(* ^4y(pcD
Demo for program"RP Fiber Power": thulium-doped fiber laser, ,\\%EZ%a
pumped at 790 nm. Across-relaxation process allows for efficient r78u=r
population of theupper laser level. J=f:\]@Oy
*) !(* *)注释语句 {^PO3I
A^}i^
diagram shown: 1,2,3,4,5 !指定输出图表 0A)
Vtj$
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 gaLEhf^
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 B[)
[fE
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 lM@<_=2
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 G\'u~B/w
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 ~zXG<}n
c+,7Zu!
include"Units.inc" !读取“Units.inc”文件中内容 >!HfH(is\
,7n;|1`
include"Tm-silicate.inc" !读取光谱数据 C8bGae(
F20wf1^
; Basic fiberparameters: !定义基本光纤参数 FUW(>0x?
L_f := 4 { fiberlength } !光纤长度 iylBK!ou
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 PV,kYM6
r_co := 6 um { coreradius } !纤芯半径 +d6Aw}*
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 >|UrxJ7
I]uOMWZs
; Parameters of thechannels: !定义光信道 |Ak =-.
l_p := 790 nm {pump wavelength } !泵浦光波长790nm =Do3#Xe2V
dir_p := forward {pump direction (forward or backward) } !前向泵浦 !I~C\$^U
P_pump_in := 5 {input pump power } !输入泵浦功率5W %2rHvF=
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um L|C1C
cP
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 8%vh6$s6/
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 hJC
p0F9O
uu
WY4j6
l_s := 1940 nm {signal wavelength } !信号光波长1940nm T!^?d5uW#
w_s := 7 um !信号光的半径 %v`-uAy:
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 `wn<3#
loss_s := 0 !信号光寄生损耗为0 gW6G+
uI[-P}bSc&
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 >m2<Nl}
^LEmi1L
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 /P?|4D}<
calc &*>CPO
begin ~7,2N.vO2
global allow all; !声明全局变量 Th&Wq
set_fiber(L_f, No_z_steps, ''); !光纤参数 (^s &M
add_ring(r_co, N_Tm); JA SR
def_ionsystem(); !光谱数据函数 P*0nT
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 !ho5VAt
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 q5'yD;[hE
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 E.H,1 {
set_R(signal_fw, 1, R_oc); !设置反射率函数 T~wZ
finish_fiber(); qmue!Fv#g
end; d0H
Wd^F%)(
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 bCE7hutl
show "Outputpowers:" !输出字符串Output powers: ]JqkC4|
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) #iRyjD
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) 8f{}ce'E*
n ]6
0
Hl3XqR
; ------------- 8}pcanPg
diagram 1: !输出图表1 mNnw G);$
guU r1Ij
"Powers vs.Position" !图表名称 U Qi^udGFD
VkN[=0a,
x: 0, L_f !命令x: 定义x坐标范围 2l[A=Z
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 WFeMr%Zqh>
y: 0, 15 !命令y: 定义y坐标范围 |W~V@n8"6
y2: 0, 100 !命令y2: 定义第二个y坐标范围 fa+W9
frame !frame改变坐标系的设置 S$lmEJ_
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) |qy"%W@
hx !平行于x方向网格 zI2KIXcc
hy !平行于y方向网格 0r$hPmvv8
QS=$#Gp
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 CtC`:!Q
color = red, !图形颜色 G2yUuyAZ
width = 3, !width线条宽度 picP_1L
"pump" !相应的文本字符串标签 ^ ]6
80h
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 1{Alj27
color = blue, PkCeV]`w
width = 3, FbCZV3Y
"fw signal" 2YE]?!
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 "{ QHWZ
color = blue, _#YHc[Wz
style = fdashed, ]}l+ !NV<
width = 3, J6["j
"bw signal" 5#9Wd9LP
ndCS<ojcBP
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 4 _U,-%/
yscale = 2, !第二个y轴的缩放比例 MZP><Je&
color = magenta, pv m'pu78
width = 3, 't]EkH]BC
style = fdashed, |YGiATD4DG
"n2 (%, right scale)" oCdOC5
M(h H#_$
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 W$t}3Ru
yscale = 2, Bc|x:#`C\{
color = red, w)m0Z4*
width = 3, ;~@PYIp
style = fdashed, R.YGmT'2
"n3 (%, right scale)" P7x?!71?L
gJGBD9wC
$W_o$'crW
; ------------- ;~Gpw/]5E
diagram 2: !输出图表2 Obc3^pV&
_g`0td>N
"Variation ofthe Pump Power" /L|}Y242
dYqDL<se/I
x: 0, 10 X.AOp
"pump inputpower (W)", @x (&]15 FJ$1
y: 0, 10 Ah>krE0t
y2: 0, 100 [rQ(ae
frame TnU$L3k
hx o27`g\gDR,
hy e"adkV
legpos 150, 150 9MzkG87J
CG>2,pP,
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 'lRHdD}s
step = 5, ^R'!\m|FR
color = blue, q\HBAry
width = 3, L{0OMyUA
"signal output power (W, leftscale)", !相应的文本字符串标签 T17LYHIT
finish set_P_in(pump, P_pump_in) -0r"#48(%
5NF&LM;i(
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 oplA'Jgnv
yscale = 2, rU^ghF
step = 5, Jx9%8Ek
color = magenta, g+/U^JIc4l
width = 3, hic$13KuP
"population of level 2 (%, rightscale)", Rw{v"n
finish set_P_in(pump, P_pump_in) 8kc'|F\
,M h/3DPgE
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 GK+\-U)v
yscale = 2, l/UG+7
step = 5, 2[YD&
color = red, dVt@D&
width = 3, JiLrwPex[
"population of level 3 (%, rightscale)", :=7 '1H
finish set_P_in(pump, P_pump_in) R:R@sU
)* nbEZm@
Qn3+bF4
; ------------- ~ kJpB t7M
diagram 3: !输出图表3 I64:-P[\
kZ[yv
"Variation ofthe Fiber Length" Q0; gF?
9la~3L_g
x: 0.1, 5 ,h`D(,?X
"fiber length(m)", @x {]Iu">*
y: 0, 10 <r`Jn49
"opticalpowers (W)", @y 842+KLS
frame l<:E+lU
hx ![!b^:f
hy KJC9^BAr
&2]D+aL|h
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 e CUcE(
step = 20, [=1?CD
color = blue, q<uLBaL_]r
width = 3, 7CMgvH)O
"signal output" oNsx Fi:
^k<$N
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 Q4:r$
&
step = 20, color = red, width = 3,"residual pump" (a!,)
hGXDu;{
! set_L(L_f) {restore the original fiber length } |M>k &p,B-
knzED~v@(
OYp8r
; ------------- /)4r2 x
diagram 4: !输出图表4 :{uUc
?8}jJw2H
"TransverseProfiles" SW'KYzn
3i}B\
{
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) :Qp/3(g e
oP75|p
x: 0, 1.4 * r_co /um Z|dZc wo
"radialposition (µm)", @x 4:PP[2?
y: 0, 1.2 * I_max *cm^2 Y1+lk^
"intensity (W/ cm²)", @y b}*bgx@<
y2: 0, 1.3 * N_Tm O~0
1)%
frame w|o@r%Q#l
hx M%^laf
hy L/LNX{|
J*C*](
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 (UT*T
yscale = 2, 8HA=O?Cg
color = gray, h*Tiv^a
width = 3, !`=?<Fl
maxconnect = 1, !I/kz }N@
"N_dop (right scale)" pdiZ"pe
PW4Wn`u
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 O;?~#E<6w
color = red, c6)zx
b
maxconnect = 1, !限制图形区域高度,修正为100%的高度 mXaUWgO
width = 3, {[~,q\M[
"pump" %~2m$#)
bQjHQ"G
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 :/l
color = blue, io3'h:+9s
maxconnect = 1, +0 |0X {v
width = 3, @cGql=t
"signal" w! 7/;VJ3d
x&Rp
m<4
4]KceE
; ------------- +]vl8, 4@
diagram 5: !输出图表5 1*jm9])#
&W!@3O{~.
"TransitionCross-sections" #
t
Ki6u
Mv=;+?z!
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) p~ItHwiT
_0E,@[
x: 1450, 2050 $7YLU{0
"wavelength(nm)", @x 7^=jv~>wP
y: 0, 0.6 R&xd
ic!
"cross-sections(1e-24 m²)", @y 'WCTjTob/
frame B=`!
hx /p"R}&z
hy Z4' v
7yl'!uz)9
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 h zE)>f
color = red, < *OF
width = 3, 5GkM7Zu!{j
"absorption" 2Wtfx"
.y
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 Yl])Q|2I
color = blue, $@;[K\
width = 3, bxq`E!]
"emission" -NeF6
Q-5wI$=