(* P$/Y9o
Demo for program"RP Fiber Power": thulium-doped fiber laser, cm>+f ^4?n
pumped at 790 nm. Across-relaxation process allows for efficient / EVXkf0
population of theupper laser level. /XuOv(j
*) !(* *)注释语句 .
TPi{c_
]
diagram shown: 1,2,3,4,5 !指定输出图表 c#fSt}J>C
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 Ht~YSQ~:y
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 EuD$^#
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 !3*%-8bp
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 )Y=ti~?M(
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 +DSZ(Zb4qY
3e;ux6
include"Units.inc" !读取“Units.inc”文件中内容 #]wBXzu?
uHt@;$9A
include"Tm-silicate.inc" !读取光谱数据 +'9xTd
<ZoMKUuB
; Basic fiberparameters: !定义基本光纤参数 +L=a\8Ep
L_f := 4 { fiberlength } !光纤长度 `6*1mE1K&
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 R+=Xr<`%U|
r_co := 6 um { coreradius } !纤芯半径 /8>we`4
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 }pT>dbZ
XiyL563gh
; Parameters of thechannels: !定义光信道 T FK#ign
l_p := 790 nm {pump wavelength } !泵浦光波长790nm 69``j{Z+
dir_p := forward {pump direction (forward or backward) } !前向泵浦 *iVv(xXgN
P_pump_in := 5 {input pump power } !输入泵浦功率5W 0&6(y*
#Z
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um idZ]d6
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 0(|36;x
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 SiT5QJe
u< 5{H='6
l_s := 1940 nm {signal wavelength } !信号光波长1940nm E@)9'?q
w_s := 7 um !信号光的半径 /|[%~`?BM
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 'u%SI]*;>
loss_s := 0 !信号光寄生损耗为0 dYp} R>+
8wzQr2:
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 Y:5Gp8Vi
V_H0z
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 @9h6D<?
calc -+ Mh('K
begin [mG:PTK3
global allow all; !声明全局变量 /h K/t;
set_fiber(L_f, No_z_steps, ''); !光纤参数 \.MPjD
add_ring(r_co, N_Tm); esHcE{GNOS
def_ionsystem(); !光谱数据函数 m)xz_Plc
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 WeS$$:ro
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 4]ETF+
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 +C`zI~8
set_R(signal_fw, 1, R_oc); !设置反射率函数 )9V8&,
finish_fiber(); RjG=RfB'V
end; M{`uI8vD
'<hgc
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 Vg1MA
show "Outputpowers:" !输出字符串Output powers: jsIT{a*]
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) 0"xD>ue&
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) -F';1D!l%
%`^{Hh`
TM`6:5ONv
; ------------- t;)`+K#1:
diagram 1: !输出图表1 4mwA o
sFonc
"Powers vs.Position" !图表名称 Zl=IZ?F
Y-:dPc{
x: 0, L_f !命令x: 定义x坐标范围 z%[^-l-
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 FDIOST !
y: 0, 15 !命令y: 定义y坐标范围 +Uf+`
y2: 0, 100 !命令y2: 定义第二个y坐标范围 l=ZX9<3
frame !frame改变坐标系的设置 C_V5.6T!
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) H mVpxD+
hx !平行于x方向网格 fdzaM&
hy !平行于y方向网格 =sh]H$
>$N ?\\#
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 Iq:
G9M
color = red, !图形颜色 [[vb w)u
width = 3, !width线条宽度 T Ue=Yj
"pump" !相应的文本字符串标签 vS+E`[
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 s%S; 9T
color = blue, ~mu)Cw
width = 3, gjex; h
"fw signal" [5s4Jp$+
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 Nd61ns(N
color = blue, y>_*}>2 ,O
style = fdashed, {x/)S*:Z
width = 3, Id40yER
"bw signal" qgZN&7Nn:
b0lZb'
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 IRB BLXv7\
yscale = 2, !第二个y轴的缩放比例 j+QE~L
color = magenta, zT"W(3
width = 3, PvqG5-L~W
style = fdashed, &{H LYxh
"n2 (%, right scale)" dI$M9;
m<| *
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 56^#x
yscale = 2, ?cD2EX%(
color = red, cuo'V*nWQ
width = 3, ])uhm)U@
style = fdashed, I 7s}{pG
"n3 (%, right scale)" O2C&XeB:4
Vrx3%_NkQ
C9%2}E3Z$)
; ------------- qQx5n
diagram 2: !输出图表2 Z2hIoCT
|sklY0?l(
"Variation ofthe Pump Power" k1Thjt
Ob>M]udn
x: 0, 10 Iji9N!Yx
"pump inputpower (W)", @x 2C_/T8
y: 0, 10 7\sR f/
y2: 0, 100 "`8~qZ7k
frame bO\E)%zp
hx e!JC5Al7
hy :~{x'`czJ
legpos 150, 150 bf1EMai"
>pq= .)X}
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 UCF'%R
step = 5, RYem(%jq
color = blue, P{_Xg,Z
width = 3, ;E]^7T
"signal output power (W, leftscale)", !相应的文本字符串标签 [Uw/;Kyh
finish set_P_in(pump, P_pump_in) EoD[,:*
etkKVr;Kv
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 JVk"M=c
yscale = 2, dE0p>4F
step = 5, 'k(aZ"
color = magenta, !<I3^q
width = 3, `U[s d*C"
"population of level 2 (%, rightscale)", Eggdj+
finish set_P_in(pump, P_pump_in) 6e.?L
{Mx3G*hr
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 22gk1'~dO
yscale = 2, ZAcH`r*
step = 5, [$[1|r
*Q
color = red, +X &b
width = 3, "ZU CYYre
"population of level 3 (%, rightscale)", 3A>Bnb
finish set_P_in(pump, P_pump_in) 2N$yn
g<&n V>wF
GN%|'eU
; ------------- leSR2os
diagram 3: !输出图表3 vPbmQh ex
pk,]yi,ZF
"Variation ofthe Fiber Length" Q4vl
zPKx: I3
x: 0.1, 5 2IGoAt>V
"fiber length(m)", @x ohPCYt
y: 0, 10 Ug1n4X3FKn
"opticalpowers (W)", @y /degBL+
frame IxQ(g#sj_k
hx a.O pxd
hy xOAA1#
jx7b$x]
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 8vL2<VT;
step = 20, Ja@zeD)f"
color = blue, 9< $n'g
width = 3, B<p -.tv
"signal output" 1ae,s{|
y$7vJl.uS/
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 5!pof\/a
step = 20, color = red, width = 3,"residual pump" <*4BT}r,^2
r%^l~PN
! set_L(L_f) {restore the original fiber length } ra4$/@3n
dvl'Sq<
9h$08l
; ------------- yK3b^
diagram 4: !输出图表4 -~'{WSJ
" A}S92
"TransverseProfiles" 'q_^28rK
qij<XNZU"&
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) )*wM
DM5q
C=&rPUX{
x: 0, 1.4 * r_co /um 25zmde~ w
"radialposition (µm)", @x 1K`7
y: 0, 1.2 * I_max *cm^2 f0lpwwe
"intensity (W/ cm²)", @y 3?+CP-T-j
y2: 0, 1.3 * N_Tm PS=N]e7k'
frame TOe=6Z5h
hx [7btoo|P]
hy m@Vz42g~+
5@kNvi
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 <V~B8C!)
yscale = 2, @g{FNXY$ m
color = gray, |v6kZ0B<
width = 3, &I|\AG"X}
maxconnect = 1, \pVmSac,
"N_dop (right scale)" .a0]1IkatV
Fzc8) *w
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 #BZ2%\
color = red, >$RQ
maxconnect = 1, !限制图形区域高度,修正为100%的高度 S1Nwm?z
width = 3, M:9
6QM~
"pump" +'lj\_n
\@}G'7{
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 R'udC}
color = blue, -*<4 hFb
maxconnect = 1, s)L\D$;+O
width = 3, 5C|Y-G
"signal" WE*L=_zDS
6`
8H k;
s
IE2a0+
; ------------- !'jZ
!NFO
diagram 5: !输出图表5 P"%QFt,
e` QniTkT
"TransitionCross-sections" p";5J+?(
hp$/O4fD
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) WEnI[JGe
\|gE=5!Am=
x: 1450, 2050 BWWO=N
"wavelength(nm)", @x >]!8f?,
y: 0, 0.6 @BfJb[A#
"cross-sections(1e-24 m²)", @y wi gs1
frame q9h3/uTv
hx J2BCaAwEP,
hy 2YbI."ob
?^Q8#Y^M
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 V 4`
color = red, X9-WU\?UC
width = 3, bih%hqny
"absorption" J\@W+/#dF
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 4m:D8&D_M
color = blue, @CTSvTt$
width = 3, ^xt @
"emission" wwuM!Z+
Lhz*o6)