(* WSA;p=_
Demo for program"RP Fiber Power": thulium-doped fiber laser, `dB!Ia|
pumped at 790 nm. Across-relaxation process allows for efficient +RIG8w]
population of theupper laser level. c;\}R#
*) !(* *)注释语句 WH`E=p^x4
ym*,X@Qg^
diagram shown: 1,2,3,4,5 !指定输出图表 jpND"`Q
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 H8^U!"~E
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 Vp3r
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 OC)~psQK
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 OGmOk>_
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 i1ph{;C
2^-Z17Z}
include"Units.inc" !读取“Units.inc”文件中内容 h@nNm30i
+(>!nsf
include"Tm-silicate.inc" !读取光谱数据 j@OGl&'^-
i21ybXA=Z
; Basic fiberparameters: !定义基本光纤参数 K@ZK@++
L_f := 4 { fiberlength } !光纤长度 lZyxJDZ A
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 e;LJdd
r_co := 6 um { coreradius } !纤芯半径 'G3;!xk$
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 REd"}zDI
q2qbbQ6H
; Parameters of thechannels: !定义光信道 4 [@`j{
l_p := 790 nm {pump wavelength } !泵浦光波长790nm fC!]M hA"i
dir_p := forward {pump direction (forward or backward) } !前向泵浦 3:q\]]]S
P_pump_in := 5 {input pump power } !输入泵浦功率5W eURy]
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um RS`]>K3t
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 TF)OBN~/
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 %m\dNUz4g
\Qp #utC0s
l_s := 1940 nm {signal wavelength } !信号光波长1940nm l.tNq$3pS
w_s := 7 um !信号光的半径 yn;h.m [):
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 g.CUo:c
loss_s := 0 !信号光寄生损耗为0 .(!> *ka|
=F>@z4[P-
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 .gPE Qc+D
{~=Edf
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 p h[
^ve
calc G]q1_q4P1?
begin wKe$(>d"L
global allow all; !声明全局变量 *G{%]\s?
set_fiber(L_f, No_z_steps, ''); !光纤参数 FB<#N+L\
add_ring(r_co, N_Tm); MMs#Y1dH
def_ionsystem(); !光谱数据函数 -Fcg}\9
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 j(j o8
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 2FHWOy
/N@
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 5<-_"/_
set_R(signal_fw, 1, R_oc); !设置反射率函数 n-q
finish_fiber(); MPt:bf#
end; INQ0h `T
} $:uN
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 AF5$U8jf
show "Outputpowers:" !输出字符串Output powers: hr%O 4&sa
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) /|{Yot
e
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) x,W)qv
_C`cO
%j],6wW5J
; ------------- ,Y~{RgG
diagram 1: !输出图表1 &h=O;?dO
S1Q2<<[
"Powers vs.Position" !图表名称 }kg?A oo
; z_ZZ(W
x: 0, L_f !命令x: 定义x坐标范围 b2OVg
+3
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 K9v@L6pY=
y: 0, 15 !命令y: 定义y坐标范围 ]w!gv
/;
y2: 0, 100 !命令y2: 定义第二个y坐标范围 x <^vJ1
frame !frame改变坐标系的设置 nBs%k!RR
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) KjR^6v
hx !平行于x方向网格 2UYtFWB9o
hy !平行于y方向网格 x\ieWF1
2ye^mJ17
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 :+;AXnDM~
color = red, !图形颜色 D3#/*Ky
width = 3, !width线条宽度 8y;W+I(71
"pump" !相应的文本字符串标签 l"%|VWZ{iq
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 4&r+K`C0
color = blue, Kg0Vbzvb
width = 3, ]^,<Ez
"fw signal" @=o1q=5@8
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 b-e3i;T!}~
color = blue, G)28#aH
style = fdashed, _RG!lmJV
width = 3, +5pK[%k
"bw signal" %AbA(F
/60`"xH
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 d%l_:M3
yscale = 2, !第二个y轴的缩放比例 sY__ak!>
color = magenta, @vWC "W
width = 3, *ayn<Vlh`^
style = fdashed, M/GQQG;
"n2 (%, right scale)" +pU\;x
}>vf(9sF`
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 )/FB73!
yscale = 2, W69
-,w/
color = red, l1^/Q~u
width = 3, XWvT(+J
style = fdashed, 4`@]jm
"n3 (%, right scale)" t ZUZNKODW
G5W6P7-<X
*<*{gO?Q4
; ------------- -|^}~yOx0=
diagram 2: !输出图表2 *z4n2"<l
Dt,b\6
"Variation ofthe Pump Power" 1Sox@Ko
(A2x
x: 0, 10 ")|3ZB7>*
"pump inputpower (W)", @x o)'u%m
y: 0, 10 4,L(
y2: 0, 100 / G$8 j$
frame 0T 2h3,
hx Eq-fR~<9
hy lcgT9m#
legpos 150, 150 MdK!Y
_+0l+a*D
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 GF5WR e(E
step = 5, w)-@?jN
color = blue, 03?TT,y$
width = 3, xN
wKTIK$
"signal output power (W, leftscale)", !相应的文本字符串标签 Mw!?2G[|
finish set_P_in(pump, P_pump_in) vlCjh! x
HM%n`1ZU
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 5VIpA
yscale = 2, $|.x !sA
step = 5, F\!;}z
color = magenta, Q:Q)-|,
width = 3, +7?p&-r)x
"population of level 2 (%, rightscale)", K[Rl R+j
finish set_P_in(pump, P_pump_in) Q&:%U
Be+'&+
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 @O+yxGA
yscale = 2, _3<J!$]&p
step = 5, "UVqkw,vt
color = red, )t={+^Xe
width = 3, ,c"_X8Fkx$
"population of level 3 (%, rightscale)", vPEL'mw/3#
finish set_P_in(pump, P_pump_in) NGB%fJ
v :]y#y
a?6
r4u0
; ------------- ]d?`3{h9LD
diagram 3: !输出图表3 yA*~O$~Y
PETrMu<
"Variation ofthe Fiber Length" E :*!an
1\q(xka{
x: 0.1, 5 XOzPi*V**
"fiber length(m)", @x yrO'15TB
y: 0, 10 +]H9:ARI
"opticalpowers (W)", @y ghd~p@4
frame ?cr;u~-=
hx dA>t
hy #6'oor X
K^t M$l\
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 {EbR
=
step = 20, G T#hqt'1x
color = blue, I z~#G6]M
width = 3, / _v5B>
"signal output" %lz \w{
9Q-/Yh
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 ]]@jvU_?kS
step = 20, color = red, width = 3,"residual pump" a*hOT_;#
i`7{q~d=
! set_L(L_f) {restore the original fiber length } 6FG h=~{3,
)hK5_]"lmj
A/RHb^N
; ------------- kCxmC<34
diagram 4: !输出图表4 L
q8}z-?
4q[C'
J
"TransverseProfiles" (:2:_FL
8lI#D)}
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) H,txbJ
{YWj`K
x: 0, 1.4 * r_co /um ,WA7Kp9
"radialposition (µm)", @x t5N@z
y: 0, 1.2 * I_max *cm^2 !y$Hr[v
"intensity (W/ cm²)", @y 85Q2c
y2: 0, 1.3 * N_Tm 2NAGXWE
frame
Tn2Z{.q$
hx JV(eHuw
hy 7^'TU=ss_
'|&}rLr:+
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 \k0%7i[nZ/
yscale = 2, "C.'_H!Ex
color = gray, kt%9PGw
width = 3, "o#"u[W,
maxconnect = 1, Mcc774'*9
"N_dop (right scale)" 6kGIO$xJ)
@!fy24R]D
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 pSkP8'
?
color = red, (~xFd^W9o
maxconnect = 1, !限制图形区域高度,修正为100%的高度 VYTdK"%
width = 3, LW?] ~|
"pump" W=}l=o!G.
znhe]&Fw
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 [Ua4{3#
color = blue, u$[
'}z0:
maxconnect = 1, mm/U9hbp%
width = 3, ?H eC+=/Z
"signal" >Mj :'
^tsIgK^9H
LdI)
; ------------- /:>qhRFJA:
diagram 5: !输出图表5 yxQxc5/X)
4Cke(G
"TransitionCross-sections" \2-!%i,
'Kxs>/y3
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) dG.s8r*?M
15VOQE5Fl`
x: 1450, 2050 v3[Z]+ ]
"wavelength(nm)", @x bBAZr`<&U
y: 0, 0.6 Sd'
uXX@
"cross-sections(1e-24 m²)", @y 8U0y86q>)E
frame \:4WbM:B
hx v3Tr6[9
hy gSEj/?
+N"A5U
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 ?'CIt5n+\{
color = red, YKf,vHau
width = 3, y`:}~nUdT
"absorption" * gr{{c
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 _ot4HmD
color = blue, )+wBS3BC
width = 3, Z66akr
"emission" v~q2D"
gsI"G