(* %rwvY`\
Demo for program"RP Fiber Power": thulium-doped fiber laser, 2 bc&sU)X
pumped at 790 nm. Across-relaxation process allows for efficient N>mW64_H)
population of theupper laser level. JT+c7W7
*) !(* *)注释语句 qng ~,m
HuhQ|~C+~
diagram shown: 1,2,3,4,5 !指定输出图表 v~$V
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 1%Xh[
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 jn(x-fj6R
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 vsGKCrLwh
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 7|,L{~
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 xyL"U*
(7 I|lf
e
include"Units.inc" !读取“Units.inc”文件中内容 `TBXJ(Y
yw1&I^7
include"Tm-silicate.inc" !读取光谱数据 U1\7Hcs$
yRXML\Ge
; Basic fiberparameters: !定义基本光纤参数 o'2eSm0H
L_f := 4 { fiberlength } !光纤长度 $n<a`PdH
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 BT7{]2?&V
r_co := 6 um { coreradius } !纤芯半径 ]#:WL)@
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 g'.OzD
PTe L3L
; Parameters of thechannels: !定义光信道 n!)$e;l
l_p := 790 nm {pump wavelength } !泵浦光波长790nm 7;jD>wp9D
dir_p := forward {pump direction (forward or backward) } !前向泵浦 ,i:?c
P_pump_in := 5 {input pump power } !输入泵浦功率5W q/O2E<=w*c
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um ;;0'BdsL`
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 pz%s_g'
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 ;(C<gt,r}
*,\v|]fc
l_s := 1940 nm {signal wavelength } !信号光波长1940nm X^\D"fmE.
w_s := 7 um !信号光的半径 'ZbWr*bo
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 ?I+L
loss_s := 0 !信号光寄生损耗为0 bRAD_
gAAC>{Wh
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 }g bLWx'iG
v,w af`)J
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行
"*d6E}wG
calc <KMCNCU\+
begin T$;S
global allow all; !声明全局变量 8(1*,CJQg
set_fiber(L_f, No_z_steps, ''); !光纤参数 ACRuDY
add_ring(r_co, N_Tm); n`,
<g
def_ionsystem(); !光谱数据函数 {4J.
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 mnm
ZO}
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 ,Lig6Z`
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 /VYT](
set_R(signal_fw, 1, R_oc); !设置反射率函数 g p:0 Y
finish_fiber(); sq|\!T
end; 'f( CN3.!
q5;dQ8Y?
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 J"aw 1
show "Outputpowers:" !输出字符串Output powers: w;'XqpP$*|
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) )re<NE&M
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) s"jvO>[
,,Qg"C
g89@>?Mn
; ------------- 3](hMk,}
diagram 1: !输出图表1 Rqe.=+Qs
Q yqOtRk
"Powers vs.Position" !图表名称 {4g';
8~Kq"wrbu
x: 0, L_f !命令x: 定义x坐标范围 ;,77|]<XE
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 _dKMBcl)E
y: 0, 15 !命令y: 定义y坐标范围 AjK5x@\
y2: 0, 100 !命令y2: 定义第二个y坐标范围 \F|)w|v
frame !frame改变坐标系的设置 |=0vgwd"S
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) Skr(C5T
hx !平行于x方向网格
p9"dm{
hy !平行于y方向网格 IxbQ6
I=!kPuw
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 u}du@Aq
color = red, !图形颜色 4R'CLN
|t
width = 3, !width线条宽度 u@Hz7Q}
P
"pump" !相应的文本字符串标签 7O55mc>cF
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 #Z1%XCt
color = blue, d6n_Hpxw^
width = 3, yrxX[Hg?@
"fw signal" =Kj{wA
O
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 gX"-3w
color = blue, )+N{D=YM
style = fdashed, ~Dt$}l-9
width = 3, i^DMnvV.
"bw signal" }u8(7
,5W7a
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 6{6hz8
yscale = 2, !第二个y轴的缩放比例 #B\s'j[A"
color = magenta, C3'xU` =7
width = 3, L\#YFf
style = fdashed, q/@2=$]hH3
"n2 (%, right scale)" |enLv12Gm
Jl_W6gY"Z
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 bMKX9`*o
yscale = 2, f2e;N[D
color = red, d5^^h<'
width = 3, :i&]J$^;
style = fdashed, ^6 wWv&G[8
"n3 (%, right scale)" |y^=(|eM
[xiqlb,8
e@P(+.Ke
; ------------- +,,(8=5g
diagram 2: !输出图表2 @ki|#ro
35l%iaj]G5
"Variation ofthe Pump Power" Krae^z9R
-=5~h
x: 0, 10 O50_qu33ju
"pump inputpower (W)", @x }||u{[
y: 0, 10 LK DfV
y2: 0, 100 X):7#x@uy
frame >ZJ]yhbhK
hx Hs)Cf)8u
hy Nvd(?+c
legpos 150, 150 w=#'8ZuU
'LMj.#A<g
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 /0}Z>iK
step = 5, O14QlIk
color = blue, r#OPW7mhE
width = 3, V8/4:Va7s
"signal output power (W, leftscale)", !相应的文本字符串标签 M{ncWq*_j
finish set_P_in(pump, P_pump_in) =803rNe
x*H#?.E
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 G4'Ia$
yscale = 2, |Y
K,&
step = 5, ~vz%I^xW
color = magenta, Z3JUYEAS
width = 3, Q0(6n8i
"population of level 2 (%, rightscale)", t+a.,$U
finish set_P_in(pump, P_pump_in) M z&/.A
6FzB-],
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 [2-n*a(q
yscale = 2, -)(5^OQ
step = 5, q;,lv3I
color = red, G%sq;XT61
width = 3, \2kLj2!
"population of level 3 (%, rightscale)", !'H$08Ql}
finish set_P_in(pump, P_pump_in) AJ%E.+@=r
IW~wO
Jw _>I
; ------------- a
U\|ZCH\]
diagram 3: !输出图表3 S46aUkW.
dGp7EB`
"Variation ofthe Fiber Length" >eA@s}_8
b$klm6nMvm
x: 0.1, 5 %)7t2D
"fiber length(m)", @x Aax;0qGbH
y: 0, 10 kBZ1)?
"opticalpowers (W)", @y bY#BK_8 :
frame ~5+RK16
hx
U${W3Ra
hy y.A3hV%6b
7
0?iZIK _
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 ;p+'?%Y}
step = 20, &B&8$X
color = blue, #DgHF*GG+>
width = 3, *|S6iSn9R!
"signal output" vS\ 2zwb}
Nbr$G=U
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 $~1vXe
step = 20, color = red, width = 3,"residual pump" VaD+:b4
,40OCd!
! set_L(L_f) {restore the original fiber length } 0o+Yjg>\~8
ai-s9r'MI?
_e@8E6#ce
; ------------- YTyrX
diagram 4: !输出图表4 srf}+>u&
t}eyfflZ
"TransverseProfiles" l\W|a'i
ol"|?*3q
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) G{!er:Vwdh
]P3m=/w
x: 0, 1.4 * r_co /um Mm$\j*f/
"radialposition (µm)", @x {]+t<
y: 0, 1.2 * I_max *cm^2 v\,N"X(,
"intensity (W/ cm²)", @y 1_TuA(
y2: 0, 1.3 * N_Tm >>J3"XHX
frame wNHn.
hx tQ{/9bN?P
hy 1x|3|snz)
]zlA<w8
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 \Sd8PGl*'
yscale = 2, nq{/fD(2
color = gray, L"&T3i
width = 3, 0:v!'
maxconnect = 1, Oin9lg-jR
"N_dop (right scale)" r""rJzFz'
F_*']:p
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 [@Ac#
color = red, nW)+-Wxq
maxconnect = 1, !限制图形区域高度,修正为100%的高度 uHI(-!O
width = 3, G[mqLI{q
"pump" 2Xl+}M.:Y
$Er=i }`
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 =#u4^%i)
color = blue, !ekByD
maxconnect = 1, [8Pt$5]^
width = 3, kxhsDD$@p
"signal" ARu_S
B
NVb}uH*i
R@K\
; ------------- 6nk}k]Ji
diagram 5: !输出图表5 eJo" Z
,4H? + |!
"TransitionCross-sections" ,LA'^I?
(C.
$w
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) y5sH7`2+5
.~o{i_JH
x: 1450, 2050 FFqK tj's
"wavelength(nm)", @x v8-My1toV
y: 0, 0.6 =v<w29P(g
"cross-sections(1e-24 m²)", @y st)is4
frame ;JkIZ8!
hx */e$S[5
hy 1)=
H2n4)
"IU}>y>J
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 f![] :L
color = red, X)!XR/?
width = 3, ]00 so`
"absorption" #1%@R<`
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 J,Ki2'=
color = blue, -4x! #|]
width = 3, MZ"V\6T]
"emission" !kSemDC
aA4RC0'