(* a}{! %5
Demo for program"RP Fiber Power": thulium-doped fiber laser, *mtv[
pumped at 790 nm. Across-relaxation process allows for efficient 4 ETVyK|
population of theupper laser level. );LwWKa
*) !(* *)注释语句 v#G ^W
Hn.UJ4V
diagram shown: 1,2,3,4,5 !指定输出图表 2J <Z4Ap
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 S?<Qa;
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 MQu6Tm H
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 6Z=H>w
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 ],4LvIPD
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 Ss}0.5Bq
upKrr
include"Units.inc" !读取“Units.inc”文件中内容 ('oUcDOFTS
)I9(WVx!]
include"Tm-silicate.inc" !读取光谱数据 ^)I:82"|?
4v$AM8/o
; Basic fiberparameters: !定义基本光纤参数 HB:i0m2fJW
L_f := 4 { fiberlength } !光纤长度 *4E,|IJ
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 f{oWd]eAhb
r_co := 6 um { coreradius } !纤芯半径 qa6up|xUnn
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 :4d7%q
l{g(z!
; Parameters of thechannels: !定义光信道 .(ir2g
l_p := 790 nm {pump wavelength } !泵浦光波长790nm 3dLz=.=)'
dir_p := forward {pump direction (forward or backward) } !前向泵浦 '@P[fSQ
P_pump_in := 5 {input pump power } !输入泵浦功率5W <NO~TBHF
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um p,/^x~m3a
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 nm.d.A/]Z
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 HVpaVM
6iC:l%|u
l_s := 1940 nm {signal wavelength } !信号光波长1940nm !NtY4O/
w_s := 7 um !信号光的半径 1F/&Y}X
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 ,5,4 Qf7
loss_s := 0 !信号光寄生损耗为0 =\.|'
m` cG&Ar5
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 2)YLs5>W%
b :00w["
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 mLSAi2Y
calc 511q\w M
begin `1gsrHi4N
global allow all; !声明全局变量 mUxD.;P
set_fiber(L_f, No_z_steps, ''); !光纤参数 y-mmc}B>N
add_ring(r_co, N_Tm); 7_,X9^z
def_ionsystem(); !光谱数据函数 ;d4_l:9p
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 kCV OeXv
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 ;a"Ukh
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 Uan;}X7@
set_R(signal_fw, 1, R_oc); !设置反射率函数 ececN{U/
finish_fiber(); 4m:E:zVn
end; %k_JLddlW
n>'}tT)U
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 p*Cbe\
show "Outputpowers:" !输出字符串Output powers: e[n>U@
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) R0WJdW#
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) 9^n
]qg^
H{8\<E:V+}
p5\b&~
g
; ------------- LCtm@oN
diagram 1: !输出图表1 ?a%
u=G
{<lV=0]
"Powers vs.Position" !图表名称 'E9jv4E$n
"F&uk~ b$
x: 0, L_f !命令x: 定义x坐标范围 e M}Xn^}
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 Tym!7H2
y: 0, 15 !命令y: 定义y坐标范围 J{Jxb1:c
y2: 0, 100 !命令y2: 定义第二个y坐标范围 (Jm_2CN7X
frame !frame改变坐标系的设置 3c)LBM
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) .gB*Y!c7
hx !平行于x方向网格 7K~=Q Ec
hy !平行于y方向网格 0(n/hJ
b3ZPlLx6
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 51A>eU|
color = red, !图形颜色 &^Io\
width = 3, !width线条宽度 <_5z^@N3$
"pump" !相应的文本字符串标签 Kxq~,g=t
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 fqi584
color = blue, @m6E*2Gg
width = 3, :\ S3[(FV
"fw signal" |b@-1
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 y(HR1vQ;Z
color = blue, OtJS5A
style = fdashed, li'#< "R?'
width = 3, j JW0a\0
"bw signal" +ad 2
W\"cp[b
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 7Y-GbG.'
yscale = 2, !第二个y轴的缩放比例 xk,E
A U
color = magenta, 5%9&
7
width = 3, 0F"xU1z,
style = fdashed, ^vzNs>eJ
"n2 (%, right scale)" d(tq;2-
qVf~\H@
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 GB0] |z5
yscale = 2, a 3HS!/
color = red, 'vXrA
width = 3, R
+k\)_F
style = fdashed, [p(Y|~
"n3 (%, right scale)" ,E_hG3}}
wFh{\
h5~tsd}OU
; ------------- A&z
diagram 2: !输出图表2
@>BFhH
j0Q;OKu
"Variation ofthe Pump Power" |
#,b1|af
B!,})F$x
x: 0, 10 rVkHo*Q
"pump inputpower (W)", @x :g Ze>
y: 0, 10 b*$^8%
y2: 0, 100 _rSnp
frame R \iU)QP
hx >8ePx,+!
hy J=()
A+
legpos 150, 150 hNQ,U{`;^
K]RkKMT,
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 L./UgeZ
step = 5, rK];2[U
color = blue, zdr?1=
width = 3, ifuVV Fov
"signal output power (W, leftscale)", !相应的文本字符串标签 %hY+%^k.
finish set_P_in(pump, P_pump_in) tL D.e
+&|WC2#
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 1<lLE1fk
yscale = 2, J|s4c`=
step = 5, 55Jk "V#8
color = magenta, U|,VH-#
width = 3, 3dXyKi
"population of level 2 (%, rightscale)", " 4s,a
finish set_P_in(pump, P_pump_in) m|'TPy
fuQ?@F
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 ++xEMP)
yscale = 2, &}rh+z
step = 5, HdVGkv/
color = red, *K!V$8k=99
width = 3, ,rQznE1e
"population of level 3 (%, rightscale)", "",V\m
finish set_P_in(pump, P_pump_in) Up`zVN59.
ky,+xq
<UeO+M(
; ------------- ceAK;v
o
diagram 3: !输出图表3 V"gnG](2l
|FH/Q-7[
"Variation ofthe Fiber Length" A2]N :=
]kR 93
x: 0.1, 5 +,If|5>(
"fiber length(m)", @x 'H:lR1(,
y: 0, 10 Z?X
^7<
"opticalpowers (W)", @y pS9CtQqvgy
frame B2VUH..am
hx jRzR`>5
hy &`{%0r[UD#
jPhOk>m
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 8\/E/o3
step = 20, R|`}z"4C
color = blue, om|M=/^
width = 3, ACc.&,!IZ
"signal output" .BuY[,I+
C^]bXIb
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 ,0;E_i7
step = 20, color = red, width = 3,"residual pump" UEt#;e
W.{#Pg1Da
! set_L(L_f) {restore the original fiber length } -_v[oqf$
F(:+[$)
Gb\}e}TB[
; ------------- Q lql(*
diagram 4: !输出图表4 -fn["R]
H;%a1
"TransverseProfiles" xqX~nV#TB
%.[t(F
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) $D1Pk
1P@&xcvS\
x: 0, 1.4 * r_co /um =#SKN\4
"radialposition (µm)", @x U5%EQc-"P
y: 0, 1.2 * I_max *cm^2 e%o6s+"
"intensity (W/ cm²)", @y BB>3Kj:|
y2: 0, 1.3 * N_Tm VWaI!bK
frame p~En~?<
hx mS6L6)] S
hy j8YMod=
fo^M`a!va0
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 26&^n
Uy
yscale = 2, +kmPQdO;*/
color = gray, 32:q'
width = 3, A{Jv`K
maxconnect = 1, A7 E*w
"N_dop (right scale)" 4L(axjMYU
mM&H;W
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 V.>'\b/#
color = red, IX,/ZOZ|
maxconnect = 1, !限制图形区域高度,修正为100%的高度 o
*S"`_
width = 3, x?VX,9;j
"pump" <{JHFU`^
J#!:Z8b
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 fYl$$.
color = blue, W:ih#YW_F
maxconnect = 1, It!PP1$
width = 3, j"7 z
"signal" OIe {Sx{y
!Z`~=n3bk
ebcGdC/%>
; ------------- ZjF$zVk
diagram 5: !输出图表5 "9>~O`l,
h)~KD%
"TransitionCross-sections" EL;Ir tU
]Jq1b210
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) u yzc"di
Ky[/7S5E
x: 1450, 2050 =;9Wh!{
"wavelength(nm)", @x g~S>_~WL
y: 0, 0.6 i-vhX4:bd
"cross-sections(1e-24 m²)", @y MLG%+@\
frame XTUxMdN
hx z;xp1t@
hy DyD#4J)E
c 5+oP j
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 tz4MT_f
color = red, ICN>8|O`&
width = 3, 7%c9 nY
"absorption" By]XD~gcP
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 T2AyQ~5~
color = blue, }5z6b>EI9a
width = 3,
FVPhk 2
"emission" 3?|Fn8dQR.
(_^g:>)Cs