(* 'J)9#
Demo for program"RP Fiber Power": thulium-doped fiber laser, fm$Qd^E|e
pumped at 790 nm. Across-relaxation process allows for efficient ]K+8f-
population of theupper laser level. R2Lq??XA=
*) !(* *)注释语句 1d$wP$
"([lkn
diagram shown: 1,2,3,4,5 !指定输出图表 %q.5;L
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 *,)1Dcv(
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 r*ziO#[
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 G
*<g%"
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 >QPCYo<E
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 lk`|u$KPz
JEK_W<BD
include"Units.inc" !读取“Units.inc”文件中内容 #bCUI*N"P
NZlCn:"
include"Tm-silicate.inc" !读取光谱数据 V bNN1'a-
"Xl"H/3r
; Basic fiberparameters: !定义基本光纤参数 1@}<CWE9
L_f := 4 { fiberlength } !光纤长度 0X$2~jV>
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 O]?\<&y
r_co := 6 um { coreradius } !纤芯半径 b&]z^_m)
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 BqpJvRJd
+U>Y.YP
; Parameters of thechannels: !定义光信道 i>C%[dk9
l_p := 790 nm {pump wavelength } !泵浦光波长790nm We*uZ?+
dir_p := forward {pump direction (forward or backward) } !前向泵浦 fF2]7:
P_pump_in := 5 {input pump power } !输入泵浦功率5W 3lKs>HE0
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um oTr,zRL
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 `=Rxnl,<U
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 uL:NWgN
/XNC^!z6Js
l_s := 1940 nm {signal wavelength } !信号光波长1940nm ^W`RBrJay
w_s := 7 um !信号光的半径 YgtW(j[
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 4QYStDFe
loss_s := 0 !信号光寄生损耗为0 >.H}(!
bZZ_yc
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 4^9qs%&
9j}Q~v\
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 }*!_M3O
calc Pj*]%V
begin :*R+ee,&-
global allow all; !声明全局变量 a/rQ@ c>
set_fiber(L_f, No_z_steps, ''); !光纤参数 bx Wzm|
add_ring(r_co, N_Tm); F>?~4y,b7
def_ionsystem(); !光谱数据函数 xa967Ki9"
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 1c*:"
k
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 &'/bnN +R
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 ]vw%J ^7:a
set_R(signal_fw, 1, R_oc); !设置反射率函数 _bv9/# tR
finish_fiber(); %`s1
Ocvp
end; )%
gU
3ly]DTbz
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 \5a;_N[Ed
show "Outputpowers:" !输出字符串Output powers: 8|u8J0^
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) ?B`c<H"
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) H> n;[
!<F5W<V
-I z,vd
; ------------- 9)n3f^,Oj*
diagram 1: !输出图表1 9niffq)h
vq\L9$WJ
"Powers vs.Position" !图表名称 Wd7qpWItjQ
VkId6k:>6C
x: 0, L_f !命令x: 定义x坐标范围 e5w0}/yW/
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 .$+,Y4q~(
y: 0, 15 !命令y: 定义y坐标范围 DweF8c
y2: 0, 100 !命令y2: 定义第二个y坐标范围 %][zn$aa|
frame !frame改变坐标系的设置 dV^ck+
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) SPvKq=,
hx !平行于x方向网格 +xU=7chA
hy !平行于y方向网格 <2LUq@Pg
r
jnf30
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 gEmsPk,
color = red, !图形颜色 0&3zBL%Bo
width = 3, !width线条宽度 %+(fdk-k+
"pump" !相应的文本字符串标签 +JB*1dz>8
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 I]Z"?T
color = blue, }{[p<pU$C
width = 3, 3qDuF
"fw signal" dd@
D
s
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 KPZqPtb;
color = blue, qg*xdefQ%
style = fdashed, ;Wn0-`_1,
width = 3, aq9Ej]1b
"bw signal" n0uL^{B
@y|JIBBRc
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 " "CNw-^t
yscale = 2, !第二个y轴的缩放比例 >/.Ae8I)
color = magenta, R78P](1\>
width = 3, _1jeaV9@
style = fdashed, 1NAtg*`
"n2 (%, right scale)" A8ClkLC;I
l HZ4N{n
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 o%h[o9i
yscale = 2, "&\]1A}Z-x
color = red, WVx^}_FD0
width = 3, %.:]4jhk
style = fdashed, b\xse2#
"n3 (%, right scale)" NH,4>mV$!
vs*@)'n0 }
iUS?xKN$~-
; ------------- h|EHK!<"8
diagram 2: !输出图表2 yq` ,)
)2F%^<gZ#
"Variation ofthe Pump Power" 7[M@;$
v5L#H=P
x: 0, 10 P_Exh]P
"pump inputpower (W)", @x .zJZ*\2ob
y: 0, 10 Oz=!EG|N
y2: 0, 100 }5u; '>$
frame djDE0-QxcR
hx ,(kaC.Em
hy %:Zp7O2UB'
legpos 150, 150 $o*p#LU
UJ&gm_M+kL
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 fBPJ8VY
step = 5, VS+5{w:t
color = blue, M:%Ll3
width = 3, @Z@S;RWSU
"signal output power (W, leftscale)", !相应的文本字符串标签 o H]FT{
finish set_P_in(pump, P_pump_in) px^brzLQo
-M-y*P)
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 wOR#sp&
yscale = 2, z|zd=3c
step = 5, T{Yk/Z/}?
color = magenta, J 77*Ue^
width = 3, bE" J&;|
"population of level 2 (%, rightscale)", ^K!R4Y4t
finish set_P_in(pump, P_pump_in) ZIaFvm&q7Z
,fyqa
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 w)Y}hlcq
yscale = 2, V`LW~P;
step = 5, w6[$vib'
color = red, R)9FXz$).
width = 3, 4$4n9`odE
"population of level 3 (%, rightscale)", Q0TKM>
finish set_P_in(pump, P_pump_in) 62>/0_m5
L%f$ &
\3cg\Q+~
; ------------- &-ZRS/_d>
diagram 3: !输出图表3 Z
DnAzAR
TK#-;p_
"Variation ofthe Fiber Length" CfHPJ:Qo[
s;:quM
x: 0.1, 5 6X$iTJ[\x
"fiber length(m)", @x eRIdN(pP
y: 0, 10 Bzr}+J
"opticalpowers (W)", @y 3$kElq[
frame q<A,S8'm
hx rXnG"A
hy DZX4c 2J
CIf""gL9
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 \J^xpR_0u
step = 20, f8L3+u
color = blue, ^Kh>La:>O
width = 3, .t{?doOT
"signal output" SwmX_F#_
aB4L$M8x
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 Py#iC#g~
step = 20, color = red, width = 3,"residual pump" 3hNb
?
(OHd} YQ
! set_L(L_f) {restore the original fiber length } g?!;04
JT 5+d ,
'5n=tRx
; ------------- \ffU15@N
diagram 4: !输出图表4 Uc|MfxsL
ktK/s!bgY
"TransverseProfiles" 1z=}`,?>
DZ0\pp?S
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) Vq#_/23=$y
!)'|Y5 o
x: 0, 1.4 * r_co /um 4$b9<:M_
"radialposition (µm)", @x Cl3hpqv1I
y: 0, 1.2 * I_max *cm^2 ak;S Ie
"intensity (W/ cm²)", @y }#U3vMx(
y2: 0, 1.3 * N_Tm %q,^A+=
frame q"pnFK9/L
hx T 9?!.o
hy GE.@*W
UHUO9h
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 ,=p.Cx'PR
yscale = 2, -qRO}EF
color = gray, (3Z~EIZz
width = 3, Bn{0-5nj
maxconnect = 1, jRIm_)
"N_dop (right scale)" _7w2E
MEn#MT/Cz
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 _i{4 4zE
color = red, {p@uj_pS
maxconnect = 1, !限制图形区域高度,修正为100%的高度 esQRg~aCGy
width = 3, U9p^?\-=
"pump" .:#6dG\0z
ZI#Xh5
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 z?8Sie
color = blue, Q CB~x2C
maxconnect = 1, A'X, zw^}
width = 3, 6KI< J*Wz`
"signal" uP[:P?,t
H=k*;'
8?7:sfc
; ------------- XS/5y(W
diagram 5: !输出图表5 h8_~ OX
_Uz}z#jt
"TransitionCross-sections" f*SAbDE
c F(]`49(
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) VG`A* Vj
9#@CmiIhy
x: 1450, 2050 !Rw\k'<GKX
"wavelength(nm)", @x ?V&[U
y: 0, 0.6 2=l!b/m
"cross-sections(1e-24 m²)", @y &c!=< <5M
frame (_lc< Bj
hx |!{BjOAD'
hy QP e}rQnm
QYL
';
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 %7?v='s=
color = red, Kv:ih=?
width = 3, q}["Nww-
"absorption" $'Hg}|53
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 c!%:f^7g
color = blue, TY|]""3f9
width = 3, P!";$]+
"emission" AcF;5h
JZQ$*K