*KUM6z
"fw signal" ,I x>.^|
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 &0-oi Y
color = blue, f(~N+2}
style = fdashed, %<(d%&~
width = 3, t&J A1|q
"bw signal" M\{\WyeX
!|H,g wqU
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 LSJ.pBl\X
yscale = 2, !第二个y轴的缩放比例 /o 'lGvw
color = magenta, aK@
Y) Ju'
width = 3, Q!V:=d
style = fdashed, m:[I$b6AY
"n2 (%, right scale)" WGUw`sc\
9*ZlNZ
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 /[\g8U{5B}
yscale = 2, P@vUQ
color = red, BOG.[?yx
width = 3, $Vq5U9-
style = fdashed, WK(X/!1/k
"n3 (%, right scale)" K3[+L`pz
pa+'0Y]71
DR}I+<*%aD
; ------------- aXJ/"k #Tl
diagram 2: !输出图表2 kodd7 AD
(b<0=U
"Variation ofthe Pump Power" 7KhS{w6
#5)/B
x: 0, 10 VYkh@j
"pump inputpower (W)", @x kF~(B]W(
y: 0, 10 Dn 0L%?_
y2: 0, 100 Z}uY%]
frame 4hwb]
Yz
hx 5 k3m"*
hy gI;"P kN
legpos 150, 150 g}D)MlXRq
8lYA6A
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 {Fw"y %a^
step = 5, PD0&ep1h7G
color = blue, A%W]XEa<
width = 3, goIvm:?
"signal output power (W, leftscale)", !相应的文本字符串标签 HC6U_d1-6
finish set_P_in(pump, P_pump_in) kP&I}RY
7UMZs7L$
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 rBTg"^jsw
yscale = 2, 6Qt(Yu*s
step = 5, |di(hY|
color = magenta, D`a6D
width = 3, M
x#L|w`r
"population of level 2 (%, rightscale)", ?I[8rzBWU
finish set_P_in(pump, P_pump_in) WT<}3(S'?
BKg8p]`+
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 nXLz<wE
yscale = 2, 7b>_vtrt
step = 5, xj>P5\mW#
color = red, 2MRd
width = 3, rAu%bF
"population of level 3 (%, rightscale)", 8O'bCBhv
finish set_P_in(pump, P_pump_in) rx gSQ+G_
L?d?O
:kR>wX
; ------------- iv~R4;;)
diagram 3: !输出图表3 j*?8w(!
T:@6(_Z
"Variation ofthe Fiber Length" nD
BWm`kN
//2O#Fg{/
x: 0.1, 5 lfHN_fE>Mq
"fiber length(m)", @x \DQu!l@1U
y: 0, 10 {fACfSW6
"opticalpowers (W)", @y . fja;aG
frame Z&Ob,Ru
hx A
r]*?:4y[
hy Lxp}o7>K
u>fMO9X}2
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 HRyFjAR\?
step = 20, gvuv>A}vJ
color = blue, LVB wWlJ
width = 3, q8d](MaX
"signal output" kJ5z['4?
.8|wc
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 6v3l^~kc'
step = 20, color = red, width = 3,"residual pump" Z|n|gxe
/=p[k^A
! set_L(L_f) {restore the original fiber length } $UH:r
$M)i]ekm
c36p+6rJk=
; ------------- MT~^wI0a
diagram 4: !输出图表4 a*5KUj6/TL
*ai~!TR
"TransverseProfiles" u @Ze@N%
$vu*# .w
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) q*
R}yt5
9-T<gYl
x: 0, 1.4 * r_co /um 2X\Pw
"radialposition (µm)", @x "++\6H<
y: 0, 1.2 * I_max *cm^2 t,fec>.
"intensity (W/ cm²)", @y )%@7tx
y2: 0, 1.3 * N_Tm P_A@`eU0
frame RlL]p`g
hx IrL%0&*hS
hy _s5^\~ao
|iHMAo
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 Xb%Q%"?~
yscale = 2, @bA5uY!
color = gray, y{@\8B]
width = 3, ?0t^7HMP
maxconnect = 1, !{^kH;*u
"N_dop (right scale)" (Y)2[j
Q)0KYKD+@
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 HQP.7.w7 5
color = red, Kz42AC
maxconnect = 1, !限制图形区域高度,修正为100%的高度 jvB[bS`<H
width = 3, <rE>?zvm
"pump" ]_h3
> mO*.' Gm
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 VH]}{i"`
color = blue, kAEq +{h
maxconnect = 1, !4a fU:
width = 3, %N-aLw\
"signal" &qS%~h%2
MG vz-E1e
i1uoYb?4(I
; ------------- $97O7j@
diagram 5: !输出图表5 J|
N 6r
V,rc&97
"TransitionCross-sections" S#M8}+ZD,
QZ&(e2z
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) 7_2D4CI
$"vz>SuB
x: 1450, 2050 3l<qcKKc
"wavelength(nm)", @x JhFn"(O
y: 0, 0.6 62HA[cr&)
"cross-sections(1e-24 m²)", @y Yc]V+NxxQ
frame <ZSXOh,'
hx lq:q0>vyI
hy 3cghg._
`TJhH<z"%
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 ] x)>q
color = red, <u\Hy0g
width = 3, mzK0$y#*o
"absorption" D@La-K*5
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 DKt98;
color = blue, IVh5SS
width = 3, `6VnL)
"emission" X0
|U?Ib?
Vbv^@Kp