(* Nr(WbD[T
Demo for program"RP Fiber Power": thulium-doped fiber laser, 4&|9304<H
pumped at 790 nm. Across-relaxation process allows for efficient O]2h=M@q.
population of theupper laser level. ut\9@>*J=Q
*) !(* *)注释语句 }qlz^s
%0u7pk
diagram shown: 1,2,3,4,5 !指定输出图表 !J2Lp
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 mZM5aTQ3
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响
y"9TS,lmK
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 `DA=';>Y
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 d!wd,Xj}
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 gJF;yW4
#K)HuT
include"Units.inc" !读取“Units.inc”文件中内容 CWDo_g$
{'r*Jb0
include"Tm-silicate.inc" !读取光谱数据 41C=O@9m
CyXcA;H,.
; Basic fiberparameters: !定义基本光纤参数 ;G\rhk
L_f := 4 { fiberlength } !光纤长度 7rr5$,Mv
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 xMuy[)b
r_co := 6 um { coreradius } !纤芯半径 7NXT.E~2
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 dG)A-qbV
O:Z|fDQ`
; Parameters of thechannels: !定义光信道 <B``/EX^
l_p := 790 nm {pump wavelength } !泵浦光波长790nm 9X*q^u
dir_p := forward {pump direction (forward or backward) } !前向泵浦 75v*&-
P_pump_in := 5 {input pump power } !输入泵浦功率5W +b{h*WWdj
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um 0`qq"j[6a
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 &<> A
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 gXfAz,
q&W#nWBV
l_s := 1940 nm {signal wavelength } !信号光波长1940nm C]):+F<7
w_s := 7 um !信号光的半径 H[G EAQO
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 'Klz`)F
loss_s := 0 !信号光寄生损耗为0 |w>DZG!}1-
x208^=F\\
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 $8eq&_gJ
)8N/t6Q
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 RdY #B;
calc ER|5_
begin Q;^([39DI
global allow all; !声明全局变量 c9ZoO;
set_fiber(L_f, No_z_steps, ''); !光纤参数 $qEJO=v
add_ring(r_co, N_Tm); <w:fR|O
def_ionsystem(); !光谱数据函数 Cn{UzSKfs
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 o1g[(zky
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 97&6i TYA
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 [ z&y]~
set_R(signal_fw, 1, R_oc); !设置反射率函数 N4}h_mh^'
finish_fiber(); P]x@h
end;
)3 v8
-0Q!:5EC
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 |0bSxPXn!
show "Outputpowers:" !输出字符串Output powers: 6zI?K4o
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) Df4n9m}E
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) 7u}r^+6_o
6Q>w\@lF
J7maG|S(DF
; ------------- P&SR;{:y
diagram 1: !输出图表1 [NFAdE
v>e4a/
"Powers vs.Position" !图表名称 u9&p/qMx2
FUOvH85f
x: 0, L_f !命令x: 定义x坐标范围 R.fRQ>rI
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 cK?t]%S
y: 0, 15 !命令y: 定义y坐标范围 &=UzF
y2: 0, 100 !命令y2: 定义第二个y坐标范围
8~I>t9Q+
frame !frame改变坐标系的设置 bEE:6)]G
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) #"OKO6]
hx !平行于x方向网格 p;H1,E:Re#
hy !平行于y方向网格 9o18VJR
Z*Y?"1ar
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 ht-6_]+ME
color = red, !图形颜色 XNl!(2x'pb
width = 3, !width线条宽度 jBQQ?cA
"pump" !相应的文本字符串标签 T S.lFg:K
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 V]8fn MH
color = blue, 4 I~,B[|
width = 3, ULJI`I|m
"fw signal" 4EELaP|%
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 p
2i5/Ly
color = blue, 8[Qw8z5-
style = fdashed, ox*Ka]
width = 3, /U`"|3
"bw signal" ?L
$KlF Y
,yT4(cMBk?
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 Twk zX|
yscale = 2, !第二个y轴的缩放比例 [J];
color = magenta, *kIJv?%_}
width = 3, &sKYO<6K}
style = fdashed, 8e-{S~@W
"n2 (%, right scale)" bw[!f4~
1TVTP2&Rd
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 ;js7rt
yscale = 2, );6zV_^!
color = red, vKW%l
width = 3, -R8RAwsLG
style = fdashed, Vr^wesT\Hx
"n3 (%, right scale)" f+1]#"9i|
{P]l{W@li
3Q#VD)
; ------------- 7~65 @&P>
diagram 2: !输出图表2 wVPq1? 9
e^FS/=
"Variation ofthe Pump Power" 4*54"[9Hr#
,aN/``j=
x: 0, 10 x?%vqg^r
"pump inputpower (W)", @x /yOd]N;$
y: 0, 10 'Hg(N?1"
y2: 0, 100 <wuP*vI"h
frame kSJWQ
hx $""[(
d?0
hy z(m*]kpL"
legpos 150, 150 "au"\}
A ssf
f;
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 n% *u;iG
step = 5, X=JSqO6V9
color = blue, m$o|s1t
width = 3, w&H
?; 1
"signal output power (W, leftscale)", !相应的文本字符串标签 e"bF"L
finish set_P_in(pump, P_pump_in) \<PW_'6
8'?e4;O
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 }Orc;_)r
yscale = 2, 06ueE\@Sg
step = 5, HU'd/5fun
color = magenta, _#L
IG2d
width = 3, %0]&o,
w{
"population of level 2 (%, rightscale)", *s!8BwiE
finish set_P_in(pump, P_pump_in) &
=frt3
1jV^\x0
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 lf Giw^
yscale = 2, & .#0jb1r
step = 5, &&m%=i.qK
color = red, c)lK{DC
width = 3, Mpj3<vj
"population of level 3 (%, rightscale)", T&!>lqU!J
finish set_P_in(pump, P_pump_in) R1SEv$
?>,aq>2O$
KctD=6
; ------------- D8h~?phK
diagram 3: !输出图表3 R#r?<Ofw4
S`R
( _eD@
"Variation ofthe Fiber Length" bT>^%
H3
ou(9Qf zN
x: 0.1, 5 Z^h4%o-l{
"fiber length(m)", @x "'PDreS
y: 0, 10 g<,|Q5bK
"opticalpowers (W)", @y fkx
9I m4
frame q<7Nz]Td
hx !q/?t XM!
hy H,uOshR
./6L&?*`~;
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 / '7WL[<
step = 20, :H?p^d
e
color = blue, {o]OxqE@
width = 3, a.gu
"signal output" ad"&c*m[
`*~:nvU
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 7f`jl/
step = 20, color = red, width = 3,"residual pump" plp).Gq
C4n5U^
! set_L(L_f) {restore the original fiber length } `j<'*v
zo
7{b|+0W
Z1>pOJm
; ------------- qV(Plt%
diagram 4: !输出图表4 mp5]=6~:m
2S/^"IM["
"TransverseProfiles" [szwPNQ_
!E*-\}[
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) iBc(
@EJ
0.Iw/e
x: 0, 1.4 * r_co /um }we"IqLb
"radialposition (µm)", @x |D^[]*cEH
y: 0, 1.2 * I_max *cm^2 v=/V<3
"intensity (W/ cm²)", @y 1dKLNE
y2: 0, 1.3 * N_Tm ,2]6cP(6qQ
frame >`lf1x
hx W58\V
hy 3kJAaI8
+C+3DwN
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 htkyywv
yscale = 2, S#ven&
color = gray, 'T.> oP0>
width = 3, "r|O /
maxconnect = 1, 4[5Z>2w
"N_dop (right scale)" ]r#tJT`M
QALMF rWH
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 K{0mb
color = red, @5kN
L~2
maxconnect = 1, !限制图形区域高度,修正为100%的高度 tw.%'oJ7
width = 3, M ,<%j
"pump" m@yaF:
R
x-q er-
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 m6JIq}CMb
color = blue, 1ra}^H}
maxconnect = 1, yhTe*I=Gk
width = 3, |"ck;.)
"signal" 2Gx&ECa,
NW~n+uk5v
c[Y7tj%y
; ------------- fXL$CgXG\x
diagram 5: !输出图表5 1 iE
) .#,1
"TransitionCross-sections" S__ o#nf`%
^D6 JckW
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) {)`5*sd
_tYt<oB~%
x: 1450, 2050 AU)Qk$c
"wavelength(nm)", @x Vg2s~ce{
y: 0, 0.6 &&tQ,5H5
"cross-sections(1e-24 m²)", @y *X,vu2(I-=
frame in%+)`'nH7
hx gBresHrlH
hy bk"` hq
=WN6Fj`
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 &
8e~<
color = red, :egSW2"5S
width = 3, %(n4`@
"absorption" 8 v&5)0u
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 )0/DY
color = blue, :vc[ iZ
width = 3, Z\NC+{7k]
"emission" v6iV#yz3(
0;V2>!