切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2614阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2176
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* 0+_;6  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, 54s90  
    pumped at 790 nm. Across-relaxation process allows for efficient Mp J3*$Dr  
    population of theupper laser level. PUd/|Rc/}  
    *)            !(*  *)注释语句 rb>2l3g*  
    b!EqYT  
    diagram shown: 1,2,3,4,5  !指定输出图表 3)^ 2X  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 %3K'[2F  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 m[N&UM#  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 Y\(?&7Aax  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 K_X(j$2Xc  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 UG]5Dxk  
    z`dnS]q9  
    include"Units.inc"         !读取“Units.inc”文件中内容 B SEP*#s  
    bGj<Dojl  
    include"Tm-silicate.inc"    !读取光谱数据 JJ_KfnH  
    #g Rns  
    ; Basic fiberparameters:    !定义基本光纤参数 G1,u{d-_  
    L_f := 4 { fiberlength }      !光纤长度 ;O .;i,#Z  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 $M4C4_oPy  
    r_co := 6 um { coreradius }                !纤芯半径 xaIe7.Z"xo  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 (b.Mtd  
    DxP65wU  
    ; Parameters of thechannels:                !定义光信道 7:C2xC  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm #vcQ =%;O  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 HN&]`cr;  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W cyI:dvg  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um DeN$YE#*  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 1!ijRr  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 <ou=f'  
    aQ1n1OBr  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm ~Z97L  
    w_s := 7 um                          !信号光的半径 r?Pk}Q  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 #W L>ha v  
    loss_s := 0                            !信号光寄生损耗为0 KZ/2W9r_,  
    |e&hm ~R1  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 8{Wh4~|+  
    M[=sQnnSFW  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 <QK2Wc_}-"  
    calc # 9ZO1\  
      begin n{%[G2.A  
        global allow all;                   !声明全局变量 pH?"@  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 S'q4va"  
        add_ring(r_co, N_Tm); xC$CRzAe5p  
        def_ionsystem();              !光谱数据函数 ZV:0:k.x  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 N..@}}  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 1ZfhDtK(  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 Z&y9m@  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 \XG\  
        finish_fiber();                                   TUR2|J@n  
      end; _ 3jY,*  
    Ni61o?]Nj  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 MSS0Sx<f  
    show "Outputpowers:"                                   !输出字符串Output powers: a#P{[  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) y/Q,[Uzk\  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) OQsF$% *   
    AkV8}>G?#A  
    KrD?Z2x  
    ; ------------- 4ko(bW#jL  
    diagram 1:                   !输出图表1 <o_(,,P%  
    f.u+({"ql  
    "Powers vs.Position"          !图表名称 ^WIGd"^  
    k*= #XbX  
    x: 0, L_f                      !命令x: 定义x坐标范围 ?{-y? %y  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 _WHGd&u  
    y: 0, 15                      !命令y: 定义y坐标范围 G9a6 $K)b  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 }JBLzk5|  
    frame          !frame改变坐标系的设置 d} ]jw4  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) t>(}LV.  
    hx             !平行于x方向网格 #ZpR.$`k  
    hy              !平行于y方向网格 sJ)Pj?"\?  
    [e`6gGO  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 BjCg!6`XF  
      color = red,  !图形颜色 Z"'tJ3Y.~  
      width = 3,   !width线条宽度 ioS(;2F  
      "pump"       !相应的文本字符串标签 ;_= +h,n  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 8Ir = @  
      color = blue,     +`~6Weay  
      width = 3, #R3|nL  
      "fw signal" AtW<e;!0te  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 SpX6PwM  
      color = blue, ygfUy  
      style = fdashed, $/;;}|hqi  
      width = 3, "~/O>.p  
      "bw signal" 5j$ a3nH  
    4z>SI\Ss  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 ^N:bT;;$nZ  
      yscale = 2,            !第二个y轴的缩放比例 ]B r 6!U4~  
      color = magenta, `%S#XJU  
      width = 3, =-|,v*  
      style = fdashed, V'&`JZK6  
      "n2 (%, right scale)" xnD"LK  
    z;ko )  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 '?MT " G  
      yscale = 2, Ow4H7 sl  
      color = red, %/Y;  
      width = 3, OtFGo 8  
      style = fdashed, Z</.Ss 4  
      "n3 (%, right scale)" &F#K=R| .j  
    $ z 5  
    ct![eWsuB  
    ; ------------- wxSJ  
    diagram 2:                    !输出图表2 EgT?Hvx:  
    ,c9K]>8m`  
    "Variation ofthe Pump Power" ?."YP[;  
    +1=]93gP  
    x: 0, 10 }MXC0Z~si  
    "pump inputpower (W)", @x \RDS~u\d  
    y: 0, 10 FA3YiX(-e  
    y2: 0, 100 E|v9khN(].  
    frame 8Xjp5  
    hx Yb;$z'  
    hy c}r"O8M  
    legpos 150, 150 #cy;((zuB  
    Th>ff)~ e  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 tzV^.QWm  
      step = 5, \olYv!f  
      color = blue, S{#L7S  
      width = 3, ;fGh]i  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 A{Dy3tm=  
      finish set_P_in(pump, P_pump_in) Js}1_K  
    {IA3`y~  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 ap|$8 G  
      yscale = 2, H^r;,Q$9  
      step = 5, |Pj]sh[^Y  
      color = magenta, <Po$|$_~  
      width = 3, >JckN4 v  
      "population of level 2 (%, rightscale)", rK} =<R  
      finish set_P_in(pump, P_pump_in) JsD|igqF-  
    xfK@tLEZ-1  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 LZH~VkK@m}  
      yscale = 2, 2U.'5uA"L  
      step = 5, @Tz}y"VG  
      color = red, <<l1 zEf@  
      width = 3, zSo(+D &[  
      "population of level 3 (%, rightscale)", "cDMFu  
      finish set_P_in(pump, P_pump_in) &f($= 68  
    +nU=)x?38  
    hYB3tT  
    ; ------------- S-%itrB*  
    diagram 3:                         !输出图表3 wlsq[x P  
    <kOdd)X  
    "Variation ofthe Fiber Length" 8$`$24Wx  
    n5>OZ3 E@  
    x: 0.1, 5 6%L#FSI  
    "fiber length(m)", @x [D_s`'tg  
    y: 0, 10 DrA\-G_7  
    "opticalpowers (W)", @y BHNEP |=  
    frame ^aR^M\38  
    hx  BDfJ  
    hy ,4--3 MU  
    eY\w ?pT2  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 ]@{l<ExP  
      step = 20,             zw[ #B #  
      color = blue, =M9;`EmC  
      width = 3, R1vuf*A5,  
      "signal output" Q4ZKgcC  
    h,|. qfUk  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 )}lO%B'K  
       step = 20, color = red, width = 3,"residual pump" d}Xb8SaE%c  
    G3dA`3  
    ! set_L(L_f) {restore the original fiber length } D=@bPB>  
     OEnCN  
    *BHp?cn;F2  
    ; ------------- R4vf  
    diagram 4:                                  !输出图表4 t Z@OAPRx  
    {5 Sy=Y  
    "TransverseProfiles" ~@mNR^W-W  
    9";qR,  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) N"8'=wB  
    _E2W%N  
    x: 0, 1.4 * r_co /um # 1 1<=3Yj  
    "radialposition (µm)", @x ek1<9" y  
    y: 0, 1.2 * I_max *cm^2 `Z^\<{z  
    "intensity (W/ cm&sup2;)", @y @%BsQm  
    y2: 0, 1.3 * N_Tm sA2esA@C<o  
    frame ~s*kuj'%+  
    hx ZRj/lQ2D  
    hy B$ jX%e{:S  
    MO%+rf0~w  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 9AJ"C7  
      yscale = 2, ),J6:O&  
      color = gray, _ %G;^ b  
      width = 3, !v. <H]s)  
      maxconnect = 1, 6TDa#k5v  
      "N_dop (right scale)" pi5DDK  
    I%l2_hs0V  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 bbT1p :RF  
      color = red, L~Y^O`c  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 (_]D\g~  
      width = 3, @MP;/o+  
      "pump" gg/2R?O]  
    q $PO. #  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 Q^*4FH!W  
      color = blue, u#UtPF7q  
      maxconnect = 1, &H[7UyC  
      width = 3, KW!+Ws  
      "signal" fp}5QUm-  
    P*n/qj8h  
    hP}-yW6]  
    ; ------------- YC(X= D  
    diagram 5:                                  !输出图表5 $[ oRbH8g  
    2!R+5^Iy  
    "TransitionCross-sections" p'A43  
    D$+g5u)  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) 3L36 2  
    iJ`zWpj+{Q  
    x: 1450, 2050 $,B;\PX  
    "wavelength(nm)", @x 0g9y4z{H  
    y: 0, 0.6 f@2F!  
    "cross-sections(1e-24 m&sup2;)", @y "7eL&  
    frame Ehxu`>@N  
    hx %aV~RB#  
    hy izzX$O[=:  
    Y]7 6y>|e  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 j2%fAs<  
      color = red, ^B1$|C D,  
      width = 3, `O5427Im  
      "absorption" c dWg_WBC  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 KciN"g|X  
      color = blue, djqw5kO:R  
      width = 3, N<b~,[yCd>  
      "emission" [=",R&uD$  
    ZQ>Q=eCs 1  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚