(* Lm/^ 8V+
Demo for program"RP Fiber Power": thulium-doped fiber laser, IU/*YI%W
pumped at 790 nm. Across-relaxation process allows for efficient pQD8#y)` C
population of theupper laser level. j*nCIxF
*) !(* *)注释语句 h 9/68Gc?6
3? "GH1e
diagram shown: 1,2,3,4,5 !指定输出图表 Z1zC@z4sUj
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 MwZ`NH|n3"
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 4e4$AB "
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 hLF@'ln
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 [z?XVl<
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 BScysoeD
aj:+"X-;
include"Units.inc" !读取“Units.inc”文件中内容 ZtiOf}@i\
TG($l2
include"Tm-silicate.inc" !读取光谱数据 3ul
aG!!z>
; Basic fiberparameters: !定义基本光纤参数 \y=,=;yv
L_f := 4 { fiberlength } !光纤长度 ;J<kG@
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 ax$0J|}7
r_co := 6 um { coreradius } !纤芯半径 iJAW| dw}
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 U i;o/Z3
7~
2X/
; Parameters of thechannels: !定义光信道 {=kA8U
l_p := 790 nm {pump wavelength } !泵浦光波长790nm =+u$ZZ0+]o
dir_p := forward {pump direction (forward or backward) } !前向泵浦 8K$:9+OY
P_pump_in := 5 {input pump power } !输入泵浦功率5W +]
uY
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um ,}[,]-nVx
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 [}Nfs3IlBw
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 zOcMc{w0
6Rso}hF}}
l_s := 1940 nm {signal wavelength } !信号光波长1940nm WWY9U
w_s := 7 um !信号光的半径 i/->g:47P
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 nWh?zf#{
loss_s := 0 !信号光寄生损耗为0 hFKYRZtP.8
r$+9grm<
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率
YEGXhn5E
m{' q(w}
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 X"R;/tZ S4
calc mu*wX'.'
begin ^+pmZw90
global allow all; !声明全局变量 C>LkU |[
set_fiber(L_f, No_z_steps, ''); !光纤参数 om(#P5cSM;
add_ring(r_co, N_Tm); btee;3`
def_ionsystem(); !光谱数据函数 % 'P58
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 ?qdG)jo=
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 [scPs,5Y
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 K[sfsWQ.
set_R(signal_fw, 1, R_oc); !设置反射率函数 h><;TAp
finish_fiber(); \KG{
11
end; Qf"gH<vT
HYtkSsXLN
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 X(/W|RY{@
show "Outputpowers:" !输出字符串Output powers: Hkpn/,D5
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) E*[X\70
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) W}KtB1J
>%xJ e'
<53~Y
; ------------- e+S%`Sg
diagram 1: !输出图表1 H -`7T;t~
`w&|~xT
"Powers vs.Position" !图表名称 k;"=y)@o
?g!py[CrE
x: 0, L_f !命令x: 定义x坐标范围 *.20YruU;j
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 ]NN9FM.2b/
y: 0, 15 !命令y: 定义y坐标范围 7D4P=$UJp
y2: 0, 100 !命令y2: 定义第二个y坐标范围 #Ez>]`]TB
frame !frame改变坐标系的设置 FFPO?y$
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) kz+P?mopm
hx !平行于x方向网格 '9-8_;
hy !平行于y方向网格 "= HCP,
4"0`J
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 !\CoJ.5=
color = red, !图形颜色 e1K,4Bq
width = 3, !width线条宽度 U<*ZY` B3
"pump" !相应的文本字符串标签 ze]2-B4
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 'AHI;Z~Gk
color = blue, D guAeK
width = 3, ,xNuc$8Jd
"fw signal" Qu!Lc:oM?
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 >lRX+?
color = blue, @2]_jW
style = fdashed, lQldW|S>
width = 3, x# 0(CcKK
"bw signal" -k=02?0p+
]7Tjt A.\q
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 ]V?\Qv/.=
yscale = 2, !第二个y轴的缩放比例 JZ'`.yK:
color = magenta, 9)'L,Xt4:T
width = 3, _yumUk-QW
style = fdashed, AW1691Q
"n2 (%, right scale)" : >4{m)
<T{PuS1<o
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 [<7Hy,xr_
yscale = 2, 8v_HIx0xu
color = red, {!@Pho) Q
width = 3, l}># p'$
style = fdashed, pl%3RVpoc
"n3 (%, right scale)" nxw]B"Eg
)EcE{!H6+
+-1t]`9k4
; ------------- /X{:~*.z
diagram 2: !输出图表2 ng^`s}?o
Rcfh*"k
"Variation ofthe Pump Power" Ns?y)
G>:
~bhesWk8!
x: 0, 10 d\+smED
"pump inputpower (W)", @x wz<YflF
y: 0, 10 XzIhFX6
y2: 0, 100 "JT R5;`w
frame (%D*S_m'
hx VD#`1g<
hy +h.$<=
legpos 150, 150 !O~EIz
p
eQD]v
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 MS)(\&N
step = 5, a39Kl_\
color = blue, T}jryN;J5
width = 3, 615, P/
"signal output power (W, leftscale)", !相应的文本字符串标签 icOh/G=N;
finish set_P_in(pump, P_pump_in) VnAJOR7lrx
80U07tJ
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响
3V>2N)3`A
yscale = 2, 9l5l"Wj&
step = 5, >r6`bh
[4
color = magenta, Y<0
[_+(
width = 3, CXwDG_e
"population of level 2 (%, rightscale)", ,dOd3y'y
finish set_P_in(pump, P_pump_in) 9
N[k ?kUZ
bsO78a~=P
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 pn<M`,F~q
yscale = 2, }J$Q
step = 5, A
M8bem~
color = red, dcew`$SJp
width = 3, ?aR)dQ
"population of level 3 (%, rightscale)", 96x0'IsaG
finish set_P_in(pump, P_pump_in) GdVq+,Ge
}D-h=,];
SRuNt3wW6
; ------------- Y;JV9{j
diagram 3: !输出图表3 8pp^
w
Q5b~5a
"Variation ofthe Fiber Length" Z6#}6Y{
z'GYU=
x: 0.1, 5 )>abB?RZ
"fiber length(m)", @x O:3LA-vA
y: 0, 10 zcnp?%
"opticalpowers (W)", @y ^dj
avJ
frame }c?/-ab>
hx >jMq-#*4
hy !B_i~Rmg
Uv?s <
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 xrd@GTaI
step = 20, ?4vf2n@
color = blue, J-yj&2
width = 3, gIa/sD2m>
"signal output" Exd$v"s
Y
g(){wCI
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 oju)8H1o#
step = 20, color = red, width = 3,"residual pump" Yz4)Q1
uH 1%diL^
! set_L(L_f) {restore the original fiber length } #Ux*":
!.9pV.~
w],+l N;
; ------------- X+2 aP'D
diagram 4: !输出图表4 Qvo(2(
szW_cjS
"TransverseProfiles" F=)9z+l#
j}}:&>;
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) )* 5R/oy,
Q[?O+
x: 0, 1.4 * r_co /um ?\[2Po]n
"radialposition (µm)", @x U"\$k&
y: 0, 1.2 * I_max *cm^2 0Yk@O)
x
"intensity (W/ cm²)", @y :KY920/,
y2: 0, 1.3 * N_Tm ernZfd{H
frame jzCSxuZ7O
hx I{#&!h>]U
hy Teq1VK3Hr
5MUM{(C
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 <