(* )/|6'L-2
Demo for program"RP Fiber Power": thulium-doped fiber laser, J|~26lG
pumped at 790 nm. Across-relaxation process allows for efficient ^p=L\SJ
population of theupper laser level. &`!^Zq vG
*) !(* *)注释语句 [j9E pi(
z"
QJhCh7
diagram shown: 1,2,3,4,5 !指定输出图表 ig_2={Q@
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 ^b-18 ~s
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 h(' )"
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 9|WV~
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 la^
DjHA$
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 :c]`D>
,)fkr]`<
include"Units.inc" !读取“Units.inc”文件中内容 Ee2c5C!|C
HY}j!X
include"Tm-silicate.inc" !读取光谱数据 I+;-p]~
ra6o>lI(,
; Basic fiberparameters: !定义基本光纤参数 rg QEUDEQ
L_f := 4 { fiberlength } !光纤长度 hOk00az
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 <4`eQ
r_co := 6 um { coreradius } !纤芯半径 |qN'P}L
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 eon!CE0
*"{&FEV
; Parameters of thechannels: !定义光信道 KfY$ka[}"S
l_p := 790 nm {pump wavelength } !泵浦光波长790nm K_BPZ5w
dir_p := forward {pump direction (forward or backward) } !前向泵浦 W/+K9S25
P_pump_in := 5 {input pump power } !输入泵浦功率5W KMK`F{
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um 'vIx#k4D1
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 }1H=wg>\
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 l!~
mxUb
pwX C
l_s := 1940 nm {signal wavelength } !信号光波长1940nm { T]?o~W
w_s := 7 um !信号光的半径 0$vj!-Mb^j
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 s8gU7pT49
loss_s := 0 !信号光寄生损耗为0 'mM jjG9
(ywo
a
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 s(2GFc
5g
;ac~g
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 Iy7pt~DJ,
calc %$ceJ`%1e
begin 8cWZ"v
global allow all; !声明全局变量 UlovXb
set_fiber(L_f, No_z_steps, ''); !光纤参数 `,>wC+}
add_ring(r_co, N_Tm); 7C,T&g
1:
def_ionsystem(); !光谱数据函数 v."Dnl
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道
>'=MH2;
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 SZ!=`a]
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 -_^c6!i
set_R(signal_fw, 1, R_oc); !设置反射率函数 ;</Lf=+Vm
finish_fiber(); 0@=MOGQb
end; u<tk G B
RDQ^dui
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 sd0r'jb
show "Outputpowers:" !输出字符串Output powers: }nx=e#[g%2
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) EeQ5vqU
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) f-RK,#^?,
Q9?t[ir
8Jr?ZDf`
; ------------- B|{I:[
diagram 1: !输出图表1 cPF<D$B
":W%,`@$
"Powers vs.Position" !图表名称 >yK0iK{
0~gO'*2P
x: 0, L_f !命令x: 定义x坐标范围 lC?Icn|o
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 sq0 PBEqq
y: 0, 15 !命令y: 定义y坐标范围 lhLGG
y2: 0, 100 !命令y2: 定义第二个y坐标范围 X" R<J#4
frame !frame改变坐标系的设置 r.3KPiYK
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) i6PM<X,{;
hx !平行于x方向网格 _D!g4"
hy !平行于y方向网格 )ZR+lX}
^>$P)=O:v
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 ^HA
%q8| n
color = red, !图形颜色 $p* p
width = 3, !width线条宽度 \F6LZZ2Lv
"pump" !相应的文本字符串标签 '\ DSTr:N
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 H#d:kil Ny
color = blue, d5 j_6X
width = 3, Ukphd$3J=
"fw signal" %Kb9tHg
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 df*w>xS
color = blue, xK%=
style = fdashed, *TdnB'Gd
width = 3, 8\ha@&p
"bw signal" ?/#}ZZK^
7S^""*Q^
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 x%>
e)L<
yscale = 2, !第二个y轴的缩放比例 P>QpvSd_#
color = magenta, A2H4k|8
width = 3, F@<0s&)1
style = fdashed, b'@we0V@S
"n2 (%, right scale)" ~%y @Xsot>
]dPZ .r
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 *JCQu0
yscale = 2, .V'V:;BE%
color = red, wo^Sy41bF
width = 3, 3TuC+'`G
style = fdashed, c9Es%@]
"n3 (%, right scale)" SS.jL)
rnm03 '{
MQ/
A]EeL
; ------------- Q[ieaL6&
diagram 2: !输出图表2 Pt< s* (
V9 }t0$LN
"Variation ofthe Pump Power" %g"eV4j
6)gd^{
x: 0, 10 v6a]1B
"pump inputpower (W)", @x GJ(d&o8
y: 0, 10 <I*x0BM=
y2: 0, 100 _O:WG&a6
frame J]/}ojW3
hx V~{
_3YY
hy SpTdj^ ]4>
legpos 150, 150 ni CE\B~
- 0HkT Y
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 #&!G"x7
step = 5, 'C+;r?1!h
color = blue, "i)Yvh[y
width = 3, TQ :/RT
"signal output power (W, leftscale)", !相应的文本字符串标签 !UBO_X%dz
finish set_P_in(pump, P_pump_in) &x:JD1T}
}qPhx6nP
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 j0-McLc
yscale = 2, 9L eNe}9v
step = 5, uYO|5a<f~
color = magenta, *iXe^ <6v
width = 3, V2&^!#=s
"population of level 2 (%, rightscale)", /!FWuRe^
finish set_P_in(pump, P_pump_in) EmVuwphv
qB6dFl\ (
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 WPuz]Ty
yscale = 2, YhKZ|@
step = 5, y&T&1o
color = red, ]n1dp2aH
width = 3, mPZGA\
"population of level 3 (%, rightscale)", c$E)P$<j
finish set_P_in(pump, P_pump_in) SqPtWEq@P
&rq{v!=7
P1kB>"bR
; ------------- A/*%J74v
diagram 3: !输出图表3 #~ v4caNx
7G2PMe;$m
"Variation ofthe Fiber Length" M7}Q=q\9
~XM[>M\qB
x: 0.1, 5 T8J4C=?/
"fiber length(m)", @x FVWfDQ$&v
y: 0, 10 N0TeqOi4Y
"opticalpowers (W)", @y [2Mbk~
frame ,i}|5ozj4
hx RNJFSD.
hy 3 pWM~(#>-
T3J'fjY
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 {5Lj8N5
step = 20, g$37;d3Tx
color = blue, ;6;H*Y0,|E
width = 3, s'I)A^i+
"signal output" EYzg%\HH
:>
-1'HC
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 Ggm` ~fS
step = 20, color = red, width = 3,"residual pump" >wON\N0V_
eb:A1f4L
! set_L(L_f) {restore the original fiber length } mX# "+X|
y2Bh?>pg
BNm4k7
]M
; ------------- {ShgJ;! Q
diagram 4: !输出图表4 _kraMQ>
AHh#Fx+K
"TransverseProfiles" Q
s(Bnb;
Zc5
:]]
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) ,{}#8r` +*
J\co1kO9/
x: 0, 1.4 * r_co /um _GaJXWMbk
"radialposition (µm)", @x , |E$'
y: 0, 1.2 * I_max *cm^2 lJ
"intensity (W/ cm²)", @y :R6Q=g=
y2: 0, 1.3 * N_Tm C".1+Um
frame 6vs3O
hx v|t{1[C
hy kyUl{Zj
Buc_9Kzw<+
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 I}0_nge
yscale = 2, i?}>.$j
color = gray, Iin#Wd-/
width = 3, ur%$aX)
maxconnect = 1, [Eq<":)
"N_dop (right scale)" W
Ox_y,
p]|LV)R n
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 {[OwMk
color = red, ? Nj)6_&
maxconnect = 1, !限制图形区域高度,修正为100%的高度 /XpSe<3
width = 3, 4MvC]_&
"pump" MgJ5B(c
ocA]M=3~k
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 "~+.Af
color = blue, /'&;Q7!)
maxconnect = 1, fj']?a!m
width = 3, .Ao0;:;(2-
"signal" !vqC+o>@
LsTffIP
s@@1
*VQ
; ------------- R{}qK r
diagram 5: !输出图表5 ]|oJ)5P
I48VNX
"TransitionCross-sections" p8>%Mflf
d0UZ+ RR#
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) d]B=*7]
)2j:z#'>
x: 1450, 2050 "dCzWFet
"wavelength(nm)", @x aC\4}i<
y: 0, 0.6 ?Myh7
"cross-sections(1e-24 m²)", @y g:~+Pe
frame f\o
R:%
hx #BJ\{"b_}z
hy zJl_ t0
otriif@+Z
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 EZj1jpL
color = red, 9D_wG\g
width = 3, zG%
|0
"absorption" (cV
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 v*TeTA
%
color = blue, zy)i1d
width = 3, P[i\e7mR
"emission" &?<AwtNN
0X"\ a'M_