切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2586阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2176
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* qAW?\*n5N  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, )>;V72  
    pumped at 790 nm. Across-relaxation process allows for efficient A-f, &TO  
    population of theupper laser level. i`^[_  
    *)            !(*  *)注释语句 e#odr{2#4u  
    EE5mVC&  
    diagram shown: 1,2,3,4,5  !指定输出图表 0s!';g Q  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 s8.SEk|pB  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 pD17r}%  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 Xe2Zf  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 wl/1~!  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 Yfr4<;%  
    I7XJPc4}   
    include"Units.inc"         !读取“Units.inc”文件中内容 L%HFsuIO-  
    .]YTS  
    include"Tm-silicate.inc"    !读取光谱数据 '!<gPAVTzV  
    ; <l#k7/  
    ; Basic fiberparameters:    !定义基本光纤参数 IXv9mr?H}  
    L_f := 4 { fiberlength }      !光纤长度 Q.,2G7[ <  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 2rxz<ck(  
    r_co := 6 um { coreradius }                !纤芯半径 txik{' :  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 l i) 5o  
    \b*z<Odv  
    ; Parameters of thechannels:                !定义光信道 (vFO'jtcB-  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm v>/_U  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 X/ lmj_v  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W Ay0.D FL  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um G^V a$ike  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 T^icoX=c4  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 dJ {q}U  
    ,lcS J^yr  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm UDW_?SHAx  
    w_s := 7 um                          !信号光的半径 \}71p zw(  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 B \LmE+a>  
    loss_s := 0                            !信号光寄生损耗为0 l[<U UEjZJ  
    8d7 NESYl  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 G%ZP `  
    8j)*T9  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 H[RX~Xk2E  
    calc yoH,4,!G  
      begin K\FLA_J  
        global allow all;                   !声明全局变量 _FxeZ4\  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 &y&HxV  
        add_ring(r_co, N_Tm); m*.+9 6  
        def_ionsystem();              !光谱数据函数 :$*@S=8O  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 ^yX>^1  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 "hk {"0E  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 JwQ/A[b  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 1Qw_P('}  
        finish_fiber();                                   &z#`Qa3NI  
      end; SBI *[  
    J7Mbv2D  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 yy Y\g  
    show "Outputpowers:"                                   !输出字符串Output powers: ]$=#:uf  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) k [LV^oEg  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) 8S7#tb@3  
    1 obajN  
    d( yTz&u)  
    ; ------------- GvZ[3GT  
    diagram 1:                   !输出图表1 Zo,066'+[.  
    c:[ ZknnCe  
    "Powers vs.Position"          !图表名称 &->ngzg  
    k{H7+;_  
    x: 0, L_f                      !命令x: 定义x坐标范围 1|m%xX,[  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 JT&RaFX  
    y: 0, 15                      !命令y: 定义y坐标范围 L5'?.9]  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 O?O=]s u  
    frame          !frame改变坐标系的设置 4fL`.n1^  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) v-BQ>-&s  
    hx             !平行于x方向网格 bObsj]  
    hy              !平行于y方向网格 >g m  
    G\o9mEzQ  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 TbaZFLr  
      color = red,  !图形颜色 d8iq9AP\o  
      width = 3,   !width线条宽度 53 -O wjpx  
      "pump"       !相应的文本字符串标签 :a^/&LbLm  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 &isKU 8n  
      color = blue,     P) cEYk  
      width = 3, u HW'F(;  
      "fw signal" [N12X7O3  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 :yRv:`r3Lt  
      color = blue, oKCv$>Y  
      style = fdashed, #IJe q0TVB  
      width = 3, A$]s{`  
      "bw signal" 91]sO%3  
    +H28F_ #  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 XDHi4i47`o  
      yscale = 2,            !第二个y轴的缩放比例 )_1 GPS  
      color = magenta, j8nkNE]&   
      width = 3, LM+d3|gSV  
      style = fdashed, P8Wv&5A  
      "n2 (%, right scale)" [Ky3WppR  
    ~d].<Be  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 ]jYFrOMy4S  
      yscale = 2, R1D ;  
      color = red, N/ f7"~+`  
      width = 3, {VKFw=$8  
      style = fdashed, PfZS"yk  
      "n3 (%, right scale)" {0 j_.XZ  
    Nke!!A}\|  
    o+B)  
    ; ------------- bK.*v4RG  
    diagram 2:                    !输出图表2 fvcS=nRQv  
    7}g4ePYag  
    "Variation ofthe Pump Power" 6JDaZh"=K  
    R|v'+bv  
    x: 0, 10 g `%in  
    "pump inputpower (W)", @x eZaSV>27  
    y: 0, 10 tc<uS%XT4^  
    y2: 0, 100 AYgXqmH~+  
    frame #c5jCy}n  
    hx R(`:~@ 3\6  
    hy ^lAM /  
    legpos 150, 150 }f]Y^>-Ux  
    OQ7 `n<I<)  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 YZj*F-}  
      step = 5, BHf$ %?3z,  
      color = blue, h693TS_N  
      width = 3, 7jgj;%  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 IHYLM;@L  
      finish set_P_in(pump, P_pump_in) 6,a H[ >W  
    _$ivN!k  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 ;4[[T%&v  
      yscale = 2, Dlq !:dF{&  
      step = 5, mL=d E Q  
      color = magenta, %VH,(}i  
      width = 3, REU,"  
      "population of level 2 (%, rightscale)", ~/]]H;;^u  
      finish set_P_in(pump, P_pump_in) o`,~#P|  
    lQ-<T<g  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 =9X1+x  
      yscale = 2, lI 4tW=  
      step = 5, 8HQ.MXKP  
      color = red, d51'[?(  
      width = 3, & cSVOsi  
      "population of level 3 (%, rightscale)", L%T(H<G  
      finish set_P_in(pump, P_pump_in) P"8Ix  
    8o$rF7.-  
    yQE'!m  
    ; ------------- eHyUY&N/  
    diagram 3:                         !输出图表3 l6ym <V(1p  
    W n'a'  
    "Variation ofthe Fiber Length" <Gi%+I@szl  
    n4/Wd?#`  
    x: 0.1, 5 qcS.=Cj?)  
    "fiber length(m)", @x W<r<K=`5P  
    y: 0, 10 Zd6ik&S   
    "opticalpowers (W)", @y ;:fW]5"R  
    frame wSN9`"  
    hx x9vSekV  
    hy @PEFl"  
    c3^!S0U  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 @ph!3<(In,  
      step = 20,             OT%E|) 6'  
      color = blue, ?T/]w-q>  
      width = 3, z3jk xWAZ  
      "signal output" UqOBr2 UmG  
    X.eOw>.  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 _&uJE&xl}  
       step = 20, color = red, width = 3,"residual pump" At'CT5=  
    @-'a{hBR  
    ! set_L(L_f) {restore the original fiber length } "lI-/ G  
    1f`De`zXzr  
     Y~WdN<g  
    ; ------------- 0O9b 7F  
    diagram 4:                                  !输出图表4 ;=Ma+d#  
    s-$ Wc) l  
    "TransverseProfiles" i6WH^IQM  
    Y%XF64)6  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) bj pruJ`=  
    tk&AZb,sP  
    x: 0, 1.4 * r_co /um ; oyV8P$  
    "radialposition (µm)", @x 2R[v*i^S  
    y: 0, 1.2 * I_max *cm^2 >}+{;d  
    "intensity (W/ cm&sup2;)", @y jE\ G_>  
    y2: 0, 1.3 * N_Tm gV2vwe  
    frame V\cbIx(Z^  
    hx r5}p .  
    hy =AIFu\9#a`  
    ^M'(/O1  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 L  ;L:  
      yscale = 2, YThVG0I =  
      color = gray, x>yqEdR=o  
      width = 3, (?jK|_  
      maxconnect = 1, h>/teHy /  
      "N_dop (right scale)" uUI#^ A  
    k=]e7~!  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 (Q*q# U  
      color = red, >jW**F  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 \'m7un  
      width = 3, B\J[O5},  
      "pump" >Xn,jMUW  
    ,:?ibE=  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 5pCicwea#  
      color = blue, -9b=-K.y  
      maxconnect = 1, _3`G ZeGV  
      width = 3, 4uXGp sL  
      "signal" $*C }iJsF  
    Kxsd@^E  
    gP% <<yl  
    ; ------------- !j6 k]BgZ  
    diagram 5:                                  !输出图表5 TO6F  
    Y~UuT8-c  
    "TransitionCross-sections" 9xQ|Uad+%  
    :3D8rqi:  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) :Awwt0  
    Wg|6{'a  
    x: 1450, 2050 xWxHi6U(  
    "wavelength(nm)", @x opfnIkCe  
    y: 0, 0.6 56Wh<i3  
    "cross-sections(1e-24 m&sup2;)", @y f(Xin3#'  
    frame v;(cJ,l  
    hx V%R]jbHZ#  
    hy /@`"&@W'  
    lQIg0G/3  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 f#s6 'g  
      color = red, 7ys' [G|}r  
      width = 3, Ku[q #_7  
      "absorption" [G_ ;78  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 h% -=8l,  
      color = blue, b 8@}Jv  
      width = 3, z 0?MeH#  
      "emission" C. .|O  
    K_M Ed1l  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚