切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2327阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2176
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* |=%$7b\C  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, M$&>"%Oi  
    pumped at 790 nm. Across-relaxation process allows for efficient 3"L$*toRA  
    population of theupper laser level. IL%&*B  
    *)            !(*  *)注释语句 \17)=W  
    {Z?!*Ow  
    diagram shown: 1,2,3,4,5  !指定输出图表 wkm SIN:  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 WLh_b)V|  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 :sA-$*&x  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 ;F0A\5I  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 fZ %ZV  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 IB;y8e,  
    \pPq ]k  
    include"Units.inc"         !读取“Units.inc”文件中内容 4P:vo$Cy  
    m",bfZ  
    include"Tm-silicate.inc"    !读取光谱数据 q?0goL  
    0?`#ko7~d  
    ; Basic fiberparameters:    !定义基本光纤参数 a9qZI  
    L_f := 4 { fiberlength }      !光纤长度 O-'T*M>  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 Ahwu'mgnC  
    r_co := 6 um { coreradius }                !纤芯半径 Hd2_Cg FB  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 7olA@;$  
    ovfw_  
    ; Parameters of thechannels:                !定义光信道 rpXw 8  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm K 6G n  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 U NAuF8>K  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W d*AV(g#B  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um PCIC*!{  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 .-34 g5  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 <_Lo3WGwc  
    9,>M/_8>  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm Wex4>J<`/  
    w_s := 7 um                          !信号光的半径 Anm5Cvt;i  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 34l=U?  
    loss_s := 0                            !信号光寄生损耗为0 X>B/DT  
    n&Tv]-  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 4C[gW  
    W ][IHy<   
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 M1>a,va8Zq  
    calc EPg?jKZava  
      begin =1JRu[&]8  
        global allow all;                   !声明全局变量 6x7=0}'  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 h7w<.zwu t  
        add_ring(r_co, N_Tm); UM]wDFn'E  
        def_ionsystem();              !光谱数据函数 g ` {0I[  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 \ lKQ'_  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 jGWLYI=V2  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 =0-qBodbl  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 *w6N&  
        finish_fiber();                                   Xg)yz~Ug  
      end; 8]L.E  
    <w A_2S Y  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 0jS/U|0  
    show "Outputpowers:"                                   !输出字符串Output powers: lt]U?VZ   
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) !6%mt}h  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) OH(+]%B78  
    %)e+w+  
    th<]L<BP/  
    ; ------------- ^ Q}1&w%  
    diagram 1:                   !输出图表1 -,tYfQ;:  
    :tgTYIF  
    "Powers vs.Position"          !图表名称 ][mc^eI0s|  
    2n=;"33%a  
    x: 0, L_f                      !命令x: 定义x坐标范围 93dotuF  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 -jy"?]ve.  
    y: 0, 15                      !命令y: 定义y坐标范围 ,ym;2hJ  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 M}<=~/k`j  
    frame          !frame改变坐标系的设置 |{nI.>  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) -a[{cu{  
    hx             !平行于x方向网格 O o:jP6r  
    hy              !平行于y方向网格 _7<U[63  
    Y[DKj!v  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 3{z|301<m  
      color = red,  !图形颜色 ?uN(" I  
      width = 3,   !width线条宽度 ..:V3]-D  
      "pump"       !相应的文本字符串标签 :&%;s*-9  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 9|`@czw  
      color = blue,     yM2&cMHH~  
      width = 3, E~P 0}'  
      "fw signal" l1[IXw?  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 ?X1#b2s  
      color = blue, v\eBL&WK  
      style = fdashed, yDC97#%3u  
      width = 3, 6~S0t1/t?  
      "bw signal" d/&|%Z r  
    >N J$ac  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 {+:XVT_+  
      yscale = 2,            !第二个y轴的缩放比例 ;`B35K  
      color = magenta, w!RH*S  
      width = 3, \gkajY-?  
      style = fdashed, hl:eF:'hm  
      "n2 (%, right scale)" a AM UJk  
    3c3Z"JV  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 `[CJtd2\  
      yscale = 2, p#d UL9  
      color = red, <T[N.mB  
      width = 3, +a-@ !J~:  
      style = fdashed, HH?*"cKF~  
      "n3 (%, right scale)" m-RY{DO+  
    DeA'D|  
    njMy&$6a##  
    ; ------------- cloI 6%5r  
    diagram 2:                    !输出图表2 CE,O m^  
    oDUMoX%4s  
    "Variation ofthe Pump Power" %ZyPK,("  
    .M2&ad :  
    x: 0, 10 SZ{cno1`  
    "pump inputpower (W)", @x GuWBl$|+b  
    y: 0, 10 lg >AWTW[  
    y2: 0, 100 )uvFta<(  
    frame ,~xU>L^  
    hx ]ECZU   
    hy ;;!{m(;LS}  
    legpos 150, 150 Rk%M~D*-  
    sVd_O[  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 I%919  
      step = 5, F |81i$R  
      color = blue, %E"/]!}3  
      width = 3, X.l"f'`l  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 yQ{_\t1Wd  
      finish set_P_in(pump, P_pump_in) J.2]km  
    ,jsx]U/^  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 Ko)T>8:  
      yscale = 2, (B,t 1+%  
      step = 5, @^cgq3H'  
      color = magenta, o%PoSZZ  
      width = 3, +A?+G  
      "population of level 2 (%, rightscale)", ,7jiHF  
      finish set_P_in(pump, P_pump_in) J7;n;Mx  
    /%9p9$kFot  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 FR^wDm$  
      yscale = 2, |~LjH|*M  
      step = 5, s4`*0_n  
      color = red, "Vp: z V<S  
      width = 3, ]#q7}Sd  
      "population of level 3 (%, rightscale)", L_ qv<iM$  
      finish set_P_in(pump, P_pump_in) Z?c=t-yqp  
    Qfu*F}  
    e=;@L3f  
    ; ------------- ":#x\;  
    diagram 3:                         !输出图表3 j_uY8c>3\q  
    Z?v6pjZ?  
    "Variation ofthe Fiber Length" e=)* O  
    n;^k   
    x: 0.1, 5 , gr&s+  
    "fiber length(m)", @x ilcy/  
    y: 0, 10 | ,l=v`/  
    "opticalpowers (W)", @y Qn)[1v  
    frame TgE.=`"7  
    hx YZ:'8<  
    hy 2a(yR >#  
    DD6`k*RIk.  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 9g5{3N3  
      step = 20,             C+]q  
      color = blue, 7U )qC}(  
      width = 3, LOUKUReE  
      "signal output" k&_u\D"^"%  
    -kri3?Y,  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 (VI* c!N  
       step = 20, color = red, width = 3,"residual pump" V<NsmC=g  
    l^y?L4hg)  
    ! set_L(L_f) {restore the original fiber length } )tI2?YIR  
    (:bCOEZ  
    ah"MzU)  
    ; ------------- ]G o~]7(5|  
    diagram 4:                                  !输出图表4 tTh;.88Z{  
    &B7+>Ix,  
    "TransverseProfiles" (T#(A4:6S  
    ocA'goI-  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) {p*hNi)0  
    tqwk?[y}+l  
    x: 0, 1.4 * r_co /um K-Dk2(x  
    "radialposition (µm)", @x CbH T #  
    y: 0, 1.2 * I_max *cm^2 %=mwOoMk0L  
    "intensity (W/ cm&sup2;)", @y ic{.#R.BY  
    y2: 0, 1.3 * N_Tm GgpQ]rw  
    frame si!9Gz;  
    hx JU=\]E@8c  
    hy zTBi{KrZ  
    {Fp`l\,  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 Vh.;p.!e  
      yscale = 2, ;$tv8%_L[  
      color = gray, !%RJC,X  
      width = 3, u388Wj   
      maxconnect = 1, L3=YlX`UL  
      "N_dop (right scale)" LY88;*:S  
    z1SMQLk  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 )<x;ra^  
      color = red, kSDa\l!W]  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 400Tw`AiJ  
      width = 3, o )nT   
      "pump" oA3W {  
    j zmSFKg*  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 9>[.=  
      color = blue, o S:vTr+$  
      maxconnect = 1, ekl? K~  
      width = 3, R!V5-0%  
      "signal" peTO-x^a-  
    gcW{]0%L^  
    C>`.J_N  
    ; ------------- w1"gl0ga$  
    diagram 5:                                  !输出图表5 */5<L99v  
    ofPF}  
    "TransitionCross-sections" X\3 ,NR,  
    kTi PZZI  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) =4M.QA@lI!  
    6Er0o{iI  
    x: 1450, 2050 ghJ,s|lH  
    "wavelength(nm)", @x d[>N6?JA/  
    y: 0, 0.6 #EQx  
    "cross-sections(1e-24 m&sup2;)", @y gSv[4,hXd  
    frame b!^M}s6  
    hx B=Zukg1G  
    hy 9OQ0Yc!3  
    UP~WP@0F  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 XEUa  
      color = red, yjOu]K:X  
      width = 3, RP|>&I  
      "absorption" 9HJ'p:{)  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 g@k#J"Q '[  
      color = blue, O'!r]0Q  
      width = 3, az \<sWb#  
      "emission" LpiHoavv  
    IB#iJ# ,  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚