(* 0,M1Q~u%.
Demo for program"RP Fiber Power": thulium-doped fiber laser, AfaoFn+
pumped at 790 nm. Across-relaxation process allows for efficient [7+dZL[
population of theupper laser level. s6HfN'
*) !(* *)注释语句 J69B1Yi
B.ar!*X
diagram shown: 1,2,3,4,5 !指定输出图表 a(|,KWHn
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 ,enU`}9V*
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 Lk8NjK6
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 Dxx`<=&g
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 y7LT;`A
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 AfqthI$*m
ns}"[44C}l
include"Units.inc" !读取“Units.inc”文件中内容 ,nnVHBN
r)/nx@x
include"Tm-silicate.inc" !读取光谱数据 4)OM58e}
]*\m@lWu
; Basic fiberparameters: !定义基本光纤参数 ZL^
svGy
L_f := 4 { fiberlength } !光纤长度 w.0:#4
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 AriW&E
r_co := 6 um { coreradius } !纤芯半径 jv5Os-
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 I7@g,~s
&LM ^,xx}
; Parameters of thechannels: !定义光信道 d2=Z=udd
l_p := 790 nm {pump wavelength } !泵浦光波长790nm )m4O7'2G
dir_p := forward {pump direction (forward or backward) } !前向泵浦 bPhb d
P_pump_in := 5 {input pump power } !输入泵浦功率5W uHu (
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um W%&'EJ)62
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 t^KoqJ
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 tI;pdR]
*(*3/P4D
l_s := 1940 nm {signal wavelength } !信号光波长1940nm qR>"r"Fq
w_s := 7 um !信号光的半径 ~L3]Wa.
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 0f]LOg
loss_s := 0 !信号光寄生损耗为0 D@
R>gqb
Smjg[
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 $Eh8s(
q7-.-k<dQ
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 ET:B"
calc <RPy
begin 25-5X3(>j=
global allow all; !声明全局变量 LI/;`Y=
set_fiber(L_f, No_z_steps, ''); !光纤参数 Ej7>ywlW
add_ring(r_co, N_Tm); dLnu\bSF
def_ionsystem(); !光谱数据函数 yG%<LP2p@f
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 &
~*qTojj
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 @!MhVNS_<
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 \8HLQly|@
set_R(signal_fw, 1, R_oc); !设置反射率函数 /N?vVp
finish_fiber(); q(YFt*(;w
end; @2eV^eO9
'D1Sm&M2%e
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 &8^ch,+pD
show "Outputpowers:" !输出字符串Output powers: 4Bc<
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) WymBjDos:
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) zJCm0HLJ
Gi*GFv%xB
XDM~H
; ------------- (}:n#|,{M
diagram 1: !输出图表1
wn-{Vkpm
SK&? s`
"Powers vs.Position" !图表名称 Bx&F* a;5
(RtjD`e}
x: 0, L_f !命令x: 定义x坐标范围 }M+2 ,#l
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 ZZJXd+Q}
y: 0, 15 !命令y: 定义y坐标范围 ^>H+#@R
y2: 0, 100 !命令y2: 定义第二个y坐标范围 eKj'[2G@/
frame !frame改变坐标系的设置
;p U=>
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) 'CkN
hx !平行于x方向网格 &GetRDr
hy !平行于y方向网格 A0hfy|1#L
FA#?+kd
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 jh|4Y(
color = red, !图形颜色 rDvz2p"R
width = 3, !width线条宽度 7=gv4arRwt
"pump" !相应的文本字符串标签 K0bh;I
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 y!;PBsU%Sx
color = blue, fvUD'sx
width = 3, =Lyo]8>,X
"fw signal" Uq8=R)1<|d
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 !o k6*m
color = blue, jj&4Sv#>
style = fdashed, 1FO T
width = 3, J|D$
"bw signal" [Q+qu>&HB7
iH#b"h{w
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 3-T}8VsiP
yscale = 2, !第二个y轴的缩放比例 ag
\d4y6
color = magenta, 3>I
width = 3, 01P ~K|s
style = fdashed, QV@NA@;XZ
"n2 (%, right scale)" i$Sq.NU
dU4G!
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 ZX
Sl+k.
yscale = 2, #ErIot
color = red, OSsxO(;g
width = 3, nfV32D|3
style = fdashed, l`}Ag8Q
"n3 (%, right scale)" cIIt ;q[
k;?Oi?]
dT9ekNQB
; ------------- uDZ$'a
diagram 2: !输出图表2 +.RC{o,
yQXHEB
"Variation ofthe Pump Power" (^ Q:zU
{#c**' 4
x: 0, 10 C;3>q*Am4
"pump inputpower (W)", @x MGmUgc
y: 0, 10 ca!=D $
y2: 0, 100 =`l).GnN2`
frame 27NhYDo
hx dK=<%)N
hy y+PiH
legpos 150, 150 { fmY_T[Q8
{0#p, l
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 b(Ev :
step = 5, N{(Q,+ ~
color = blue, nnZ|oEF
width = 3, DjX*2O
"signal output power (W, leftscale)", !相应的文本字符串标签 8jnz;;|
finish set_P_in(pump, P_pump_in) ,;2x.We
)/hb9+S
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 N1LZ XXY{
yscale = 2, "^~>aVuXf
step = 5, z>f>B6
color = magenta, ET&Q}UO E
width = 3, @?w8XHEa|
"population of level 2 (%, rightscale)", a^*@j:[
finish set_P_in(pump, P_pump_in) {cNH|
qQ_o>+3VAy
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 )cMW,
yscale = 2, #\[((y:q
step = 5, .i7bI2^
color = red, _l`s}yC
width = 3, @Ik@1
"population of level 3 (%, rightscale)", LZCziW
finish set_P_in(pump, P_pump_in) u,d@oF(=
qGE?[\t[6
}- Jw"|^W
; ------------- `z=I}6){
diagram 3: !输出图表3 bIP'(B#1K
;plzJ6>
"Variation ofthe Fiber Length" [S}o[v\
B@,L83
x: 0.1, 5 Q&Rj)1!
"fiber length(m)", @x !~{AF|2f
y: 0, 10 OOEmXb]8
"opticalpowers (W)", @y 7DU"QeLeb
frame ?w}E/(r
hx Fn8d;%C
hy ?s<'3I{F`
w/KCuW<
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 v@43%`"Gj
step = 20, bBQ1~ R
color = blue, [8k7-}[
width = 3, TB]Bl.
"signal output" kpM5/=f/@
m,e@bJ-
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 MSmvQ
step = 20, color = red, width = 3,"residual pump" %5=XszS
\(lt [=
! set_L(L_f) {restore the original fiber length } $lj1924?^
2EubMG
4s<*rKm~
; ------------- vG'JMzAm
diagram 4: !输出图表4 ndkV(#wQS
t(4%l4i;X
"TransverseProfiles" U!"+~d)
2WjQ-mM#
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) N/A.1W
qY24Y
x: 0, 1.4 * r_co /um 9w
-t9X>X
"radialposition (µm)", @x cS98%@DR
y: 0, 1.2 * I_max *cm^2 6#+&_#9
"intensity (W/ cm²)", @y Rx$5#K!%M
y2: 0, 1.3 * N_Tm T4`.rnzyRb
frame 6g*B=d(j
hx I$4GM
hy Kq|L:Z
&~+lXNXF
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 Vwp fkD`
yscale = 2, V4GcW|P4y
color = gray, 2\ /(!n
width = 3, taXS>*|B
maxconnect = 1, TxYxB1C)
"N_dop (right scale)" L;=<d
JJ3(0
+
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 FAVw80?5k
color = red, uj$b/I>.'
maxconnect = 1, !限制图形区域高度,修正为100%的高度 t)74(
width = 3, -Cxk#-sb#
"pump" O2E6F^.pYw
j+:q:6 =
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 NZ`( d
color = blue, A]2zK?|s
maxconnect = 1, vcsi@!
width = 3, ?]}1FP
"signal" T<\Q4Coth
{Slc6$
I\O<XJO)_
; ------------- ~S)o('
diagram 5: !输出图表5 :qi"I;=6
i,BE]w
"TransitionCross-sections" QDS=M]
0nS69tH
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) ~Rx[~a
d#.9!m~.
x: 1450, 2050 |q5R5mQ
"wavelength(nm)", @x Kw}-<y
y: 0, 0.6 xI}h{AF7
"cross-sections(1e-24 m²)", @y UBp0;)-
frame )/h~csy:~
hx xtyzy@)QL
hy K
oPTY^
]R/VE"-
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 ]sJWiIe.
color = red, m M!H}|
width = 3, 2E^zQ>;01
"absorption" m/sAYF"
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 `#hdb=3
color = blue, 6;U]l.
width = 3, oJw~g[
"emission" 'u$e2^
5An|#^]