切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2567阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2176
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* x A@|I#  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, Z1 E` I89<  
    pumped at 790 nm. Across-relaxation process allows for efficient M p}!+K  
    population of theupper laser level. H!Fr("6}  
    *)            !(*  *)注释语句 EY=\C$3J:  
    sqgD?:@J  
    diagram shown: 1,2,3,4,5  !指定输出图表 9CgXc5  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 =P@M&Yy'  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 yL^M~lws  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 o;HdW  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 7R% PVgS4x  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 f]O5V$!RuE  
    +-xSuR,  
    include"Units.inc"         !读取“Units.inc”文件中内容 :Q0?ub]  
    ZdJVs/33Vn  
    include"Tm-silicate.inc"    !读取光谱数据 )m$1al  
    *rujdQf  
    ; Basic fiberparameters:    !定义基本光纤参数 5x93+DkO\  
    L_f := 4 { fiberlength }      !光纤长度 D~[ N_  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 &z{dr ~  
    r_co := 6 um { coreradius }                !纤芯半径 8,Q. t7v  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 6z%&A]6k:  
    7M&.UzIY`  
    ; Parameters of thechannels:                !定义光信道 oRtY?6^$  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm sYW1T @  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 V{/)RZ/  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W t6! p\Y}}  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um _ d(Ks9  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 FcJ.)U  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 M4L~bK   
    59"Nn\}3gE  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm .j+2x[`l  
    w_s := 7 um                          !信号光的半径 o{ YW  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 ,& \&::R  
    loss_s := 0                            !信号光寄生损耗为0 ?[*@T2Ck  
    .$}Z:,aB  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 vh:UXE lm  
    oK(W)[u  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 @ B}c4,  
    calc &j wnM  
      begin  CU7iva  
        global allow all;                   !声明全局变量 Y`[HjS,  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 }SJLBy0  
        add_ring(r_co, N_Tm); ,i$(yx?  
        def_ionsystem();              !光谱数据函数 !pF KC)  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 =_H*fhXS  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 T{v<  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 t"!8  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 8m1 3M5r  
        finish_fiber();                                   qNuv?.7  
      end; @zq\z$  
    @zVBn~=i  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 0 6G[^  
    show "Outputpowers:"                                   !输出字符串Output powers: iu:p &h  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) ^QHMN 7r/  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) h>`'\qy  
    f@x( ,p  
    ! A ydhe  
    ; -------------  +lf@O&w  
    diagram 1:                   !输出图表1 NiJ?no  
    6r-<XNv)0  
    "Powers vs.Position"          !图表名称 MlcoOi!  
    a_#eGe>  
    x: 0, L_f                      !命令x: 定义x坐标范围 &&QDEDszp  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 Af! W K=  
    y: 0, 15                      !命令y: 定义y坐标范围 2Yg[8Tm#  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 $4ZDT]n  
    frame          !frame改变坐标系的设置   _c7  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) )u v$tnP*  
    hx             !平行于x方向网格 ,a?\i JNb  
    hy              !平行于y方向网格 (^@;`8Dy8  
    nbkky .e  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 /v5g;x_T  
      color = red,  !图形颜色 y0mg}N1  
      width = 3,   !width线条宽度 IB]VPj5  
      "pump"       !相应的文本字符串标签 . AQ3zpy5B  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 kI1{>vYD  
      color = blue,     /\Y%DpG$  
      width = 3, kod_ 1LD  
      "fw signal" JcALFKLB  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 m#}{"d&J  
      color = blue, J W yoh|  
      style = fdashed, %+OPas8C  
      width = 3, q'8@0FT0  
      "bw signal" %w|3:  
    @OL3&R  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 %?{2uMfq-f  
      yscale = 2,            !第二个y轴的缩放比例 #L*@~M^]  
      color = magenta, |(8Hk@\CT>  
      width = 3, 6s"bstc{  
      style = fdashed, }mS0{rxD4  
      "n2 (%, right scale)" B[m{2XzGH  
    4sD:J-c  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 pUEok+  
      yscale = 2, a*wJcJTpV"  
      color = red, q-)_Qco  
      width = 3, 3b/vyZF  
      style = fdashed, ;cHI3V  
      "n3 (%, right scale)" (( IBaEq  
    !{ )AV/\D  
    lL+^n~g  
    ; ------------- 0 Ln5e.&  
    diagram 2:                    !输出图表2 IF?B`TmZ  
    r#Oz0=0u  
    "Variation ofthe Pump Power" F>-@LOqHy  
    )aA9z(x  
    x: 0, 10 '!L1z45  
    "pump inputpower (W)", @x BNm va  
    y: 0, 10 o)D+qiA3U  
    y2: 0, 100 :H8L(BsI  
    frame Kxaz^$5Y$  
    hx 4 AmF^H  
    hy D\&y(=fzf  
    legpos 150, 150 X|B;>q  
    w3cK: C0  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 _!p$47  
      step = 5, m-FDCiN>  
      color = blue, 2}C>{*}yQ  
      width = 3, ->9xw  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 Qi]Z)v{^  
      finish set_P_in(pump, P_pump_in) L;t~rW!1  
    A|OC?NZY  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 X35U!1Y\  
      yscale = 2, 54DR.>O  
      step = 5, zi[M{bm  
      color = magenta, S&) >w5*]U  
      width = 3, +7OT`e %q  
      "population of level 2 (%, rightscale)", fhWD>;%F%  
      finish set_P_in(pump, P_pump_in) :%oj'm44!  
    i1 Sc/  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 G6bg ~V5Q:  
      yscale = 2, iC2nHZ*,  
      step = 5, A+E@OOw*~  
      color = red, Z6@J-<u  
      width = 3, kU>|E<c*  
      "population of level 3 (%, rightscale)", la7QN QW  
      finish set_P_in(pump, P_pump_in) Rw8m5U  
    |^{" 2l"j  
    TN_$E&69I  
    ; ------------- V *y  
    diagram 3:                         !输出图表3 r@UY$z  
    ^#nWgo7{7  
    "Variation ofthe Fiber Length" ~y^lNgujO  
    $s!meg@s  
    x: 0.1, 5 n{ WJ.Y*  
    "fiber length(m)", @x / {~h?P}  
    y: 0, 10 ]}y'3aW  
    "opticalpowers (W)", @y [ [CXMbD`*  
    frame ]arskmB]  
    hx ,X6j$YLWp  
    hy dph6aN(49  
    _\;# a  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 `I{Q,HQ7  
      step = 20,             CxQ,yd;>  
      color = blue, @23x;x  
      width = 3, 0Ch._~Q+20  
      "signal output" T^G<)IX`c  
    'PbA/MN  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 Z"T(8>c;g  
       step = 20, color = red, width = 3,"residual pump" Ls*=mh~IY  
    aC 0Jfo  
    ! set_L(L_f) {restore the original fiber length } 2MeavTr  
    U# B  
    VbR.tz  
    ; ------------- Z`t?kXDNoI  
    diagram 4:                                  !输出图表4 W RaO.3Q@.  
    Jz'+@q6h  
    "TransverseProfiles" k@U`?7X  
    _S1uJ~j;E  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) nJg2O@mRJ  
    Xy&#}S}9  
    x: 0, 1.4 * r_co /um 6<nO2GW  
    "radialposition (µm)", @x NZP,hAUK,  
    y: 0, 1.2 * I_max *cm^2 4gENV{ L  
    "intensity (W/ cm&sup2;)", @y 1X.1t^HH:  
    y2: 0, 1.3 * N_Tm gv-k}2u_  
    frame u)pBFs<dn  
    hx RVnYe='  
    hy h]P$L>  
    zt0 zKXw  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 JqZ5DjI:  
      yscale = 2, a| cD{d  
      color = gray, _AHVMsz@  
      width = 3, `_i-BdW  
      maxconnect = 1, `_`,XkpzCJ  
      "N_dop (right scale)" ;0gpS y$#  
    N/VIP0Kb  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 1[]cMyV  
      color = red, rOT8!"  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 =T]OYk  
      width = 3, < .!3yy  
      "pump" 0f1#T gX  
    %-CC_R|0$  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 1 Y& d%AA  
      color = blue, hg @Jpg  
      maxconnect = 1, jU$PO\UTk  
      width = 3, P+UK@~D+G  
      "signal" Tp13V.|  
    sTz*tSwQv  
    u'p J 9>sC  
    ; ------------- 1-#tx*>AY  
    diagram 5:                                  !输出图表5  HV(Kz  
    T\>=o]  
    "TransitionCross-sections" }o4Cd$,8  
    gP@ni$n  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) kZNZ?A<D  
    =Wa\yBj_;m  
    x: 1450, 2050 L?fv5 S3  
    "wavelength(nm)", @x s-B\8&^C  
    y: 0, 0.6 Xk$lQMwZ  
    "cross-sections(1e-24 m&sup2;)", @y 9@06]EI_  
    frame G w[&P%  
    hx A-FwNo2"%  
    hy UsTPNQj  
    [6|vx},N  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 guvQISQlY  
      color = red, /v[- KjTj7  
      width = 3, \bfHGo=  
      "absorption" _f`m/l  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 :-)[B^0  
      color = blue, !MC W t  
      width = 3, q}jf&xUWzH  
      "emission" c z|IBsa*  
    "^H+A-R[  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚