(*
Yav2q3
Demo for program"RP Fiber Power": thulium-doped fiber laser, tvd0R$5}
pumped at 790 nm. Across-relaxation process allows for efficient -A-tuyIsh"
population of theupper laser level. =:+0)t=ao
*) !(* *)注释语句 D7"p}PD>~
/=?ETth @
diagram shown: 1,2,3,4,5 !指定输出图表 Npn=cLC&
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 xLZd!>C
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 q8ImrC.'^
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 2l5KJlfj>k
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 htP|3 B
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 h8jD}9^
~Ki`Ze"x
include"Units.inc" !读取“Units.inc”文件中内容 j8 C8X$
EC<b3
include"Tm-silicate.inc" !读取光谱数据 O3V.^_k;
>"3>fche
; Basic fiberparameters: !定义基本光纤参数 *5,c Rz
L_f := 4 { fiberlength } !光纤长度 IF*&%pB
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 M`D$!BJr
r_co := 6 um { coreradius } !纤芯半径 ^6p'YYj"5
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 Tp<k<uKD
>5T_g2pkv
; Parameters of thechannels: !定义光信道 `:M^8SYrL
l_p := 790 nm {pump wavelength } !泵浦光波长790nm TFDm5XJ
dir_p := forward {pump direction (forward or backward) } !前向泵浦 &@ 3m-Z
P_pump_in := 5 {input pump power } !输入泵浦功率5W }jSj+*
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um 6k?`:QK/sl
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 j[6Raf/(n
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 l0tYG[
r+<{S\ Q
l_s := 1940 nm {signal wavelength } !信号光波长1940nm FbACTeB
w_s := 7 um !信号光的半径 f+vVR1
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 dPjhq(8 zU
loss_s := 0 !信号光寄生损耗为0 u1K\@jlw
AY_Q""v
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 P,bd'
)y7_qxwbV
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 =7
,Kf}6
calc EP7AP4
begin wb"RB
A9
global allow all; !声明全局变量 V:bV ?lt
set_fiber(L_f, No_z_steps, ''); !光纤参数 o07IcIo
add_ring(r_co, N_Tm); ;mAhY
def_ionsystem(); !光谱数据函数 ]B9 ^3x[:
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 +?`b=6e(`
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 !d9AG|
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 G%TL/Z40
set_R(signal_fw, 1, R_oc); !设置反射率函数 GO5 ~!g
finish_fiber(); m(sXk}e;1
end; JhR W[~
H l j6$%.
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 :XT?jdg
show "Outputpowers:" !输出字符串Output powers: g?qKNY
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) EY>8O+
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) 9-jO,l
'b:Ne,<
/c+)C"
; ------------- <rK=9"$y(t
diagram 1: !输出图表1 |;;!8VO3J
aW5~Be$
_
"Powers vs.Position" !图表名称 m$y]Lf
YRB%:D@u
x: 0, L_f !命令x: 定义x坐标范围 9( VRq^Z1
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 {w`:KR6o7
y: 0, 15 !命令y: 定义y坐标范围 ]jM^Z.mI+
y2: 0, 100 !命令y2: 定义第二个y坐标范围 9]_GNk-D
frame !frame改变坐标系的设置 4?]oV%aP)
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) QV,E#(\5
hx !平行于x方向网格 zJ& b|L
hy !平行于y方向网格 ^>r^3C)_-
r25Z`X Z
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 fB#XhO
color = red, !图形颜色 T'rjh"C&|
width = 3, !width线条宽度 Q2~5"
"pump" !相应的文本字符串标签 ?=|kC*$/G
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 Ht=$] Px
color = blue, gAE!aKy
width = 3, /! ^P)yU,
"fw signal" j.c8}r&
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 C%H9[%k
color = blue, c"Y!$'|Q
style = fdashed, _dmL}t-
width = 3, 6
nGY^
"bw signal" #w~0uCzQ@
LC'F<MpM
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 k0&lu B%
yscale = 2, !第二个y轴的缩放比例 {Jx7_T&
color = magenta, }]h\/,
width = 3, <lld*IH
style = fdashed, $U'3MEEw
"n2 (%, right scale)" r<FQX3
F2oJ]th.3
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 F RH&B5w
yscale = 2, SgSk!lj
color = red, $Qq_qTJu?G
width = 3, >rRf9wO1l
style = fdashed, r>3^kL5UI
"n3 (%, right scale)" {,V$*
q,,j',8kq/
T]2U fi.
; ------------- me'(lQ6^
diagram 2: !输出图表2 <3#<I)#
tBl#o ^
"Variation ofthe Pump Power" Zps&[;R$-
y\_wW E
x: 0, 10 i=da,W=0
"pump inputpower (W)", @x (@?eLJlT
y: 0, 10 6:RMU
y2: 0, 100 z_(eQP])
frame 9A*rE.B+W
hx k|ip?O
hy {"4<To]z
legpos 150, 150 2
zl~>3S
[`bZ5*&
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 6~:+:;
step = 5, 6<76O~hNZ
color = blue, Sf5]=F-w
width = 3, Kfd _uXL>
"signal output power (W, leftscale)", !相应的文本字符串标签 #O6
EP#B
finish set_P_in(pump, P_pump_in) pU DO7Q]
z.59]\;U>
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 fv5C!> t
yscale = 2, ,9UCb$mh
step = 5, qhwoV4@f
color = magenta, afy/K'~
width = 3, E.#6;HHzN
"population of level 2 (%, rightscale)", ^+a
finish set_P_in(pump, P_pump_in) /yt7#!tm+
9mm2V ps;
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 ^hysC c
yscale = 2, Ge~,[If+
step = 5, /b+;:
z
color = red, NY 4C@@"
width = 3, Dpj-{q7C
"population of level 3 (%, rightscale)", y;,y"W
finish set_P_in(pump, P_pump_in) - XLo0
-4%]QS
2mLUdx~c
; ------------- 1 Xa+%n9
diagram 3: !输出图表3 ,M{Q}:$+4
:r^klJ(m
"Variation ofthe Fiber Length" ?to1rFrU
Y^X:vI
x: 0.1, 5 >Pyc[_j
"fiber length(m)", @x bu&;-Ynb
y: 0, 10 *78)2)=~
"opticalpowers (W)", @y bm^X!i5
frame qdO[d|d
hx Vbo5`+NAis
hy hLSTSD}
u'=(&><
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 'hy?jQ'|e
step = 20, !+=Zjm4L
color = blue, 3)xb nRk
width = 3, psu OJ-
"signal output" @$EjD3Z-
/'mrDb_ip
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 ;raz6DRO
step = 20, color = red, width = 3,"residual pump" HIsB|
/M]eZ~QKD
! set_L(L_f) {restore the original fiber length } #>"}q3RO
\a?K?v|8
,zD_% ox
; ------------- 76$*1jB
diagram 4: !输出图表4 <_>.!9q
au,jAk
"TransverseProfiles" >6IXuq
y&y/cML?
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) |G)Y8 #D
5cgo)/3M@}
x: 0, 1.4 * r_co /um qP&byEs"
"radialposition (µm)", @x .uBO
y: 0, 1.2 * I_max *cm^2 ](_{,P
"intensity (W/ cm²)", @y {:,_A
y2: 0, 1.3 * N_Tm =w?M_[&K)
frame b~jIv:9T
hx [7'#~[a~
hy pXve02b1B
is9}ePC7Xu
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 =l_rAj~I|
yscale = 2, Z^{+,$H@
color = gray, IKGTsA;
width = 3, "/Om}*VhD
maxconnect = 1, AfUZO^<
"N_dop (right scale)" L+8=P<]
I/Sv"X6E
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 qw|JJ
color = red, lxo.,n)
maxconnect = 1, !限制图形区域高度,修正为100%的高度 r|*:9|y{"/
width = 3, HOq4i!
"pump" sTt9'P`
P@2tR5<R
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 @+iC/
color = blue, ud yAP>
maxconnect = 1, {,i=>%X*
width = 3, 4sb )^3T
"signal" XO 0>t{G
6`_! ?u7
IY V-*/
|
; ------------- =x=1uXQv5
diagram 5: !输出图表5 "!xvpsy
4pLQ"&>}80
"TransitionCross-sections" 8n;kK?
e)*mC oR
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) anK[P'Y
]vRVo6@ k
x: 1450, 2050 TP~(
r
"wavelength(nm)", @x ftO+.-sm<
y: 0, 0.6 ylkpYd
"cross-sections(1e-24 m²)", @y lr`?yn1D(
frame CKx\V+\O
hx :-$cdZ3E
hy /z/hUa
}PtI0mZ1
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 EW
~*@H
color = red, :/>7$)+
width = 3, 8rGl&
"absorption" `x2fp6
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 \k|_&hG
color = blue, h~,x7]w6
width = 3, B1x'5S;Bq
"emission" Z"l`e0{
Z~duJsH