(* Z~WUILx,
Demo for program"RP Fiber Power": thulium-doped fiber laser, 'T_Vm%\)
pumped at 790 nm. Across-relaxation process allows for efficient *It`<F|
population of theupper laser level. /Ayo78Pi
*) !(* *)注释语句 4|EV`t}EV
2y"|l
diagram shown: 1,2,3,4,5 !指定输出图表 q\xT
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 ZB|y
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 cc
%m0p
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 VD).UdUn
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 m%[Ul@!V
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 ov@N13 ,$
u6pfc'GG g
include"Units.inc" !读取“Units.inc”文件中内容 =MP?aH
[
c[n4{q1
include"Tm-silicate.inc" !读取光谱数据 Q^_*&},V
jIOrB}
; Basic fiberparameters: !定义基本光纤参数 3<L>BakD
L_f := 4 { fiberlength } !光纤长度 lls-Nir%
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 ;hcOD4or
r_co := 6 um { coreradius } !纤芯半径 :K#z~#n
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 YgFmJ.1
UmC_C[/n?
; Parameters of thechannels: !定义光信道 <Y9 L3O`[
l_p := 790 nm {pump wavelength } !泵浦光波长790nm UF$JVb
dir_p := forward {pump direction (forward or backward) } !前向泵浦 oU`J~6.&S
P_pump_in := 5 {input pump power } !输入泵浦功率5W Uql|32j
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um '%}k"&t$i
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 h\@\*Xz<v
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 z(yJ/~m
&.ENcEic
l_s := 1940 nm {signal wavelength } !信号光波长1940nm {okx*]PIc
w_s := 7 um !信号光的半径 h>A~..
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 ;]/emw=a
loss_s := 0 !信号光寄生损耗为0 Z fQzA}QD
>;9+4C<z0
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 pm.Zc'23
x)h|!T=B~
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 j\o<r0I
calc 2A5R3x=\
begin )nI}K QJ<
global allow all; !声明全局变量 AxbQN.E
set_fiber(L_f, No_z_steps, ''); !光纤参数 E5H0Yo.Wi
add_ring(r_co, N_Tm); X/8CvY#n
def_ionsystem(); !光谱数据函数 )fRZ}7k:
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 +Ui @3Q
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 v*&WxP^Gm
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 t04_~e
set_R(signal_fw, 1, R_oc); !设置反射率函数 ev$\Ns^g$3
finish_fiber(); ?$>#FKrt
end; cU+%zk
;nDCyn4i]
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 2Gw2k8g&
show "Outputpowers:" !输出字符串Output powers: bGO[P<<
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) m4=[e!
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) m7|}PH"7
d[p-zn.
3)bC,
; ------------- Hw(_l,Xf
diagram 1: !输出图表1 8~~*/oCoJt
pr;z>|FgA>
"Powers vs.Position" !图表名称 T=NF5kj-=
2%|0c\y|z=
x: 0, L_f !命令x: 定义x坐标范围 HVq02 Z
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 !b=jD;<
y: 0, 15 !命令y: 定义y坐标范围 g ss 3e&
y2: 0, 100 !命令y2: 定义第二个y坐标范围 3[RP:W@%
frame !frame改变坐标系的设置 uVQH,NA,
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) t,f)!D$
hx !平行于x方向网格 323zR*\m
hy !平行于y方向网格 uaX#nn?ws
"IjCuR;#
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 ;aY.CgX
color = red, !图形颜色 )37 .H^7
width = 3, !width线条宽度 pKnM= N1f
"pump" !相应的文本字符串标签 G[pDKELL
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 r&MHww1i
color = blue, ?3#W7sF
width = 3, Y%i=u:}fm
"fw signal" vq.~8c1
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 ? 0}M'L
color = blue, 4dB6cg
style = fdashed, xYg G
width = 3, l$1z%|I
"bw signal" (D?%(f
"\n,vNk
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 n )n>|w_
yscale = 2, !第二个y轴的缩放比例 ek^=Z`
color = magenta, ;j#(%U]Vp
width = 3, o`]o(OP
style = fdashed, BJ
c'4>
"n2 (%, right scale)" w6-A-M6hD
e13{G@
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 &?#,rEw<x
yscale = 2, wa#$9p~Q
color = red, o9j*Yz
width = 3, 2i~ tzo
style = fdashed, /YyimG7
"n3 (%, right scale)" hJkSk;^
R.Plfm06Ue
Nx%]dOa
; ------------- &V.\Svm8]
diagram 2: !输出图表2 FR7DuH/f)
`.Oj^H6
"Variation ofthe Pump Power" $s*nh>@7
)*b
dG'}
x: 0, 10 eplz5%<
"pump inputpower (W)", @x :|Ckr-k"1e
y: 0, 10 (O$PJLI
y2: 0, 100 P
,%IZ.
frame @y|ZXPC#
hx ]\qbe
hy g}cb>'=={
legpos 150, 150 JTw< 4]
0`LR!X
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 8RA]h?$$J
step = 5, vxey$Ir
color = blue, MHuQGc"e+4
width = 3, a5)<roWQ
"signal output power (W, leftscale)", !相应的文本字符串标签 #|ppW fZQ
finish set_P_in(pump, P_pump_in) 4*)a3jI?
#:~MtV
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 :RxWHh3O
yscale = 2, jHU5>Gt-}
step = 5, E8Rk
b}
color = magenta, w$D&LA}(M
width = 3, g`2DJi&)
"population of level 2 (%, rightscale)", ^`HP&V
finish set_P_in(pump, P_pump_in) mMz^I7$
cl`!A2F1G#
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 BA5b;+o-
yscale = 2, 6t,_Xqg*
step = 5, xT]|78h$
color = red, *VbB'u:
width = 3, +1te 8P*
"population of level 3 (%, rightscale)", 2 SJN;A~}
finish set_P_in(pump, P_pump_in) fcim4dfP
R#n!1~ (
I}Fv4wlZG
; ------------- rryC^Vma
diagram 3: !输出图表3 T[?toqkD>z
VV$$t;R/
"Variation ofthe Fiber Length" S4salpz
B@8M2Pl
x: 0.1, 5 h@^d
Vg
"fiber length(m)", @x 1+{V^)V?
y: 0, 10 o>#ue<Bc6
"opticalpowers (W)", @y mh4<.6>5
frame [myIcLp^aP
hx ]1^F
hy &ody[k?'
q2pq~LI
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 k|r+/gIV
step = 20, A#&,S4Wi|
color = blue, S260h,(,
width = 3, 5Nt40)E}sN
"signal output" 68!W~%?pR
0-=PP@W
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 iB1+4wa
step = 20, color = red, width = 3,"residual pump" ?}n\&|+
5LkpfmR
! set_L(L_f) {restore the original fiber length } .#4;em%7
odm!}stus
R9!GDKts%
; ------------- L]syDn
diagram 4: !输出图表4 /'ukeK+'
5, j&-{0W
"TransverseProfiles" Yu`KHvur
8iIz!l%O
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) -J`VXG:M
|)4aIa
x: 0, 1.4 * r_co /um Gy3t
"radialposition (µm)", @x #guq/g$
y: 0, 1.2 * I_max *cm^2 Q!T+Jc9N
"intensity (W/ cm²)", @y WlF}R\N!
y2: 0, 1.3 * N_Tm |E(`9
frame JDI1l_Ga
hx *%(BE*C}
hy \nKpJ9!
hE9UWa.Q>
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 JtB]EvpL}
yscale = 2, `
&E-
color = gray, 8Q*477=I
width = 3, $ lC*q
maxconnect = 1, Jq1^}1P
"N_dop (right scale)" x3QQ`w-
&y~~Z [.F,
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 mT3'kUZ}]
color = red, "lT>V)NB'
maxconnect = 1, !限制图形区域高度,修正为100%的高度 Ibbpy++d[
width = 3, jW!x!8=
"pump" !L({i')
|#Q4e51H
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 R|,F C'
color = blue, Z'V"nhL
maxconnect = 1, ,5 ylrE
width = 3, jW<aAd
"signal" q'
Di^7@}kQS
0\X'a}8Bu
; ------------- ,xzSFs>2
diagram 5: !输出图表5 -:P`Rln
L*'3f~@Q
"TransitionCross-sections" -:jC.}
Y
<:YD.zAh|
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) JKMcdD?'
{T=rsPp<@
x: 1450, 2050 x$WdW+glZ-
"wavelength(nm)", @x B|zVq=l~
y: 0, 0.6 yClbM5,
"cross-sections(1e-24 m²)", @y NA<6s]Cs.
frame jwW6m@+
hx *qN(_
hy @XSxoUF\
l}aJRG6U
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 HEMq4v4
color = red, %
QKlvmI"
width = 3, efnj5|JSV
"absorption" I~f8+DE)
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 n@e[5f9?x
color = blue, .o_?n.H'&
width = 3, q*36/I
"emission" Fu/{*4
M%#H>X\/