(* ~8m>DSs)D
Demo for program"RP Fiber Power": thulium-doped fiber laser, cQ.;dtT0
pumped at 790 nm. Across-relaxation process allows for efficient hcgc
=$^
population of theupper laser level. D' `"_
*) !(* *)注释语句 LZ)m](+M
l>UUaf|O
diagram shown: 1,2,3,4,5 !指定输出图表 e^NEj1
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 f4I#a&DO
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 dl6v
<
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 daIL> c"
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 @sHw+to|p)
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 ~Ex.Yp8.
T4=3VrS
include"Units.inc" !读取“Units.inc”文件中内容 =_=Z;#`cXk
1 j12Qn@]
include"Tm-silicate.inc" !读取光谱数据 &U~r}=
uT} TSwgp
; Basic fiberparameters: !定义基本光纤参数 T#n1@FgC
L_f := 4 { fiberlength } !光纤长度 7vaN&%;E%
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 }=hoATs
r_co := 6 um { coreradius } !纤芯半径 B`B%:#
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 {*
j^g6;
7_40_kwJi
; Parameters of thechannels: !定义光信道 ]rg+nc3
l_p := 790 nm {pump wavelength } !泵浦光波长790nm [b.'3a++
dir_p := forward {pump direction (forward or backward) } !前向泵浦 9J7J/]7f
P_pump_in := 5 {input pump power } !输入泵浦功率5W @y(Wy}
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um e?| URW
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 l}0V+
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 Ww96|m
akhL\-d)al
l_s := 1940 nm {signal wavelength } !信号光波长1940nm zZ9<4"CIk
w_s := 7 um !信号光的半径 l^!A
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 gXu^"
loss_s := 0 !信号光寄生损耗为0 }11`98>B6:
PDt<lJU+X
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 vV.~76AD5
6%.
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 |jk-@ Z*
calc A6N~UV*_
begin Wzqb>.
global allow all; !声明全局变量 rMHQzQ0%
set_fiber(L_f, No_z_steps, ''); !光纤参数
_@!QY
add_ring(r_co, N_Tm); z,bX.*.-
def_ionsystem(); !光谱数据函数 (]Ye[j^"7
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 n#>.\F
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 V5O=iMP
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 nU&NopD+*G
set_R(signal_fw, 1, R_oc); !设置反射率函数 5e)6ua ,
finish_fiber(); QtY hg$K3
end; {^cF(7p
q#99iiG1
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 `z}vONXpAX
show "Outputpowers:" !输出字符串Output powers: ,g/ _eROJ
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) ])V2}gH
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) l
Io9,Ke
VU! l50
9q1HSJ1)
; ------------- [0u.}c;(
diagram 1: !输出图表1 3vdu;W=Sz
>gk z4.*
"Powers vs.Position" !图表名称 StU 4{
Vvm=MBgN
x: 0, L_f !命令x: 定义x坐标范围 Jcz]J)|5v
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置
u>}w-
y: 0, 15 !命令y: 定义y坐标范围 o_Jn_3=
y2: 0, 100 !命令y2: 定义第二个y坐标范围 lt{lpH
frame !frame改变坐标系的设置 Y=vVxVI\
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) ietRr!$.
hx !平行于x方向网格 +@emX$cFV
hy !平行于y方向网格 'tb(J3ZP
qoC]#M$oo#
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 EBoGJ_l
color = red, !图形颜色 8 ]q
width = 3, !width线条宽度 H2qf'
"pump" !相应的文本字符串标签 Oj4v#GK]
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 ZV'$k\
color = blue, /&PKCtm&~
width = 3, kSbO[)p
"fw signal" vBh;
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 ;V_.[aX
color = blue, &5\^f?'b7
style = fdashed, ]} 61vV
width = 3, pheE^jUr
"bw signal" |KL')&"
C:`;d&d
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 >~I#JQ%
yscale = 2, !第二个y轴的缩放比例 Rn`ld@=p[
color = magenta, *cbeyB{E
width = 3, yND"bF9
style = fdashed, >i
"qMZ
"n2 (%, right scale)" !z11"
c
iI5+P`sE&J
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 g;pR^D'M5C
yscale = 2, `79[+0hL'
color = red, lT 8#bA
width = 3, ?4XnEDAm
style = fdashed, &&=[Ivv
"n3 (%, right scale)" hd+]Ok7"
UMV)wy|j
#j;Tb2&w
; ------------- A)tP()+)
diagram 2: !输出图表2 J/2j;,8D
U@G"`RYl
"Variation ofthe Pump Power" +nZUL*Ut/
(Uk>?XAr
x: 0, 10 7A5p["?Z
"pump inputpower (W)", @x L!t@-5~
y: 0, 10 7kKuZW@K-
y2: 0, 100 !8sgq{x((
frame .evbE O 5
hx ,P{m k%=9
hy UtnZNdlv
legpos 150, 150 !b8uLjd;
qve
./
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光
bu>qsU3
step = 5, jMM$ d,7B
color = blue, bLzs?eos
width = 3, h.)h@$d
"signal output power (W, leftscale)", !相应的文本字符串标签 A /(lK q
finish set_P_in(pump, P_pump_in) 'Gx$Bj
)p<WDiX1!e
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 .N,&Uv-
yscale = 2, tF*szf|$-
step = 5, 7p.>\YtoR}
color = magenta, ,R?np9wc
width = 3, _]b3,%2
"population of level 2 (%, rightscale)", 5G(3vRX|1
finish set_P_in(pump, P_pump_in) !gF9k8\Yr$
>-.e A vD
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 `:eU.
yscale = 2, hn.bau[
step = 5, $=B8qZ+
color = red, pd3,pQ
width = 3, ]5}=^
"population of level 3 (%, rightscale)", n`ViTwd]MQ
finish set_P_in(pump, P_pump_in) &$'z
o! OMm!
nOb?-rR
; ------------- 0fm*`4Q
diagram 3: !输出图表3 UH?
p]4Nz
L[g0&b%%-
"Variation ofthe Fiber Length" 8'Z:ydj^,
n(1')?"mA
x: 0.1, 5 (@r
`$5D.b
"fiber length(m)", @x !ErH~<f%K
y: 0, 10 !8
-oR6/$%
"opticalpowers (W)", @y ujFzJdp3k
frame H#i{?RM@l
hx E<E3&;qD
hy \25/$Ae}c
#>[a{<;Kn
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 Es5f*P0
step = 20, 7y^%7U \
color = blue, #m<tJnEO
width = 3, GsQ*4=C
"signal output" KS}hU~
aAE>)#f(
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 WIr2{+#
step = 20, color = red, width = 3,"residual pump" r%@Lej5+
"{D6J809
! set_L(L_f) {restore the original fiber length } \Q~8?p+
m2~