(* NBl
__q
Demo for program"RP Fiber Power": thulium-doped fiber laser, ;K:8#XuV
pumped at 790 nm. Across-relaxation process allows for efficient |dadH7
population of theupper laser level. (foBp
*) !(* *)注释语句 /&ygi H{^
U/qE4u1J6M
diagram shown: 1,2,3,4,5 !指定输出图表 g dj^df+2F
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 UEz i*"-v2
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 [6(Iwz?
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 \|Dei);k
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 u@FsLHn
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 6xgv:,
EEf ]u7
include"Units.inc" !读取“Units.inc”文件中内容 +C7T]&5s
-+U/Lrt>8
include"Tm-silicate.inc" !读取光谱数据 (*l2('e#@
<8(?7QI
; Basic fiberparameters: !定义基本光纤参数 u}H$-$jE
L_f := 4 { fiberlength } !光纤长度 k3@HI|
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 0o&}mKe
r_co := 6 um { coreradius } !纤芯半径 #\If]w*j
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 >HkhAJhW
=;c_} VY
; Parameters of thechannels: !定义光信道 hhRaJ
l_p := 790 nm {pump wavelength } !泵浦光波长790nm evl-V>
dir_p := forward {pump direction (forward or backward) } !前向泵浦 E1>/R
P_pump_in := 5 {input pump power } !输入泵浦功率5W :_d3//|
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um ]" x\=A
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 "2HY5AE
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 q"aPJ0ni'
+AQDD4bu
l_s := 1940 nm {signal wavelength } !信号光波长1940nm Gm=>!.p
w_s := 7 um !信号光的半径 7$b?m6fmK
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 W$\X ~Q'0
loss_s := 0 !信号光寄生损耗为0 K^i"9D)A
M$CVQ>op:
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 `n-vjjG%#
+?N}Y {Y&
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 )}X5u%woV
calc 'm1. X-$V
begin |PM m?2^ R
global allow all; !声明全局变量 rH}fLu8,;Q
set_fiber(L_f, No_z_steps, ''); !光纤参数 P%o44|[][
add_ring(r_co, N_Tm); A1JzW)B
def_ionsystem(); !光谱数据函数 Mz|L-62
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 !
sYf<
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 B7"Fp
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 |"}4*V_ *
set_R(signal_fw, 1, R_oc); !设置反射率函数 YQ,tt<CQ
finish_fiber(); _Dq Qfc%
end; Lk(S2$)*
*)PG-$6X&
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 y1(P<7:t?
show "Outputpowers:" !输出字符串Output powers: 8Uj:
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) Ku%6$C!,
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) 3YTIH2z5
rye)qp|
:Ee ?K
; ------------- G\/IM
diagram 1: !输出图表1 d/B*
9.Ap~Ay.
"Powers vs.Position" !图表名称 3h JH(ToO
@6%gIsj<H
x: 0, L_f !命令x: 定义x坐标范围 IvSn>o
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 Oc-u=K,B
y: 0, 15 !命令y: 定义y坐标范围 S:s
3EM
y2: 0, 100 !命令y2: 定义第二个y坐标范围 '?}R4w|)
frame !frame改变坐标系的设置 i=da,W=0
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) (@?eLJlT
hx !平行于x方向网格 6:RMU
hy !平行于y方向网格 ;F,qS0lzE
V
[4n'LcE
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 k|ip?O
color = red, !图形颜色 {"4<To]z
width = 3, !width线条宽度 2
zl~>3S
"pump" !相应的文本字符串标签 %AgA -pBp
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 9UmBm#"
color = blue, ;vUxO<cKFq
width = 3, z+6QZQk
"fw signal" D%
@KRcp^b
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 =L16hDk o
color = blue, foyB{6q8
style = fdashed, A5+5J_)*
width = 3, DrFu r(=T
"bw signal" FAd``9kRT
Gy^FrF
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 afy/K'~
yscale = 2, !第二个y轴的缩放比例 >e_%M50
color = magenta, 0:PSt_33F
width = 3, SauHFl8?
style = fdashed, 9mm2V ps;
"n2 (%, right scale)" ^hysC c
Ge~,[If+
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 B<C&ay
yscale = 2, GMTor
color = red, c'~[!,[b<
width = 3, CjmV+%b4
style = fdashed, OgTSx
"n3 (%, right scale)" o]p#%B?mZ
<4sj@C
Ik-oI=>.
; ------------- 59K}
diagram 2: !输出图表2 Rj&qh`
9^p32G
"Variation ofthe Pump Power" W7W3DBKtSm
uwId
x: 0, 10 a.CF9m5]c
"pump inputpower (W)", @x #hZQ>zcF
y: 0, 10 .5^a;`-+
y2: 0, 100 3~:0?Zuq
frame 4y1>
hx kI<WvgoL
hy (`F|nG=X
legpos 150, 150 ?Oqzd$-
1ThwvF%Qo
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 )]tvwEo
step = 5, ,FY-d$3)
color = blue, yz8-&4YRNd
width = 3, )ib7K1GJ
"signal output power (W, leftscale)", !相应的文本字符串标签 O%prD}x
finish set_P_in(pump, P_pump_in)
{&0mK"z_
[jy0@Q9
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 zw,-.fmM#
yscale = 2, F G3Sk!O6
step = 5, )7k&`?Mh
color = magenta, JxnuGkE0[#
width = 3, -E}>h[;qZ
"population of level 2 (%, rightscale)", d&5c_6oW
finish set_P_in(pump, P_pump_in) 8,_ -0_^$
hR!}u}ECd
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 T0YDfo
yscale = 2, TZ:34\u
step = 5, A3z/Bz4]:#
color = red, nW~$
(Qnd
width = 3, gA{'Q\
"population of level 3 (%, rightscale)", J"5jy$30'$
finish set_P_in(pump, P_pump_in) ENO? ;
wZ$tJQO
abL/Y23
"
; ------------- RZW$!tyI=
diagram 3: !输出图表3 amMjuyW
C1KfXC*|L
"Variation ofthe Fiber Length" qw5&Y$((
qFrt^+@
x: 0.1, 5 E(%
XVr0W
"fiber length(m)", @x 6g}^Q?cpV#
y: 0, 10 \QliHm!
"opticalpowers (W)", @y <D~6v2$
frame gxI&f
hx ;]{{)dst
hy |O57N'/
;CA ?eI
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 Mm "Wk
step = 20, B*y;>q "{U
color = blue, IhUW=1&J
width = 3, <njIXa{
"signal output" Cca6L9%
K2*1T+?X
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 Y 5Qb4Sa
step = 20, color = red, width = 3,"residual pump" a#^_"GX
:G^"e
! set_L(L_f) {restore the original fiber length } o>0O@NE
{5U1`>
4pLQ"&>}80
; ------------- u/_Gq[Q,u
diagram 4: !输出图表4 zwMQXI'k83
tB
GkRd!
"TransverseProfiles" Yr5iZ~V$
SrdE>fNbs
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) &aY/eD
T}V7SD.
x: 0, 1.4 * r_co /um D}mo\
"radialposition (µm)", @x RlU;v2Kch
y: 0, 1.2 * I_max *cm^2 ?68$3;
"intensity (W/ cm²)", @y c =jcvDQ6W
y2: 0, 1.3 * N_Tm tDEXm^B2Sv
frame L& I`
#
hx Uy(vELB
hy B"7$!C o
/
c+,
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 A,3@j@bdy
yscale = 2, ^?E^']H)5u
color = gray, -zPm{a
width = 3, BXT80a\
maxconnect = 1, RcY6V_Qx
"N_dop (right scale)" #x, ]D
5OPS&:
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 PZKbnu
color = red, <dq,y>
maxconnect = 1, !限制图形区域高度,修正为100%的高度 WA<H
width = 3, +F1]M2p]
"pump" 0\V\qAk
eA~J4k_
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 }UyzMy,
color = blue, p#ZMABlE,P
maxconnect = 1, TvQWdX=
width = 3, bk/.<Rt
"signal" [P.@1mV
C*"Rd
vs5
D:cZ}
; ------------- `Mo~EHso.
diagram 5: !输出图表5 EZ:I$X
*raIV]W3
"TransitionCross-sections" zi?qK?m
WpZy](,
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) Q'FX:[@x-S
M\:"~XW
x: 1450, 2050 sL!;hKK
"wavelength(nm)", @x &@mvw=d
y: 0, 0.6 ^JYF1
"cross-sections(1e-24 m²)", @y ,$hQ(yF
frame K?z*3^^X;
hx j zxf"X-
hy 2&^,IIp
(Q}PeKM?jq
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 *D,v>(
color = red, nG&w0de<>
width = 3, FiV^n6-F`
"absorption" qg_>`Bv"a
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 N&R
'$w
color = blue, 5O;/ lX!u
width = 3, rC=p;BC@dD
"emission" Up]VU9z
oN1!>S9m