(* Tm
6<^5t
Demo for program"RP Fiber Power": thulium-doped fiber laser, lo5,E(7~h
pumped at 790 nm. Across-relaxation process allows for efficient GFB(c
population of theupper laser level. %@Bl,!BJ,
*) !(* *)注释语句 )k&<D*5s
mR)Xq=
diagram shown: 1,2,3,4,5 !指定输出图表 [2"a~o\
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 <-D>^p9
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 *0^!%Y'/4
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 cQ} ,q+GR~
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 :<r.n
"
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 ~xerZQgc
5hF
iK
K7
include"Units.inc" !读取“Units.inc”文件中内容 4"nb>tA
%wzDBsX
include"Tm-silicate.inc" !读取光谱数据 SxI='z_S.f
n6Je5fE
; Basic fiberparameters: !定义基本光纤参数 `q@5d&d`j
L_f := 4 { fiberlength } !光纤长度 {N42z0c
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 #N.W8mq
r_co := 6 um { coreradius } !纤芯半径 D2z" Z@
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 gdPv,p19L
O~?H\2S
; Parameters of thechannels: !定义光信道 >4
4A
l_p := 790 nm {pump wavelength } !泵浦光波长790nm WhQK3hnm
dir_p := forward {pump direction (forward or backward) } !前向泵浦 hd0d
gc
P_pump_in := 5 {input pump power } !输入泵浦功率5W Xn@\p5<
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um SaceIV%(
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 {]BPSj{B
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 c5C 2xE}T
jM]B\cvN
l_s := 1940 nm {signal wavelength } !信号光波长1940nm TwJiYXHw?
w_s := 7 um !信号光的半径 iI\bD
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 $a.fQ<,\X
loss_s := 0 !信号光寄生损耗为0 ,j E'd'$
}tJRBb
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 (cAWT,
RdaAS{>Sk
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 Hz~?"ts@;
calc u5zL;C3O
begin Zq1ZrwPF
global allow all; !声明全局变量 @`t#Bi9
set_fiber(L_f, No_z_steps, ''); !光纤参数 HEh,Cf7`'
add_ring(r_co, N_Tm); @D1}).
def_ionsystem(); !光谱数据函数 goBl~fqy0
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 r&!Ebe-
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 u-qwG/$E
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 iXLODuI
set_R(signal_fw, 1, R_oc); !设置反射率函数 l Oxz&m
finish_fiber(); ~C M%WvS
end; Uao8#<CkvJ
$.HZz
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 rG[iEY
show "Outputpowers:" !输出字符串Output powers: v3\
|
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) \"k[y+O],4
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) r:N =?X`N
8k[=$Ro
?|,dHqh{nM
; ------------- W3Gg<!*Uo
diagram 1: !输出图表1 3QSA|
q~:H>;:G-
"Powers vs.Position" !图表名称 *ay&&S*
OeMI
x: 0, L_f !命令x: 定义x坐标范围 @}K|/
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 O2;iY_P7lV
y: 0, 15 !命令y: 定义y坐标范围 skaPC#u
y2: 0, 100 !命令y2: 定义第二个y坐标范围 )T0%<(J
frame !frame改变坐标系的设置 +;#z"m]
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) D@W[Nd5MJ
hx !平行于x方向网格 @~p;.=1]F
hy !平行于y方向网格 ??5y0I6+
0c}pg:XT
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 n1XJuc~
color = red, !图形颜色 #Sg< 9xsW
width = 3, !width线条宽度 9f=L'{
"pump" !相应的文本字符串标签 9!XXuMWU<
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 p9X{E%A<:
color = blue, <b.O^_zQF
width = 3, ~?6M4!u
"fw signal" ;r8<
Ed
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 xxy
(#j$
color = blue, P55QE+B
style = fdashed, S[zETRSG
width = 3, DjLSl,Z
"bw signal" )70i/%}7
LC>bZ!(i#
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 "5wer5?
t
yscale = 2, !第二个y轴的缩放比例 2|a5xTzH
color = magenta, 2K:Rrn/cR
width = 3, 1`& Yg(
style = fdashed, ;9Sb/
"n2 (%, right scale)" `/"*_AKAI
n=F|bW
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 xcHuH-}
yscale = 2, L$zB^lSM
color = red, V|\dnVQ'-%
width = 3, QJ4=*tX)
style = fdashed, n9H4~[JiC
"n3 (%, right scale)" a>H8,a
<sncW>?!~
90Sp(
; ------------- [`n)2}
k
diagram 2: !输出图表2 j1~'[
?9Hs,J
"Variation ofthe Pump Power" P:OI]x4
\cx==[&(
x: 0, 10 p)e?0m26
"pump inputpower (W)", @x ']&rPvkL
y: 0, 10 <rn26Gfr
y2: 0, 100 Spm0DqqR?
frame h uIvXl
hx lKSd]:3Xm
hy bXNM.K
legpos 150, 150 (3VV(18
*Y]()#?Gr
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 i-FsA
step = 5, +1pY^#A
color = blue, I xk+y?
width = 3, \- f^C}m
"signal output power (W, leftscale)", !相应的文本字符串标签 h0z>dLA#2
finish set_P_in(pump, P_pump_in) $8{v_2C){
ozOvpi:k3%
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 uGz>AW8a3
yscale = 2, Oz1S*<]=,~
step = 5, @%b&(x^UD
color = magenta, 7#[8td
width = 3, @b3jO
"population of level 2 (%, rightscale)", _`~\zzUZ
finish set_P_in(pump, P_pump_in) WNO!6*+
e-EY]%JO
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 ;r3Xh)k;
yscale = 2, a,ZmDkzuv
step = 5,
#V-0-n,`
color = red, !v\_<8
width = 3, xgq
`l#
"population of level 3 (%, rightscale)", \r`><d
finish set_P_in(pump, P_pump_in) W lHK
+i@{h9"6g
I3hN7
; ------------- y!u=]BE
diagram 3: !输出图表3 6F:<c
lO/?e!$
"Variation ofthe Fiber Length" (iJ9ekB
htu(R$GSM
x: 0.1, 5 ~\khwNA
"fiber length(m)", @x E(-@F%Q
y: 0, 10 c`O(||UZT
"opticalpowers (W)", @y UlQS]f~
frame BI|YaZa+p
hx k];NTALOG
hy FNR<=M
TjY-C m
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 k0@*Up3{7
step = 20, LQz6op}R
color = blue, k1E(SXcW9
width = 3, M]7>Ar'zsG
"signal output" %DhM }f
<5E: ,<
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 .C\##
step = 20, color = red, width = 3,"residual pump" /8Ru O
x%RG>),U
! set_L(L_f) {restore the original fiber length } (~N[j;W,_W
g:eqB&&
C
@nA*
; ------------- @8eQ|.q]Q
diagram 4: !输出图表4 #p7K2
AlA:MO]NM
"TransverseProfiles" +)ba9bJ|
rsn^YC
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) 7CDp$7v2
QWI)Y:<K/
x: 0, 1.4 * r_co /um -*[:3%
"radialposition (µm)", @x brEA-xNWQ
y: 0, 1.2 * I_max *cm^2 svvl`|n%
"intensity (W/ cm²)", @y *; :dJXR
y2: 0, 1.3 * N_Tm zVvL!
frame ac!!1lwA
hx @0 #JY:"
hy Gy F
_b"K,[0o
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 tA8O(9OV
yscale = 2, R3|r`~@@
color = gray, g\]~H%2 ,
width = 3, 'YvRkWf:KC
maxconnect = 1, *CCh\+S7m
"N_dop (right scale)" v3b+Ddp
H>]A|-rG#
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 ps_q3Cyp
color = red, ]Ns)fr6
maxconnect = 1, !限制图形区域高度,修正为100%的高度 IXv9mr?H}
width = 3, Q.,2G7[ <
"pump" 2rxz<ck(
p(!d,YSE
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 l i)
5o
color = blue, \b*z<Odv
maxconnect = 1, n7/>+V+
width = 3, x|$|~6f=n
"signal" "1Y'VpKm(~
'81c>qA
6d(D>a
; ------------- ha?M[Vyw4Q
diagram 5: !输出图表5 8Dkq+H93
weH3\@
"TransitionCross-sections" IictX"3lh
l5/gM[0_7
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) N6HeZB":
<q&4Y+b
x: 1450, 2050 #%g>^i={ky
"wavelength(nm)", @x "0 $UnR
y: 0, 0.6 DY\~O
"cross-sections(1e-24 m²)", @y 8"}8Nrb0
frame 0X:$ASocU
hx [@_W-rA
hy a}Z+"D
E[cH/Rm
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 m/3,;P.6
color = red, xqb*;TBh*
width = 3, SuXeUiK.[
"absorption" 8Si3
aq3
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 ;0lY_ii
color = blue, 20# V?hX3
width = 3, !/e*v>3u&
"emission" ;I?x;lH
Xe&p.v