切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2566阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2176
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* F[ 9IHT6{  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, ysvn*9h+&  
    pumped at 790 nm. Across-relaxation process allows for efficient A(<- U|  
    population of theupper laser level. [;};qQ-C2  
    *)            !(*  *)注释语句 F7=a|g  
    .H9!UQ&It  
    diagram shown: 1,2,3,4,5  !指定输出图表 hWuq  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 GfVMj7{  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 AvH/Q_-b  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 [?;oiEe.|  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 I /RvU,  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 |[xi"E\  
    W>s<&Vb  
    include"Units.inc"         !读取“Units.inc”文件中内容 HaLEQ73  
    1=#`&f5f&  
    include"Tm-silicate.inc"    !读取光谱数据 !74*APPHR  
    ~*G I<n  
    ; Basic fiberparameters:    !定义基本光纤参数 V GM/ed5-  
    L_f := 4 { fiberlength }      !光纤长度 M}us^t*  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 #Etz}:%W  
    r_co := 6 um { coreradius }                !纤芯半径 drF"kTD"7  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 JCE364$$"  
    "BEU%,w  
    ; Parameters of thechannels:                !定义光信道 arDY@o~  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm A.y"R)G  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 l$PO!JRD  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W l1!i3m'x  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um }p."7(  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 #16)7  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 {"s9A&  
    u;y1leG  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm TS@EE&Wq  
    w_s := 7 um                          !信号光的半径 4}96|2L5  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 5tQffo8t  
    loss_s := 0                            !信号光寄生损耗为0 -cJ(iz9!  
    Rm6<"SLV  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 Cc9<ABv?  
    +Hv%m8'0|  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 vR#A7y @ !  
    calc ^oaG.)3  
      begin <g,xc)[  
        global allow all;                   !声明全局变量 KvC:(Vqj  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 )V~<8/)  
        add_ring(r_co, N_Tm); lD\lFN(:  
        def_ionsystem();              !光谱数据函数 <XGOcekG  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 @$Z5A g!  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 Hk$|.TjzI  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 P0UMMn\-#  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 k|a{ |2p  
        finish_fiber();                                   Cl i k  
      end; (r:WG!I,  
    , lT8gQ|u  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 3-tp94`8}t  
    show "Outputpowers:"                                   !输出字符串Output powers: l&5| =  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) Mm|HA@W^  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) oa47TqFt  
    >0B [  
    dzggl(  
    ; ------------- d$b{KyUA  
    diagram 1:                   !输出图表1 ,O $F`0>9A  
    u=k\]W-  
    "Powers vs.Position"          !图表名称 E70  
     m ,qU})  
    x: 0, L_f                      !命令x: 定义x坐标范围 2{#*z%|z  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 ^:LF  
    y: 0, 15                      !命令y: 定义y坐标范围 0nG& LL5  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 $;"@;Lj%,  
    frame          !frame改变坐标系的设置 `Fu|50_@V  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) Koahd =  
    hx             !平行于x方向网格 5|Vb)QBv%  
    hy              !平行于y方向网格 ~r&Q\G  
    H;Z{R@kf  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 <&b ~(f  
      color = red,  !图形颜色 7A7K:,c  
      width = 3,   !width线条宽度 l AE$HP'o  
      "pump"       !相应的文本字符串标签 [Zi\L>PHO  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 sRt|G  
      color = blue,     tE<L4;t  
      width = 3, Lp1wA*  
      "fw signal" u&r @@p.  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 V ;"?='vVe  
      color = blue, eAm7*2  
      style = fdashed, (f $Y0;v>}  
      width = 3, |0A n| 18  
      "bw signal" oKzV!~{0M;  
    UyTq(7uo  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 7q$9\RR5  
      yscale = 2,            !第二个y轴的缩放比例 /8J2,8vZ  
      color = magenta, W  $H8[G  
      width = 3, OlMCF.W#3  
      style = fdashed, .oAg (@^6  
      "n2 (%, right scale)" XlDVJx<&J  
     YVD%GJ  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 rS)7D  
      yscale = 2, - stSl*  
      color = red, 6L'cD1pu  
      width = 3, wp.'M?6`L  
      style = fdashed, ra$_#HY  
      "n3 (%, right scale)" F#Z]Xq0r  
    F''4j8  
    8t9sdqM/C  
    ; ------------- NM[w=  
    diagram 2:                    !输出图表2 QF!K$?EU[  
    :t^=~xO9  
    "Variation ofthe Pump Power" Ho\K %#u  
    LEHlfB#z`@  
    x: 0, 10 |;9OvR> A  
    "pump inputpower (W)", @x 2Xe2 %{  
    y: 0, 10 5wP(/?sRy  
    y2: 0, 100 2*%0m^#^6  
    frame r{p?aG  
    hx ] M_[*OAb  
    hy |VaXOdD`&  
    legpos 150, 150 b>Vs5nY!  
    gaTI:SKzc  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 %C'!L]#  
      step = 5, O_(J',++  
      color = blue, }^)M)8zS  
      width = 3,  QqtFNG  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 }[D[ZLv  
      finish set_P_in(pump, P_pump_in) W53i5u(  
    |hOqz2|  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 ;l}TUo  
      yscale = 2, P0}uTee  
      step = 5, mbJ#-^}V  
      color = magenta, z}u  
      width = 3, u+XZdV  
      "population of level 2 (%, rightscale)", ~`8`kk8  
      finish set_P_in(pump, P_pump_in) (p^q3\  
    ;t[<!  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 7&|fD{:4U  
      yscale = 2, l.>QO ;  
      step = 5, ,B!u*  
      color = red, QP[w{T  
      width = 3, Ms^,]Q1{  
      "population of level 3 (%, rightscale)", VGq2ITg9eE  
      finish set_P_in(pump, P_pump_in) vTP'\^;  
    RHVMlMX  
    rs 7R5 F  
    ; ------------- sE-"TNONZ  
    diagram 3:                         !输出图表3 &ATjDbW*(  
    wzP>Cq  
    "Variation ofthe Fiber Length" 0'RSl~QvqS  
    o5 . q  
    x: 0.1, 5 *hFT,1WE=+  
    "fiber length(m)", @x <@@.~Qm'  
    y: 0, 10 g0_8:Gs}^  
    "opticalpowers (W)", @y l,,5OZw  
    frame U2@?!B[\d`  
    hx H[!by)H  
    hy >E[cl\5$E  
    =(.HO:#  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 g%[lUxL  
      step = 20,             TpZ)v.w~l7  
      color = blue, J"I{0>@  
      width = 3, f u\M2"e  
      "signal output" Bam7^g'*!3  
    ;Fp"]z!Qh+  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 NWb,$/7T  
       step = 20, color = red, width = 3,"residual pump" =,,!a/U  
    v=9:N/sW  
    ! set_L(L_f) {restore the original fiber length } Sf lHSMFw  
    bBC3% H^  
    .* V ZY  
    ; ------------- & 7JCPw  
    diagram 4:                                  !输出图表4 [ V/*{Z  
    Ko2{[%  
    "TransverseProfiles" VY Va8[}  
    e"[o2=v;5  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) SP5/K3t-*  
    A2* z  
    x: 0, 1.4 * r_co /um N[ E t  
    "radialposition (µm)", @x PL%_V ?z  
    y: 0, 1.2 * I_max *cm^2 v7xc01x  
    "intensity (W/ cm&sup2;)", @y ]NG`MZ  
    y2: 0, 1.3 * N_Tm ),dXaP[  
    frame J?u@' "u  
    hx *,@dt+H!y  
    hy  h ej  
    !W .ooy5(  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 @ 5|F:J  
      yscale = 2, iI&J_Y{1a_  
      color = gray, (A/V(.!  
      width = 3, ~48Uch\LG:  
      maxconnect = 1, |4ONGU*`E  
      "N_dop (right scale)" bC)d iC  
    C!%BW%"R  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 DY0G ;L 3  
      color = red, 7p@qzE  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 UR:cBr  
      width = 3, GC~Tfrf=r  
      "pump" jrZM  
    u ;f~  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 a 0Hzf  
      color = blue, |SQ5Sb  
      maxconnect = 1, u])N^AY"sj  
      width = 3, Y(-4Agq  
      "signal" j<Lj1 P3  
    1^b-J0  
    &v'e;W  
    ; ------------- ]'EtLFv)  
    diagram 5:                                  !输出图表5 W;eHDQ|  
    Jf YO|,  
    "TransitionCross-sections" WENPS*0oS]  
    u-f_,],p  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) T B1E1  
    pg [F{T<  
    x: 1450, 2050 0!eZ&.h?4  
    "wavelength(nm)", @x CES^ c-. k  
    y: 0, 0.6 DnMfHG[<  
    "cross-sections(1e-24 m&sup2;)", @y /P Qz$e-!Y  
    frame [wj&.I{^s  
    hx B9&"/tT  
    hy "z1\I\ ^  
    gp$oQh#37;  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 @M?;~M?B]J  
      color = red, r**u=q %p  
      width = 3, N3!x7J7A  
      "absorption" h%8[];*DpN  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 %J5zfNe)&  
      color = blue, KtG|m'\D  
      width = 3, nNSq6 Cj  
      "emission" J/:9;{R  
    c0sU1:e0  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚