(* )bO BQbj
Demo for program"RP Fiber Power": thulium-doped fiber laser, lEL78l.
pumped at 790 nm. Across-relaxation process allows for efficient \~rlgxd
population of theupper laser level. dmrps+L
*) !(* *)注释语句 `<\}FS`'
{Ng oYl
diagram shown: 1,2,3,4,5 !指定输出图表 -!qu"A:
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 z(RL<N%
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 iSK+GQ~
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 wy1X\PJjH
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 X##1!
ad
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 ^[:9fs
EER`?Sa(
include"Units.inc" !读取“Units.inc”文件中内容 M
s9E@E
%u{W7
include"Tm-silicate.inc" !读取光谱数据 #eP
LOR&q
_K9VMczj
; Basic fiberparameters: !定义基本光纤参数 gv15t'y9
L_f := 4 { fiberlength } !光纤长度 -php6$|
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 UAS@R`?cI
r_co := 6 um { coreradius } !纤芯半径 T4e\0.If
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 B=L&bx
.uo.N
; Parameters of thechannels: !定义光信道 ]T!
}XXK
l_p := 790 nm {pump wavelength } !泵浦光波长790nm FaTa(3$%
dir_p := forward {pump direction (forward or backward) } !前向泵浦 KP;(Q+qTx
P_pump_in := 5 {input pump power } !输入泵浦功率5W AT
Zhr.
H
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um co 4h*?q
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 vEM(bT=H
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 wJb#g0
#(Or|\t
l_s := 1940 nm {signal wavelength } !信号光波长1940nm bte~c
w_s := 7 um !信号光的半径 .@ C{3$,VG
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 zZ-wG
loss_s := 0 !信号光寄生损耗为0 +KGZHO!
}0hL~i
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 Yx'res4e
;#G oGb4AM
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 p4> $z& _
calc u),Qa=Wp
begin 1xJ
TWWj-
global allow all; !声明全局变量 q}Z3?W
set_fiber(L_f, No_z_steps, ''); !光纤参数 v
]Sl<%ry
add_ring(r_co, N_Tm); wu<])&F
def_ionsystem(); !光谱数据函数 @xsP5je]
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 }G46g#_6d>
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 v<\A%
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 .Jb$l$5'w
set_R(signal_fw, 1, R_oc); !设置反射率函数 ^62|d
finish_fiber(); a\uie$"cr]
end; hw_JDv+
r9 y.i(j
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 ;32#t[ib
show "Outputpowers:" !输出字符串Output powers: #BK 9 k>i
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) g_*T?;!.U
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) z!QDTIb
"bg'@:4F
YO{GU7
; ------------- I[MgIr^
diagram 1: !输出图表1 F-(dRSDNM
9n]|PEoAB
"Powers vs.Position" !图表名称 \hO2p6
Uv_N x10
x: 0, L_f !命令x: 定义x坐标范围 39U5jj7i
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 fa*Cpt:
y: 0, 15 !命令y: 定义y坐标范围 >4m'tZ8
y2: 0, 100 !命令y2: 定义第二个y坐标范围 Y /TlE?
frame !frame改变坐标系的设置 OkAK
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) 6TWWlU^e
hx !平行于x方向网格 .o%^'m"=D[
hy !平行于y方向网格 z><5R|Gf
b/$km?R
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 a~h:qpgc
color = red, !图形颜色 P27%xV-n>
width = 3, !width线条宽度 >>l`,+y
"pump" !相应的文本字符串标签 eC
DIwB28
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 :_<_[Y]1
color = blue,
r#PMy$7L
width = 3, m4K* <
"fw signal" r90+,aLM#?
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 &ej8mq"\
color = blue, .Hhh i
style = fdashed, 6q<YJ.,
width = 3, >t,M
"bw signal" v1U?&C
os3 8u!3-
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 o!TQk{0
yscale = 2, !第二个y轴的缩放比例 e;bYaM4UX
color = magenta, (w(
width = 3, _R|Ify#J
style = fdashed, MmPU7Nl%X
"n2 (%, right scale)" }/dRU${!
xVB;s.'!
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 vgIpj3u
yscale = 2, snM Z0W
color = red, )O+}T5c=
width = 3, t9gfU5?
style = fdashed, qIUfPA=/_
"n3 (%, right scale)" dhg~$CVO
?rVy2!
x} /,yaWZ
; ------------- |!|^ v
diagram 2: !输出图表2 Xy ,lA4IP
Eh</? Qv\
"Variation ofthe Pump Power" 2A`A\19t
[sV"ws
x: 0, 10 5FVndMM#y
"pump inputpower (W)", @x "|Fy+'5}
y: 0, 10 v!3A9!.
y2: 0, 100 5[l8y,
frame
xp'_%n~K@
hx oeSN9O
hy ;DA8B'^>
legpos 150, 150 ~fl@ 2
^VW
PdH/Fe
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 2I3h
MD0
step = 5, hDP/JN8y
color = blue, bUV >^d
width = 3, U/ V
"signal output power (W, leftscale)", !相应的文本字符串标签 gXT9 r' k
finish set_P_in(pump, P_pump_in) +:=(#Y
m`#Od^vk
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 yw[ #
yscale = 2, 7 J^rv9i4
step = 5, L$'[5"ma
;
color = magenta, .Ig+Dj{)
width = 3, #1c]PX
"population of level 2 (%, rightscale)", 8,D 2^Gg
finish set_P_in(pump, P_pump_in) T J^u"j-'
uY_SU-v
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 H>Q%"|
yscale = 2, B!{d-gb
step = 5, m42T9wSsx
color = red, `
8W*
width = 3, 'ckQg=zPR
"population of level 3 (%, rightscale)", eAUcv`[#p
finish set_P_in(pump, P_pump_in) 5Dp#u
sb:d>6
J]W5[)L
; ------------- uZa9zs=}c
diagram 3: !输出图表3 [=O/1T
rqv))Zo`
"Variation ofthe Fiber Length" 6-`|:[Q~
~DO4,
x: 0.1, 5 I`[i;U{CK
"fiber length(m)", @x 5tJ,7Y'
y: 0, 10 hPq%Lc
"opticalpowers (W)", @y @3fn)YQ'
frame 9[!,c`pw
hx _AV1WS;^^8
hy O/:UJ( e{
tH=P6vY
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 ^@P1
JNe
step = 20, 8u[-'pV!
color = blue, }:: S0l
width = 3, _'4A|-9
"signal output" xw{-9k-~
#T`t79*N
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 0CSv10Tg
step = 20, color = red, width = 3,"residual pump" y"]n:M:(
Ehzo05/!
! set_L(L_f) {restore the original fiber length } zYXV;
[ dtbkQt,c
d0'JC*
; ------------- ?!qY,9lhH
diagram 4: !输出图表4 r"$.4@gc
=b;>?dP
"TransverseProfiles" Vcd.mE(t%
Pxn,Qw*
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) MO;X>D =
kq\)MQ"/X
x: 0, 1.4 * r_co /um at2FmBdu C
"radialposition (µm)", @x oYWR')8g
y: 0, 1.2 * I_max *cm^2 dr4Z5mw"E
"intensity (W/ cm²)", @y zByT$P-
y2: 0, 1.3 * N_Tm kw2T>
frame }b 1cLchl
hx Nn>'^KZNG
hy keRE==(D
;lYHQQd!,
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 u!1{Vt87
yscale = 2, `3p~m,
color = gray, >u9Nz0?j
width = 3, gGfoO[B
maxconnect = 1, ;Eu3[[V
"N_dop (right scale)" 9Fn\FYUq
Jk,;JQ
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 m%?V7-9!k
color = red, IK*07h/!
maxconnect = 1, !限制图形区域高度,修正为100%的高度 +{sqcr1G
width = 3, x@8a''
"pump" :[;hu}!&
(sWLhUgRX
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 OtFh,}E
color = blue, .s$z/Jv
maxconnect = 1, }i!J/tJ)b
width = 3, z3?o|A }/W
"signal" yCCrK@{oo
vloF::1
$1SUU F\.
; ------------- !A48TgAeE
diagram 5: !输出图表5 !ct4;.2
D
{k rswh3
"TransitionCross-sections" `({T]@]V
cX3l t5
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) 86nN"!{l:
HaIM#R32T
x: 1450, 2050 nS>8bub30
"wavelength(nm)", @x (p%>j0<
y: 0, 0.6 =-p$jXVW%
"cross-sections(1e-24 m²)", @y m.,U:>
frame ID/F
hx O*#*%RL|
hy 6AocmR0D'
aMTu-hA
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 47J5oPT2'
color = red, 7`u$
width = 3, v0L\0&+
"absorption" 4*$G & TX
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 ->N8#XH2=
color = blue, NO :a;
width = 3, W^"AU;^V56
"emission" O$cHZs$
$tl\UH7%2