(* fk{0d
Demo for program"RP Fiber Power": thulium-doped fiber laser, Apfnx7Fv
pumped at 790 nm. Across-relaxation process allows for efficient 7x k|+!
population of theupper laser level. <Ef[c@3
*) !(* *)注释语句 #g9ZX16}
<]d
LX}C)
diagram shown: 1,2,3,4,5 !指定输出图表 :]II-$/8
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 C5X(U:
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 c$h9/H=~
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 3)N\'xFh@
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 -d=WV:G%e
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 a9Y5
y7lWeBnC
include"Units.inc" !读取“Units.inc”文件中内容 tef^ShF]
z&}-8JykH
include"Tm-silicate.inc" !读取光谱数据 ^%<pJMgdF
{C3Y7<
; Basic fiberparameters: !定义基本光纤参数 T@YGB]*Y
L_f := 4 { fiberlength } !光纤长度 C+N k"l9
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 {hdPhL
r_co := 6 um { coreradius } !纤芯半径 +%0z`E\?M#
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 ]?LB?:6
r'4:)~]s
; Parameters of thechannels: !定义光信道 8e2?tmWM
l_p := 790 nm {pump wavelength } !泵浦光波长790nm A :e;k{J
dir_p := forward {pump direction (forward or backward) } !前向泵浦 j*R,m1e8
P_pump_in := 5 {input pump power } !输入泵浦功率5W A9:NKY{z
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um D E/:['
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 CIC[1,
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 I;MD>%[W,
.~D>5 JnEk
l_s := 1940 nm {signal wavelength } !信号光波长1940nm s0"e'
w_s := 7 um !信号光的半径 ,kM)7!]N
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 osP\DiQ
loss_s := 0 !信号光寄生损耗为0 sen=0SB/
3$/ 4wH^
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 7hw .B'7
dcfe_EuT
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 LIpEQ7;
calc
%D=]ZV](
begin ,xsH|xW
global allow all; !声明全局变量 pdVQ*=c?M
set_fiber(L_f, No_z_steps, ''); !光纤参数 b[ w;i]2
add_ring(r_co, N_Tm); Ey`h1Y
def_ionsystem(); !光谱数据函数 E-2eOT
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 8|g<X1H{M
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 1DJekiWf
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 AC- )BM';
set_R(signal_fw, 1, R_oc); !设置反射率函数 LHYLC>J
finish_fiber(); c-4STPNQi
end; 4=<*Vd`p
3iNkoBCg
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 Xyx"A(v^l
show "Outputpowers:" !输出字符串Output powers: kU l
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) N_gD>6I
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) | A)\
:
^TdZ*($5
e":G*2a
; ------------- k!L@GQ
diagram 1: !输出图表1 *%FA:Y
gE7L L=x
"Powers vs.Position" !图表名称 5<YzalNf
nms8@[4-
x: 0, L_f !命令x: 定义x坐标范围 t*S."
q
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 M[]A2'fS
y: 0, 15 !命令y: 定义y坐标范围 ['qnn|
y2: 0, 100 !命令y2: 定义第二个y坐标范围 :l u5Uu~
frame !frame改变坐标系的设置 TLa]O1=Bf.
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) evuZY X@
hx !平行于x方向网格 @mQ:7-,~
hy !平行于y方向网格 _GYMPq\%L#
_=XX~^I,
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 3R$Z[D-
color = red, !图形颜色 %
ZU/x
d
width = 3, !width线条宽度 b7:0#l$
"pump" !相应的文本字符串标签 5]Ajf;W\
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 $&I'o
color = blue, }Fb!?['G5
width = 3, dFXc/VH')
"fw signal" Q;/a F`
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 9WG{p[
color = blue, (8a#\Y[b
style = fdashed, {p<Zbm.
width = 3, [1G^/K"
"bw signal" K95;rd
^%T7. 1'x
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 vb{i
yscale = 2, !第二个y轴的缩放比例 \%jVg\4'
color = magenta, i'/m4 !>h
width = 3, Rd*[%)
style = fdashed, @ EuFJ=h
"n2 (%, right scale)" cQNs L
k=ytuV\
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 S_(d9GK<
yscale = 2, a}yXC<}$
color = red, QCOo
width = 3, |,C#:"z;
style = fdashed, .x83Ah`
"n3 (%, right scale)" 256LH Y|6
"\%On >
>p\e0n
; ------------- iI1n2>V3y
diagram 2: !输出图表2 sy* y\5yJ
Y-!YhWsS
"Variation ofthe Pump Power" $D1w5o-
}GwVKAjP
x: 0, 10 knp>m,w
"pump inputpower (W)", @x A;XOT6jv?
y: 0, 10 p
zw8 T
y2: 0, 100 Nh?|RE0t
frame DbI!l`Vn4
hx fK}h"iH+K
hy ;F:fM!l=
legpos 150, 150 hS [SRa'.
XKOUQc4!R
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 n
1b(\PA
step = 5, IXLO>>`
color = blue, @exey
width = 3, ed 59B)?l
"signal output power (W, leftscale)", !相应的文本字符串标签 zk_Eb?mhwV
finish set_P_in(pump, P_pump_in) K+\nC)oG
x+5k
<Xi}
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 +\
_{x/u1
yscale = 2, {Bvj"mL]j
step = 5, }Rvm &?~O
color = magenta, H;ZHqcUX
width = 3, /hW d/H]
"population of level 2 (%, rightscale)", <E|s\u
finish set_P_in(pump, P_pump_in) >zvY\{WY
+]xFoH
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 0Wvq>R.(]7
yscale = 2, Ue:z1p;g
step = 5, >T3H qYX5W
color = red, l*aj#%ha
width = 3, Z [Xa%~5>5
"population of level 3 (%, rightscale)", FVsj;
finish set_P_in(pump, P_pump_in) <~emx'F|
UM%o\BiO
FwAKP>6 *
; ------------- \kIMDg3}
diagram 3: !输出图表3 Et2JxbD
w?vVVA
"Variation ofthe Fiber Length" ^ZeJ[t&!#
9v)%dO.
x: 0.1, 5 0BPMmk
"fiber length(m)", @x 7v}x?I
y: 0, 10 \{\MxXW
"opticalpowers (W)", @y !eR3@%4
frame m4w')r~
hx &a)eJF]:!
hy []W;t\h
7k%T<;V
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 [U
=Uo*
step = 20, 'XOX@UH d
color = blue, M(q'%XL^
width = 3, ^n.WZUk
"signal output" \uOdALZ
Tpp &
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 G* b2,9&F
step = 20, color = red, width = 3,"residual pump" A~(l{g
u`:hMFTID
! set_L(L_f) {restore the original fiber length } =1;=
SjEAuRDvUz
H4-qB Z'
; ------------- ^nK7i[yF.k
diagram 4: !输出图表4 :6kj EI
4\5uY
"TransverseProfiles" eLD?jTi'
.ae O}^
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) (n{wg(R
*!e(A ]&
x: 0, 1.4 * r_co /um `\|ssC8u
"radialposition (µm)", @x `D5HC
y: 0, 1.2 * I_max *cm^2 i7[uLdQ
"intensity (W/ cm²)", @y ]<uQ.~
y2: 0, 1.3 * N_Tm AN:@fZ
frame )QiQn=Ce
hx K!AAGj`
hy JOnyrks
lG<hlYckv
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 YA(@5CZ
yscale = 2, #<7O08:
color = gray, #!J(4tXny
width = 3, 'rP]Nw
maxconnect = 1, |dE
-^"_
"N_dop (right scale)" {Z;t ^:s#
#1-xw~_
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 5x2Ay=s
color = red, ?wpB`
maxconnect = 1, !限制图形区域高度,修正为100%的高度 &:*q_$]Oz
width = 3, 3 *S{;p
"pump" _1Z=q.sC
]LPQYL
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 v0*N)eqDGd
color = blue, O!1TthI
maxconnect = 1, v`q\6i[-
width = 3, RH;:9_*F
"signal" 0pe3L
0Sl]!PZR1
1[nG}
; ------------- }}{!u0N},V
diagram 5: !输出图表5 M<?Q4a'Q
cvsz%:Vs
"TransitionCross-sections" }S_oH9A
cX!Pz.C
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) >:sUL<p
qUF'{K
x: 1450, 2050 SJ'
%
^
"wavelength(nm)", @x 5__+_hO
;3
y: 0, 0.6 em@EDMvI
"cross-sections(1e-24 m²)", @y Jhkvd<L8`m
frame Vsq8H}K
hx }w-wSkl1
hy G)=HB7u[a
(AY9oei>
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 fg%&N2/(.B
color = red, p 5u_1U0
width = 3, kQdt}o])
"absorption" V)o,1
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 6&v?)o
color = blue, 0O!cN_l|
width = 3, yTM{|D]$(
"emission" FXKF\1`(H
~o3Hdd_#}N