(* [mWo&Ph[-
Demo for program"RP Fiber Power": thulium-doped fiber laser, Jz%&-e3
pumped at 790 nm. Across-relaxation process allows for efficient m>NRIEA6
population of theupper laser level. ~~5kAY-
*) !(* *)注释语句 ,~G _3Oz
fRrHWE+
diagram shown: 1,2,3,4,5 !指定输出图表 {b/AOR
o
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 i7fpl
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 U}Xc@- \ ?
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 z+-k4
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 k,?Y`s
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 Qr0JJoHT
sUbZVPDr
include"Units.inc" !读取“Units.inc”文件中内容 <o?qpW$,>
3\D jV2t
include"Tm-silicate.inc" !读取光谱数据 T_Y 6AII
%],.?TS2V
; Basic fiberparameters: !定义基本光纤参数 &I!2gf
L_f := 4 { fiberlength } !光纤长度 &LL81u6=S
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 o~iL aN\+
r_co := 6 um { coreradius } !纤芯半径 oY.JK
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 ]"CAP%
C|!E'8Rw
; Parameters of thechannels: !定义光信道 }#E4t3
l_p := 790 nm {pump wavelength } !泵浦光波长790nm n:<avl@o<
dir_p := forward {pump direction (forward or backward) } !前向泵浦 NqF-[G<
P_pump_in := 5 {input pump power } !输入泵浦功率5W 9m6w.:S
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um f"-<Z_
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 3`e1:`Hu
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 ^?J:eB!
j 6v +S
l_s := 1940 nm {signal wavelength } !信号光波长1940nm YKM(qh2
w_s := 7 um !信号光的半径 0IA
'8_K
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 P_ZguNH
loss_s := 0 !信号光寄生损耗为0 Vq<|DM3z<
'Ob5l:
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 n$=n:$`q
qx!IlO
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 Rwy:.)7B$q
calc 'GW@P
begin Hpsg[d)!
global allow all; !声明全局变量 TR%?U/_4;r
set_fiber(L_f, No_z_steps, ''); !光纤参数 ^NnZYr.
add_ring(r_co, N_Tm); 9f"6Jw@F
def_ionsystem(); !光谱数据函数 ?tSY=DK\n
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 '*~{1gG `
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 ^d2g"L
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 Y0eu^p)
set_R(signal_fw, 1, R_oc); !设置反射率函数 GzR;`,_O/
finish_fiber(); T:}Ed_m}q
end; -nd6hx
u?'X%'K*
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 .OWIlT4K
show "Outputpowers:" !输出字符串Output powers: RyM2CQg[
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) , 1`eH[
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) sY#K=5R
u>? VD%
~I^]O \?
; ------------- g@EKJFjl
diagram 1: !输出图表1 em W#ZX
h|-r t15
"Powers vs.Position" !图表名称 (PB|.`_<H
i$NnHj|
x: 0, L_f !命令x: 定义x坐标范围 67sb
D<r
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 \NSwoP
y: 0, 15 !命令y: 定义y坐标范围 h\ybh
y2: 0, 100 !命令y2: 定义第二个y坐标范围 sP&E{{<QTF
frame !frame改变坐标系的设置 43VuH
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) IM@Qe|5
hx !平行于x方向网格 HL!-4kN
<$
hy !平行于y方向网格 \o3i9Q9C
I7Eg$J&
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 }0!\%7-Q
color = red, !图形颜色 woR)E0'qx
width = 3, !width线条宽度 cCj3,s/p
"pump" !相应的文本字符串标签 c,-< 4e
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 $zbg
color = blue, xGH%4J\
width = 3, L_A|
"fw signal" p1D-Q7F
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 "?il07+w%
color = blue, VEpQT
Qp
style = fdashed, EgO4:8$h
width = 3, <
xV!vN
"bw signal" /2U.,vw
Xgl>kJy<#
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 [[|;Wr}2
yscale = 2, !第二个y轴的缩放比例 <l6CtK@
color = magenta, b"Ulc}$/&
width = 3, 2n7[Op
style = fdashed, :kUH>O
"n2 (%, right scale)" |_rj12.xo
m|y]j4
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 QJTC@o
yscale = 2, z/TZOFaM
color = red, $C>EnNx
width = 3, Gah e-%J
style = fdashed, &0lNj@/
"n3 (%, right scale)" XR&*g1
9QYU
J
mB
:lp=c`
; ------------- 4+~+`3;~v
diagram 2: !输出图表2 \\T
I4A^#
PNG'"7O
"Variation ofthe Pump Power" #}gc6T~0
C6Mb(&
x: 0, 10 i a|F
"pump inputpower (W)", @x IW46-;l7
y: 0, 10 HC0puLt_
y2: 0, 100 '2vlfQ@8a~
frame WGO=@jkf
hx N7;2BUIXJ
hy hN} X11
legpos 150, 150 9X(bByEO
YnMph0\Y^
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 x=Ru@n K;
step = 5, aR\=p:%jGI
color = blue, m1<B6*iG"
width = 3, l nZ=< T
"signal output power (W, leftscale)", !相应的文本字符串标签 z~W@`'f
finish set_P_in(pump, P_pump_in) |#sP1w'l]
Zf"AqGP
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 uaGg8
yscale = 2, s)L7o)56/
step = 5, bT;C8i4b\H
color = magenta, Oo0$n]*;W
width = 3, -{w&ya4X
"population of level 2 (%, rightscale)", J3'"-,Hv
finish set_P_in(pump, P_pump_in) rd"]$_P8O
<ya3|ycnS
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 KW09qar
yscale = 2, toCN{[
step = 5, !9!Ns(vUM
color = red, YF"D;.
width = 3, }C'z$i( y
"population of level 3 (%, rightscale)", ,Bta)
finish set_P_in(pump, P_pump_in) mrJQB I+
a@7we=!
&3JbAJ|;X
; ------------- ~/NA?E-c
diagram 3: !输出图表3 W$3p,VTMmB
+-oXW>`&
"Variation ofthe Fiber Length" p;p G@Vg
USbiI%
x: 0.1, 5 xJ3#k;
"fiber length(m)", @x kxdLJ_
y: 0, 10 :?S2s Ne2
"opticalpowers (W)", @y *L^{p.K4
frame I8[G!u71)_
hx :4WwCpgz,
hy \Lc
pl-;?
>Z3}WMgBN
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 x=H*"L=
step = 20, $$8"i+,K
color = blue, %xg"e
O2x
width = 3, <1@_MYo
"signal output" :l6sESr
Y,0O&'>
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 {
~Cqb7
step = 20, color = red, width = 3,"residual pump" 4Q]+tXes
[<%yU y
! set_L(L_f) {restore the original fiber length } n,0}K+}
1
t#Tp$
*</;:?
; ------------- W=|B3}C?
diagram 4: !输出图表4 |mKd5[$
4];NX
"TransverseProfiles" :n>h[{o%
Qn<<&i~
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) YsTfv1~z#
Q0r_+0[7j
x: 0, 1.4 * r_co /um l&C%oW
"radialposition (µm)", @x ;bZ)q
y: 0, 1.2 * I_max *cm^2 :H?p^d
e
"intensity (W/ cm²)", @y hsl Js^
y2: 0, 1.3 * N_Tm 1.';:/~(
frame E]gKJVf9[
hx
e%qMrR
hy 7f`jl/
plp).Gq
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 C4n5U^
yscale = 2, `j<'*v
zo
color = gray, L$jRg
width = 3, MBa/-fD
maxconnect = 1, ;`xu)08a
"N_dop (right scale)" KcSvf;sx
+ W +<~E
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 1ltoLd\{
color = red, f[%iRfUFw
maxconnect = 1, !限制图形区域高度,修正为100%的高度 ]])i"oew
width = 3, E(S}c*05O
"pump" jm*v0kNy
J"SAA0)@
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 bhg"<I
color = blue, fygy#&}~
maxconnect = 1, Y@pa+~[{h3
width = 3, S4tdWA
"signal" iPs()IN.O
I=b#tUBh8
tBf u{oC
; ------------- R Jg# A`
diagram 5: !输出图表5 @4&sL] (q
#_H=pNWe
"TransitionCross-sections" d2 d^XMe!
AU
>d1S.
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) "cti(0F-d
'r'uR5jR
x: 1450, 2050 O[8Lp?
"wavelength(nm)", @x ~JBQjb]
y: 0, 0.6 %u!#f<"[
"cross-sections(1e-24 m²)", @y 7-(tTBH
frame {wd.aUB
hx <;acWT?(
hy ?XeRL<n
)~WxNn3rx
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 6v.*%E*P
color = red, P+]39p{
width = 3, )}/9*
"absorption" y_a~>S
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 [.0R"|$sy+
color = blue, 8mMrGf[Q\
width = 3, 2O4UytN
"emission" Ot(EDa9}IJ
ofN|%g /