(* yH5^EY7rQ
Demo for program"RP Fiber Power": thulium-doped fiber laser, ?=,4{(/)
pumped at 790 nm. Across-relaxation process allows for efficient <"F\&M`G
population of theupper laser level. yW5/Y02
*) !(* *)注释语句 t&}Z~Zp
S`g:zb_
diagram shown: 1,2,3,4,5 !指定输出图表 5Z"IM8?
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 ap;?[B~Ga
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响
uyBmGS2
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 )a"rj5~-
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 81Ixs
Qt
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 &AM<H}>
VQ wr8jXye
include"Units.inc" !读取“Units.inc”文件中内容 @a-u_|3q
zj:=
9$
include"Tm-silicate.inc" !读取光谱数据 z{XN1'/V
"c5C0 pK0
; Basic fiberparameters: !定义基本光纤参数 C+ibLS4i
L_f := 4 { fiberlength } !光纤长度 !kCMw%[
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 *FhD%><
r_co := 6 um { coreradius } !纤芯半径 xuBXOr4"P
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 :'1UX <&B
#=@H-ZuD7
; Parameters of thechannels: !定义光信道 Z9Prw/8P
l_p := 790 nm {pump wavelength } !泵浦光波长790nm qZw4"&,j$
dir_p := forward {pump direction (forward or backward) } !前向泵浦 >d#oJ?goX
P_pump_in := 5 {input pump power } !输入泵浦功率5W T}')QC&wQ
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um VGFWF3s
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 Gt;@.jY&
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 @;>i3?
LF o{,%B
l_s := 1940 nm {signal wavelength } !信号光波长1940nm 81?7u!=ic+
w_s := 7 um !信号光的半径 w&&uk[Gh/a
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 w1Ar[
P
loss_s := 0 !信号光寄生损耗为0 HqM>K*XKU
Ce&nMgd~
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 2K >tI9);
ifA=qn0=}
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 ^Ej4^d
calc w\(LG_n|
begin tF:'Y ~3 p
global allow all; !声明全局变量 !%w#h0(b
set_fiber(L_f, No_z_steps, ''); !光纤参数 jC_7cAsl
add_ring(r_co, N_Tm); Y)D~@|D,
def_ionsystem(); !光谱数据函数 38Rod]\E
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 8R!3}kx
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 ?Q$LIoR
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 JiFy.Pf
set_R(signal_fw, 1, R_oc); !设置反射率函数 r]! <iw
finish_fiber(); 2kv%k3Q{
end; 00DWXGt20o
E>_?9~8Mf
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 m]g"]U:
show "Outputpowers:" !输出字符串Output powers: {sn :Lj0
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) FN$hEc!
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) <9za!.(zu
Y>OL2g
bXN-q!
; ------------- [,GXA)j
diagram 1: !输出图表1 T9
@^@l$
5fh@nR
"Powers vs.Position" !图表名称 &p?Oo^
lHYu-}TNP
x: 0, L_f !命令x: 定义x坐标范围 @ mzf(Aq
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 bYzBe\^3q3
y: 0, 15 !命令y: 定义y坐标范围 7e,<$PH
y2: 0, 100 !命令y2: 定义第二个y坐标范围 m7:E73:
frame !frame改变坐标系的设置 3J\NkaSR
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) ^iaeY
jI
hx !平行于x方向网格 `
eB-C//
hy !平行于y方向网格 A<6V$e$:2
)p.+39]{2
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 2>{_O?UN
color = red, !图形颜色 ~;ink
width = 3, !width线条宽度 j/zD`ydj
"pump" !相应的文本字符串标签 Kuh! b`9
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 0m5Q;|mH
color = blue, q.(p.uD
width = 3, +uPN+CgQ@
"fw signal" E(G=~>P
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 \!UNale
color = blue, tVx.J'"Y
style = fdashed, `1%SXP1
width = 3, y$)gj4k/D
"bw signal" uo1G
':,6s
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 l<<G".?
yscale = 2, !第二个y轴的缩放比例 2|k*rv}l
color = magenta, c$f|a$$b
width = 3, V:42\b7x
style = fdashed, ~L(_q]
"n2 (%, right scale)" uTJi }4cw
=#XsY,r
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 3)f=Z2U>
yscale = 2, XEqg%f
color = red, `
n{rzenPX
width = 3, dE5DH~ldV
style = fdashed, !2x"'o
"n3 (%, right scale)" #SY8Zv
^_<>o[qE
v)JQb-<
; ------------- +DKrX
diagram 2: !输出图表2 Y51XpcXQ
f5a%/1?
"Variation ofthe Pump Power" gB3&AQ
e,E;\x
&
x: 0, 10 K/[v>(<
"pump inputpower (W)", @x Y=G *[G#
y: 0, 10 /2u;w!oi.
y2: 0, 100 f/)3b`$Wu
frame AW'tZF"
hx whNRUOK:
hy ;J\{r$q
legpos 150, 150 [[D}vL8d
HZQ I |
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 #)R;6"
step = 5, We#*.nr{3Z
color = blue, &3{:h
width = 3, P7\(D`
"signal output power (W, leftscale)", !相应的文本字符串标签 M;MD-|U
finish set_P_in(pump, P_pump_in) ]_BG"IR!..
$!I$*R&
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 6o;lTOes
yscale = 2, z!Kadqns
step = 5, K=sQ_j.&Z
color = magenta, u\qyh9s
width = 3, CjQ_oNI
"population of level 2 (%, rightscale)", (XqeX(s
finish set_P_in(pump, P_pump_in) C>68$wd>
J=K3S9:n]g
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 v,>F0ofJ
yscale = 2, qw87B!D
step = 5, *ep!gT*4
color = red, $
O!f*lG
width = 3, k9 *0xukJ
"population of level 3 (%, rightscale)", KvilGh10
finish set_P_in(pump, P_pump_in) qUtVqS
C,PCU <q
GWE`'V
; ------------- BpP\C!:^
diagram 3: !输出图表3 e^'?:j
$Z28nPd/
"Variation ofthe Fiber Length" uFdSD
/LSiDys
x: 0.1, 5 1Y9Ye?~jd
"fiber length(m)", @x 7
oZ-D~3
y: 0, 10 p'w[5'
"opticalpowers (W)", @y r~s03g0
frame
7/7A
hx tW=0AtZl]
hy r)j#Skh].
l3g6y9;
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 /v!H{Zw=c
step = 20, 7DYD+N+T
color = blue, V$v;lvt^Uq
width = 3, iBUf1v
"signal output" =m/2)R{
!d(!1fC
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 tb=L+WAIw
step = 20, color = red, width = 3,"residual pump" q',a7Tf:
>a4Bfnf"eI
! set_L(L_f) {restore the original fiber length } wG{obsL.!
1~`gfHI4
]hf4= gm
; ------------- a|s= d
diagram 4: !输出图表4 PPq*_Cf
2PeI+!7s
"TransverseProfiles" +$
-#V
.`h+fqa
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) Fk9(FOFg
41uSr 1
x: 0, 1.4 * r_co /um @pS[_!EqYz
"radialposition (µm)", @x (/KF;J^M
y: 0, 1.2 * I_max *cm^2 pH~JPNng
"intensity (W/ cm²)", @y PRah?|*0s
y2: 0, 1.3 * N_Tm =p7W^/c
frame sN?:9J8
hx sIy$}_
hy /gdo~
pF !vW
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 x)U;
yscale = 2, '+QgZ>q"
color = gray, Bpp9I;)c
width = 3, L"-&B$B:
maxconnect = 1, ut,"[+J
"N_dop (right scale)" U92hv~\
6?iP z?5
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 .z4FuG,R
color = red, ~
dk1fh
maxconnect = 1, !限制图形区域高度,修正为100%的高度 O0l;Qi
width = 3, >WEg8'#O
"pump" 7>mYD3
pxC5a i
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 52 A=c1kb
color = blue, R"=M5
maxconnect = 1, F>Oh)VL,Ev
width = 3, 1M{#"t{6
"signal" `&6]P :_qp
_
o(h]G1].
S\rfR N
; ------------- c,fedH;
diagram 5: !输出图表5 ujh4cp
~zX5}U<R
"TransitionCross-sections" l85"C
'ng/A4
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) od fu7P_
_L72Ae(_
x: 1450, 2050 igL^k`&5^"
"wavelength(nm)", @x CUG<v3\
y: 0, 0.6 )5v .9N6v
"cross-sections(1e-24 m²)", @y O gnpzN
frame ZM.g+-9
hx K\ ]r
hy Z}C%%2Iz
;v'Y'!-J
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 ~e8n yB
color = red, fpi6pcof
width = 3, *~L]n4-
"absorption" BYf"l8^,
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 lTP02|eK
color = blue, <i6M bCB
width = 3, *S4P'JSY
"emission" QMY4%uyY!
8(;i~f:bCW