(* ~EXCYUp4v
Demo for program"RP Fiber Power": thulium-doped fiber laser, mSZg;7DE3*
pumped at 790 nm. Across-relaxation process allows for efficient ?P>4H0@I+
population of theupper laser level. 2P@6Qe
?
*) !(* *)注释语句 {TJBB/B1
}-XZ1qr
diagram shown: 1,2,3,4,5 !指定输出图表 ,1~zMzw ^
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 $ #GuV'
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 vRf$#fBEQ
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 Yjd/
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 n$7*L9)(C
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 I} +up,B]o
Lz-|M?(
include"Units.inc" !读取“Units.inc”文件中内容 $ywROa]
;C:|m7|
include"Tm-silicate.inc" !读取光谱数据 6d/v%-3
r#&JfAo
; Basic fiberparameters: !定义基本光纤参数 1n7'\esC*
L_f := 4 { fiberlength } !光纤长度 5ZH3}B^L$
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 GJ2ZK=/
r_co := 6 um { coreradius } !纤芯半径 P{_%p<:V
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 ~%M*@fm
(aSuxl.Dq
; Parameters of thechannels: !定义光信道 &N6[*7
l_p := 790 nm {pump wavelength } !泵浦光波长790nm Dr=$ }Y
dir_p := forward {pump direction (forward or backward) } !前向泵浦 wpi$-i`
P_pump_in := 5 {input pump power } !输入泵浦功率5W _FcTY5."S
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um (3!6nQj-t
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 e<a*@
P,
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 jrz.n4Y`
W(4$.uZ)
l_s := 1940 nm {signal wavelength } !信号光波长1940nm JZ5 ";*,
w_s := 7 um !信号光的半径 G{>PYLxOb
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 xVX:kDX
loss_s := 0 !信号光寄生损耗为0 B)L0hi
J-uQF|
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 $_TS]~y4}
`#8k Jt
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 IhZn
calc nHq4f&(H
begin BOcD?rrZ0
global allow all; !声明全局变量 %la1-r~
set_fiber(L_f, No_z_steps, ''); !光纤参数 r@vt.t0#
add_ring(r_co, N_Tm); j&Xx{ 4v
def_ionsystem(); !光谱数据函数 %0/qb0N&
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 T{m) = (q
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 )X|)X,~+-
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 $@]
xi
set_R(signal_fw, 1, R_oc); !设置反射率函数 yZgWFf.X
finish_fiber(); ']I!1>v$[
end; mf{M-(6'
}S?"mg&V
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 Tbv w?3
show "Outputpowers:" !输出字符串Output powers: chKEGosbF
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) |mRlP5
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) AJ&j|/
f8N*[by
(U#
Oj"
; ------------- 8-k`"QI=
diagram 1: !输出图表1 5G(dvM-n
)1Y?S;
"Powers vs.Position" !图表名称 h!|U j
;fW~Gb?"
x: 0, L_f !命令x: 定义x坐标范围 {7]maOg>7J
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 yFb"2
y: 0, 15 !命令y: 定义y坐标范围 hwL`9.w
y2: 0, 100 !命令y2: 定义第二个y坐标范围 |W=-/~X
frame !frame改变坐标系的设置 \O;/wf0Hg
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) `sso Wn4
hx !平行于x方向网格 /d:hW4}<}.
hy !平行于y方向网格 c(2?./\|
#Ktk[ "6
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 T`Up%5Dk
color = red, !图形颜色 s2|.LmC3|B
width = 3, !width线条宽度 '7oCWHq[
"pump" !相应的文本字符串标签 :3D6OBkB
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 V]+y*b.60
color = blue, 8IxIW0
width = 3, z~~pH9=c2
"fw signal" "9QZX[J|*
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 w{xa@Q]t-
color = blue, 8 M,@Mbn
style = fdashed, 0,0Z!-Y
width = 3, UQ;2g\([
"bw signal" fpC":EX@r
kp<Au)u
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 ;|?_C8
yscale = 2, !第二个y轴的缩放比例
3F!)7
color = magenta, h%W,O,K/
width = 3, D]}~` SO
style = fdashed, fmQif]J;;
"n2 (%, right scale)" )8#-IXxp
_a& Z$2O
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 sZr \mQ~
yscale = 2, X`WS&!C<
color = red, |? fAe{*
width = 3, V59!}kel1%
style = fdashed, $t}W,?
"n3 (%, right scale)" e Ru5/y~
7#G!es
glU9A39qx?
; ------------- O#18a,o@
diagram 2: !输出图表2 +}?%w|8||s
(GL'm[V
"Variation ofthe Pump Power" KGo^>us
+6jGU'}[
x: 0, 10 s[h;9
I1w
"pump inputpower (W)", @x <X4f2z{T{@
y: 0, 10 K39I j_3
y2: 0, 100 Z]TQ+9t
frame |;)_-=L0P
hx - ry
hy WTl0}wi
legpos 150, 150 JBJ?|}5k4c
e],(d7 Jo
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 MmvOyKNZF
step = 5, Vh?vD:|
color = blue, =1R
2`H\
width = 3, HDzeotD
"signal output power (W, leftscale)", !相应的文本字符串标签 wA/!A$v(
finish set_P_in(pump, P_pump_in) m,q)lbRl
CVkJMH_
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 4xal m
yscale = 2, L/WRVc6
step = 5, MoEh25U.
color = magenta, 8$47Y2r@
width = 3, L[*cbjt[
"population of level 2 (%, rightscale)", $yj*n;
finish set_P_in(pump, P_pump_in) ]:?S}DRG
4 Sk@ v
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 :R:@V#Y
yscale = 2, is^R8a
step = 5, b`S9#`
color = red, hslT49m>
width = 3, t5K#nRd Z:
"population of level 3 (%, rightscale)", +`Nu0y!rj
finish set_P_in(pump, P_pump_in) Z"w}`&TC$^
(,+#H]L
|P|2E~[r
; ------------- t!J>853
diagram 3: !输出图表3 Fec4 #}|
<_eEpG}9
"Variation ofthe Fiber Length" S\t!7Xs%*U
<'sm($.2
x: 0.1, 5 W
wj+\
"fiber length(m)", @x 1'TS!/ll];
y: 0, 10 b 1Wz
"opticalpowers (W)", @y UCj+V@{
frame RN@)nc_
hx `}sFT:1&
hy b.[9Adi >
_]Ob)RUVH
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 G^K;+& T
step = 20, xnWezO_
color = blue, eUCBQK
width = 3, pMViq0
"signal output" '4u/ g
_G<Wq`0w)
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 l"X,[
step = 20, color = red, width = 3,"residual pump" z+wegF
a+k3wzJ
! set_L(L_f) {restore the original fiber length } Y|hd!C-x
tIod=a)
^
.A
; ------------- Da6l=M
diagram 4: !输出图表4 ~/aCzx~
KY%qzq,n
"TransverseProfiles" MuzQz.C
f61vE
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) gCkR$.-E
~Cyn w(
x: 0, 1.4 * r_co /um XA. 1Y)
"radialposition (µm)", @x FrLv%tK|
y: 0, 1.2 * I_max *cm^2 'BgR01w J
"intensity (W/ cm²)", @y ""N~##)8
y2: 0, 1.3 * N_Tm KXcRm)
frame x*TJYST
hx !lsa5w{
hy 4u41M,nJQd
N,VI55J:y>
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 -Ks)1w>l
yscale = 2, upeioC q
color = gray, +s`cXTlFrk
width = 3, Rm$( X5x>o
maxconnect = 1, 5K$<Ad4$b
"N_dop (right scale)" pg_H' 0R
r_tt~|s,>
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 xkSVD6Km
color = red, jMS>B)'TO
maxconnect = 1, !限制图形区域高度,修正为100%的高度 K g.O2F77
width = 3, 7'{Vh{.
"pump" #NL'r99D/o
TPKD'@:x
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 uocFOlU0n
color = blue, KV6D0~
maxconnect = 1, #(+V&<K
width = 3, V;J3lV<
"signal" W.D>$R2
-3b_}by
o^owv(
; ------------- wHx_lsY;
diagram 5: !输出图表5 i;|I;5tC
q3K}2g
"TransitionCross-sections" >+!Ef
,TB$D]u8
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) -'*<;]P+.
UL%a^' hR
x: 1450, 2050 cb{"1z
"wavelength(nm)", @x [!uVo>Q4
y: 0, 0.6 7;Q4k"h
"cross-sections(1e-24 m²)", @y @" umY-1f
frame Q+QD,
hx Y5"HKW^
hy a=9QwEZ
%S$$*|_G
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 N:+d=G`x
color = red, Wfc~"GQq4
width = 3, ?FR-aXx
"absorption" 2vsV:LS.
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 ;, \!&o6
color = blue, 42}8es.aa
width = 3, ~0?B
"emission" [U"/A1p
0plX"NU