(* >*|Eyv_
Demo for program"RP Fiber Power": thulium-doped fiber laser, }\A0g}
pumped at 790 nm. Across-relaxation process allows for efficient e-xT.RnQ
population of theupper laser level. b+dmJ]c
*) !(* *)注释语句 xkkG#n)
Y'}c$*OkI
diagram shown: 1,2,3,4,5 !指定输出图表 gxVJH'[V5
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 dJb7d`
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 ,oEAWNbgQ
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 'I[xZu/8yg
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 ~X;sa,)L1+
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 S4E@wLi
pUgas?e&
include"Units.inc" !读取“Units.inc”文件中内容 0'zjPE#
J|z ' <W
include"Tm-silicate.inc" !读取光谱数据 6Tq2WZ}<'
5mZ9rLn
; Basic fiberparameters: !定义基本光纤参数
ILHn~d IC
L_f := 4 { fiberlength } !光纤长度 l`:-B'WM
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 G+3uY25y
r_co := 6 um { coreradius } !纤芯半径 E*v+@rv
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 / pGx!
V%^d~^m,H
; Parameters of thechannels: !定义光信道 h}+Gz={Q^
l_p := 790 nm {pump wavelength } !泵浦光波长790nm
@3I?T
Q1
dir_p := forward {pump direction (forward or backward) } !前向泵浦 Ax4;[K\Q
P_pump_in := 5 {input pump power } !输入泵浦功率5W "nNT9
K|
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um S!
.N3ezn
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 E_xk8X~
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 fKs3H?|
G<~P||Lu^
l_s := 1940 nm {signal wavelength } !信号光波长1940nm 2T"[$iH!7
w_s := 7 um !信号光的半径 /DSy/p0%
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 7l'1
loss_s := 0 !信号光寄生损耗为0 kPnuU!
7P52r
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 6U] "i
u/`x@u
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 L\t!)X-4
calc 52*KRq
o
begin =mxj2>,&
global allow all; !声明全局变量 oIKuo~
set_fiber(L_f, No_z_steps, ''); !光纤参数 h*mKS -TC
add_ring(r_co, N_Tm); z)*\njYe
def_ionsystem(); !光谱数据函数 O(T6Y80pU
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 uF T5Z
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 ksqb& ux6
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 !j0iLYo(*
set_R(signal_fw, 1, R_oc); !设置反射率函数
%S%0/
finish_fiber(); y$?O0S%F
end; fydQaxCND
mZ#IP
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 J]&nZud`
show "Outputpowers:" !输出字符串Output powers: 4 ..V
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) \&s$?r
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) S`[r]msw
\j vS`+
wq#'o9s,
; ------------- ;BEX|wxn
diagram 1: !输出图表1 \H/}|^+@
PW-sF
"Powers vs.Position" !图表名称 I#CS;Yh95
z`|E0~{-
x: 0, L_f !命令x: 定义x坐标范围 ?? Dv\yLZI
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 m^a0JR}u9
y: 0, 15 !命令y: 定义y坐标范围 YZ5[# E@l
y2: 0, 100 !命令y2: 定义第二个y坐标范围 AyMbwCR"X
frame !frame改变坐标系的设置 |Lz7}g=6
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) 4"V6k4i5
hx !平行于x方向网格 C2K<CDVw
hy !平行于y方向网格 $K!6T
+|spC
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 l,E4h-$
color = red, !图形颜色 Dl=vv9
width = 3, !width线条宽度 G#z9=NF~V
"pump" !相应的文本字符串标签 A@I3:V
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 G4,BcCPQ
color = blue, ]iiB|xT
width = 3, i &,1
"fw signal" DOWZhD
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 g);.".@"
color = blue, 7, :l\t
style = fdashed, t?_{
width = 3, 5ZHO+@HiFH
"bw signal"
@XX7ydG5
a(+u"Kr
z
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 ?}U l(
yscale = 2, !第二个y轴的缩放比例 2v1dSdX,W
color = magenta, Z-z(SKL
width = 3, (
z%t
style = fdashed, N'0fB`:kz
"n2 (%, right scale)" [[8h*[:
LwEc*79
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 _zFJ]7Ym.)
yscale = 2, ut9R]01:
color = red, qyYf&VC}
width = 3, 1s#GY<<
style = fdashed, ]hA]o7k
"n3 (%, right scale)" uBBW2
W:=CpbwENX
K|{&SU_m
; ------------- e\i}@]
diagram 2: !输出图表2 ZZ F\;
#'h(o/hz&&
"Variation ofthe Pump Power" *XqS~G
fn\&%`U
x: 0, 10 cjBHczkY
"pump inputpower (W)", @x 15`,kJSK
y: 0, 10 +8V|
y2: 0, 100 kZvh<NFh_
frame 3O'X;s2\d
hx eqWb>$
hy 08E ,U
legpos 150, 150 5[>N[}Ck>
1"HSM=p
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 wi-{&
step = 5, =J&aN1Hgt
color = blue, vpqMKyy
width = 3, -` e`U%n
"signal output power (W, leftscale)", !相应的文本字符串标签 9IG3zM f
finish set_P_in(pump, P_pump_in) >{kPa|
s2\6\8Ipn
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 O(f&0h
!
yscale = 2, 9w,u4q
step = 5, rlVo}kc7:
color = magenta, o[CjRQY]P
width = 3, 'QEQyJ0EB
"population of level 2 (%, rightscale)", vE+OL8 V
finish set_P_in(pump, P_pump_in) 9]TvLh3
'l3K*lck
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 (L6*#!Dt
yscale = 2, 5mYI5~
p
step = 5, ) "Toh=x]
color = red, QG=&{-I~[3
width = 3, HxH=~B1"P
"population of level 3 (%, rightscale)", ;Cqjg.wkB
finish set_P_in(pump, P_pump_in) vxC,8Z
wC[Bh^]
1f`=U0
; ------------- jo8;S?+<|?
diagram 3: !输出图表3 Z
]WA-Q6n
E8.xmTq
"Variation ofthe Fiber Length" }D&fw=r"M
IKV:J9
x: 0.1, 5 VpMPTEZ*L
"fiber length(m)", @x j;b<oQH
y: 0, 10 Ev;ocb,
"opticalpowers (W)", @y ZM%z"hO9R
frame R]{AJ"p
hx qP0_#l&
hy f@a@R$y
5U/1Z{
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 b,#E.%SLw
step = 20, Qvd$fY**
color = blue, Z"fnjH
width = 3, p@7[w@B\c
"signal output" mjqVP.
b(~
gQM
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 1$Pn;jg:
step = 20, color = red, width = 3,"residual pump" D%Y{(l+X
jHx<}<
! set_L(L_f) {restore the original fiber length } W}5 H'D
qm)KO 4
,\K1cW~U5
; ------------- Ilc FW
diagram 4: !输出图表4 b]h]h1~hHH
L){rv)?="
"TransverseProfiles" lAwOp
uvrfR?%QK
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) AT{ewb
,JcQp=g
x: 0, 1.4 * r_co /um '?~k`zK
"radialposition (µm)", @x &n:F])`2
y: 0, 1.2 * I_max *cm^2 7^J-5lY3S
"intensity (W/ cm²)", @y zAxwM-`
y2: 0, 1.3 * N_Tm !Fz9\|
frame t'EH_U
hx E5M*Gs
hy /N
^%=G#
f#p.=F$
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 B94mh
yscale = 2, u= K?K
color = gray, P~0d'Oi
width = 3, khb
Gyg%
maxconnect = 1, *s6MF{Ds
"N_dop (right scale)" 96Tc:#9i
<oSk!6*
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 "l&sDh%Lk<
color = red, '* +]&~b
maxconnect = 1, !限制图形区域高度,修正为100%的高度 U jC$Mi`O
width = 3, .O'gD.|^N
"pump" kl| KFdA;
iw(\]tMt
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 d+|8({X]D8
color = blue, -NVk>ENL4
maxconnect = 1, 5|-(Ic
width = 3, )^^r\
"signal" L$`!~z1
~} mX#,
VPf*>ph=
; ------------- ~`M GXd"o
diagram 5: !输出图表5 u+zq:2)H6
xnu|?;.}!
"TransitionCross-sections" Ox&g#,@h
s&lZxnIjc
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) XQk9 U
'MM#nQ\(
x: 1450, 2050 d
`Q$URn|
"wavelength(nm)", @x /s=TLPm
y: 0, 0.6 'W$jHs
"cross-sections(1e-24 m²)", @y WW;S
frame R$*{@U
hx fh
\<tnY
hy 2&]UFg:8Q
&K`[SX=
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 [6
!/
color = red, 5RTAM
width = 3, o"v>
BhpC
"absorption" D|Z,eench
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 ha'oLm#
color = blue, ~]A';xH&
width = 3, 7BF't!-2F
"emission" ;'pEzz?k"
C
did*hxJ