(* jdD`C`w|,
Demo for program"RP Fiber Power": thulium-doped fiber laser, *pGbcBQ
pumped at 790 nm. Across-relaxation process allows for efficient j+3=&PkA.]
population of theupper laser level. a3_pF~Qx
*) !(* *)注释语句 qUNXT
`$VnB
diagram shown: 1,2,3,4,5 !指定输出图表 s.!gsCQme
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 M`G#cEc
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 wo ) lkovd
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 `9VRT`e
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 SM`n:{N(
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 z0tm3ovp
Y#Pg*C8>8
include"Units.inc" !读取“Units.inc”文件中内容 sTYA
*i7|~q/u
include"Tm-silicate.inc" !读取光谱数据 2MKB(;k
u+]8Sq
; Basic fiberparameters: !定义基本光纤参数 )G|'PXI@,
L_f := 4 { fiberlength } !光纤长度 -sk!XWW+
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 Czd)AVK
r_co := 6 um { coreradius } !纤芯半径 hzy#%FaB
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 ;[j)g,7{
O ;B[ZMV
; Parameters of thechannels: !定义光信道 &o)eRcwH`
l_p := 790 nm {pump wavelength } !泵浦光波长790nm E"Y[k8-:2/
dir_p := forward {pump direction (forward or backward) } !前向泵浦 09HqiROw
P_pump_in := 5 {input pump power } !输入泵浦功率5W ~$ "P\iJ
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um bX&=*L+h6
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 1:q5h*
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 7brC@+ZD
,S=ur%
l_s := 1940 nm {signal wavelength } !信号光波长1940nm p!~V@l
w_s := 7 um !信号光的半径 nTPq|=C
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 ]KRw[}z
loss_s := 0 !信号光寄生损耗为0 Sa$-Yf
Fpy-?U
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 ;[[oZ
agPTY{;
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 N/N~>7f
calc 4#wZ#}
begin zM|Y
X<
global allow all; !声明全局变量 ,9~2#[|lq
set_fiber(L_f, No_z_steps, ''); !光纤参数 +T]D\];D
add_ring(r_co, N_Tm); rIWQD%Afm
def_ionsystem(); !光谱数据函数 =$Sd2UD
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 R"qxT.P(
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 /gq
VXDY+`
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 J0x)NnWJ
set_R(signal_fw, 1, R_oc); !设置反射率函数 ]*vv=@"`e
finish_fiber(); VPXUy=W
end;
i}r|Zo
8{4jlL;"`?
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 aO$I|!tl
show "Outputpowers:" !输出字符串Output powers: ps3jw*QZ{5
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) PFPZ]XI%F
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) h_K!ch}
z[0B"f
4jdP3Q/
; ------------- ,ftKRq
diagram 1: !输出图表1 5?1:RE(1
tsN,yI]-VA
"Powers vs.Position" !图表名称 zP|^) h5
<K zEn+
x: 0, L_f !命令x: 定义x坐标范围 |'N)HH>;
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 &Z6s\r%
y: 0, 15 !命令y: 定义y坐标范围 6ly`lu9
y2: 0, 100 !命令y2: 定义第二个y坐标范围 L/2,r*LNx$
frame !frame改变坐标系的设置 qv.s-@l8
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) cCbZ*
hx !平行于x方向网格 %oHK=],|1
hy !平行于y方向网格 :"I!$_E'
U/9_:
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 Q?]-/v
color = red, !图形颜色 J>p6')Y6~
width = 3, !width线条宽度 nb}rfd.
"pump" !相应的文本字符串标签 YzVhNJWpw
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 E]dmXH8A
color = blue, HGlQZwf
width = 3, `D={l29H
"fw signal" 5l4YYwd>v
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 6>&h9@
color = blue, fm1yZX?`
style = fdashed, 6g&Ev'
width = 3, + Un(VTD
"bw signal" 3
G_0DS
aGq1YOD[$
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 r6gfxW5
yscale = 2, !第二个y轴的缩放比例 /Xk-xg+U
color = magenta, ZfP$6%;_
width = 3, 6tF_u D
style = fdashed, X_aC$_b
"n2 (%, right scale)" cogIkB&Ju
kmT5g gy
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 |Q?^B a
yscale = 2, < wi9
color = red, P+bA>lJd
width = 3, "kd)dy95H
style = fdashed, &$g{i:)Z
"n3 (%, right scale)" W!t =9i
B"?ivxM:U
y,s`[=CT
; ------------- U'k 0;
diagram 2: !输出图表2 .W
s\%S
D1R$s*{
"Variation ofthe Pump Power" 2mEvoWnJ
a&RH_L jM
x: 0, 10 3t9Weo)
"pump inputpower (W)", @x y~n1S~5cI
y: 0, 10 .bY
R
y2: 0, 100 {;vLM*
'
frame gE: ?C2
hx n#^ii/H
hy ]p!)8[<
legpos 150, 150 gy>B
5ie
oju,2kpH7#
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 we8aqEomr
step = 5, l}SHR|7<
color = blue, 50""n7I<%
width = 3, &&g02>gE
"signal output power (W, leftscale)", !相应的文本字符串标签 hjD%=Ri0Z
finish set_P_in(pump, P_pump_in) uH]oHh!}j
+}R#mco5K
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 KX
J7\}
yscale = 2, F:N8{puq5
step = 5, `vZX"+BAh
color = magenta, Qk72ra)
width = 3, 8qL.L(=\/
"population of level 2 (%, rightscale)", iD*L<9
finish set_P_in(pump, P_pump_in) VwOcWKD
h:RP/0E
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 R,ZG?/#uM9
yscale = 2, BU#3fPl
step = 5, 6n^@Ps
color = red, 6EeO\Qj{
width = 3, GZ^Qt*5 {
"population of level 3 (%, rightscale)", ?N^1v&Q
finish set_P_in(pump, P_pump_in) ;5DDV6
/>6ECT
F3hG8YX
; ------------- .cm2L,1h
diagram 3: !输出图表3 9dmoB_G
_b$ yohQ
"Variation ofthe Fiber Length" t)1`^W}
%&S9~E
D
x: 0.1, 5 te4=
"fiber length(m)", @x "}V_.I*+
y: 0, 10 4*&k~0#t
"opticalpowers (W)", @y .+,U9e:%
frame PMUW<UI
hx 5owK2
hy zz
/4 ()u
inip/&P?V
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 \W]gy_=D{
step = 20, mRa\ wEg%
color = blue, zy5FO<->
width = 3, ?}uuTNLl)
"signal output" HItNd
@S=9@3m{w;
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 f,4erTBH
step = 20, color = red, width = 3,"residual pump" tv26eK
38
QFMAy>Gdn
! set_L(L_f) {restore the original fiber length } Ek1c >s,t
Nte$cTjX
/ywP
0
; ------------- N<1+aL\
diagram 4: !输出图表4 q
k6
K{{_qFj@<y
"TransverseProfiles" +:"0%(
X'-Yz7J?o
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) xJ2I@*DN
BM`6<Z "3q
x: 0, 1.4 * r_co /um N#2ldY *
"radialposition (µm)", @x 1[T7;i$
y: 0, 1.2 * I_max *cm^2 *= ?|n
"intensity (W/ cm²)", @y a{.q/Tbt
y2: 0, 1.3 * N_Tm ZXGi> E
frame f:-l}Zj
hx bMxK @$G~
hy ~`C_B]3|
SI=u-'%
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 X fqhD&g
yscale = 2, tM^4K r~o,
color = gray, !Av9?Q:
width = 3, 2 U]d1
maxconnect = 1, 6tndC
o; `
"N_dop (right scale)" L- !1ybB^
z V\+za,
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 U!`iKy-
color = red, Pal=I)
maxconnect = 1, !限制图形区域高度,修正为100%的高度 +l/v`=C
width = 3, 7oWMjw\
"pump" [d8Q AO1;)
l6&\~Z(
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 c%J6!\
color = blue, qS2Nk.e]o
maxconnect = 1, qQi\/~Y[:
width = 3, !~Uj 'w
"signal" Vh;zV Y
weSq|f
b.@a,:"
; ------------- D**GC
diagram 5: !输出图表5 b1KtSRLV
CMaph
"TransitionCross-sections" {PcJuRTHB
{^
b2nOMv
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) Ch_rV+
0{|HRiQH9+
x: 1450, 2050 E5d$n*A
"wavelength(nm)", @x wDZ<UP=X
y: 0, 0.6 WXl+w7jr
"cross-sections(1e-24 m²)", @y :q]9F4im
frame /v8Q17O?e
hx =O![>Fu5
hy |zYOCDFf
^,acU\}VqP
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 AQlB_@ b
color = red, 9)ALJd,M
width = 3, :^.wjUI
"absorption" 15\m.Ix
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 GWnIy6TH l
color = blue, b}3"v(
width = 3, Z[oEW>_A
"emission" iqQT ^
g[3LPKQ