(* |=%$7b\C
Demo for program"RP Fiber Power": thulium-doped fiber laser, M$&>"%Oi
pumped at 790 nm. Across-relaxation process allows for efficient 3"L$*toRA
population of theupper laser level. IL%&*B
*) !(* *)注释语句 \17)=W
{Z?!*Ow
diagram shown: 1,2,3,4,5 !指定输出图表 wkm
SIN:
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 WLh_b)V|
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 :sA-$*&x
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 ;F0A\5I
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 fZ
%ZV
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 IB;y8e,
\pPq]k
include"Units.inc" !读取“Units.inc”文件中内容 4P:vo $Cy
m",bfZ
include"Tm-silicate.inc" !读取光谱数据 q?0goL
0?`#ko7~d
; Basic fiberparameters: !定义基本光纤参数 a9qZI
L_f := 4 { fiberlength } !光纤长度 O-'T*M>
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 Ahwu'mgnC
r_co := 6 um { coreradius } !纤芯半径 Hd2_Cg FB
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 7olA@;$
ovfw _
; Parameters of thechannels: !定义光信道 rpXw 8
l_p := 790 nm {pump wavelength } !泵浦光波长790nm K
6G n
dir_p := forward {pump direction (forward or backward) } !前向泵浦 UNAuF8>K
P_pump_in := 5 {input pump power } !输入泵浦功率5W d*AV(g#B
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um PCIC*!{
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 .-34g5
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 <_Lo3WGwc
9,>M/_8>
l_s := 1940 nm {signal wavelength } !信号光波长1940nm Wex4>J<`/
w_s := 7 um !信号光的半径 Anm5Cvt;i
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 34l=U?
loss_s := 0 !信号光寄生损耗为0 X>B/DT
n&Tv]-
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 4C[gW
W ][IHy<
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 M1>a,va8Zq
calc EPg?jKZava
begin =1JRu[&]8
global allow all; !声明全局变量 6x7=0}'
set_fiber(L_f, No_z_steps, ''); !光纤参数 h7w<.zwu
t
add_ring(r_co, N_Tm); UM]wDFn'E
def_ionsystem(); !光谱数据函数 g ` {0I[
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 \ lKQ'_
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 jGWLYI=V2
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 =0-qBodbl
set_R(signal_fw, 1, R_oc); !设置反射率函数 *w6N&
finish_fiber(); Xg)yz~Ug
end; 8]L.E
<wA_2S
Y
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 0jS/U|0
show "Outputpowers:" !输出字符串Output powers: lt]U?VZ
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) !6%mt} h
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) OH(+]%B78
%)e+w+
th<]L<BP/
; ------------- ^
Q}1&w%
diagram 1: !输出图表1 -,tYfQ;:
:tgTYIF
"Powers vs.Position" !图表名称 ][mc^eI0s|
2n=;"33%a
x: 0, L_f !命令x: 定义x坐标范围 93dotuF
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 -jy"?]ve.
y: 0, 15 !命令y: 定义y坐标范围 ,ym;2hJ
y2: 0, 100 !命令y2: 定义第二个y坐标范围 M}<=~/k`j
frame !frame改变坐标系的设置 |{nI.>
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) -a[{cu{
hx !平行于x方向网格 O
o:jP6r
hy !平行于y方向网格 _7<U[63
Y[DKj!v
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 3{z|301<m
color = red, !图形颜色 ?uN(" I
width = 3, !width线条宽度 ..:V3]-D
"pump" !相应的文本字符串标签 :&%;s*-9
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 9|`@czw
color = blue, yM2&cMHH~
width = 3, E~P0}'
"fw signal" l1[IXw?
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 ?X1#b2s
color = blue, v\eBL&WK
style = fdashed, yDC97#%3u
width = 3, 6~S0t1/t?
"bw signal" d/&|%Z
r
>N
J$ac
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 {+:XVT_+
yscale = 2, !第二个y轴的缩放比例 ;`B35K
color = magenta, w!RH*S
width = 3, \gkajY-?
style = fdashed, hl:eF:'hm
"n2 (%, right scale)" aAM UJk
3c3Z"JV
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 `[CJtd2\
yscale = 2, p#d UL9
color = red, <T[N.mB
width = 3, +a-@
!J~:
style = fdashed, HH?*"cKF~
"n3 (%, right scale)" m-RY{DO+
DeA'D|
njMy&$6a##
; ------------- cloI 6%5r
diagram 2: !输出图表2 CE,Om^
oDUMoX%4s
"Variation ofthe Pump Power" %Z yPK,("
.M2&ad :
x: 0, 10 SZ{cno1`
"pump inputpower (W)", @x GuWBl$|+b
y: 0, 10 lg>AWTW[
y2: 0, 100 )uvFta<(
frame , ~xU>L^
hx ]ECZU
hy ;;!{m(;LS}
legpos 150, 150 Rk%M~ D*-
sVd_O[
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 I%919
step = 5, F |81i$R
color = blue, %E"/]!}3
width = 3, X.l"f'`l
"signal output power (W, leftscale)", !相应的文本字符串标签 yQ{_\t1Wd
finish set_P_in(pump, P_pump_in) J.2]km
,jsx]U/^
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 Ko)T>8:
yscale = 2, (B,t
1+%
step = 5, @ ^cgq3H'
color = magenta, o%PoSZZ
width = 3, +A ?+G
"population of level 2 (%, rightscale)", ,7jiHF
finish set_P_in(pump, P_pump_in) J 7;n;Mx
/%9p9$kFot
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 FR^wDm$
yscale = 2, |~LjH |*M
step = 5, s4`*0_n
color = red, "Vp:z V<S
width = 3, ]#q7}Sd
"population of level 3 (%, rightscale)", L_ qv<iM$
finish set_P_in(pump, P_pump_in) Z?c=t-yqp
Qfu*F}
e=;@L3f
; ------------- ":#x\;
diagram 3: !输出图表3 j_uY8c>3\q
Z?v6pjZ?
"Variation ofthe Fiber Length"
e=)*O
n;^k
x: 0.1, 5 ,
gr&s+
"fiber length(m)", @x il cy/
y: 0, 10 | ,l=v`/
"opticalpowers (W)", @y Qn)[1v
frame TgE.=` "7
hx YZ:'8<
hy 2a(yR>#
DD6`k*RIk.
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 9g5{3N3
step = 20, C+]q
color = blue, 7U
)qC}(
width = 3, LOUKURe E
"signal output" k&_u\D"^"%
-kri3?Y,
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 (VI* c!N
step = 20, color = red, width = 3,"residual pump" V<NsmC=g
l^y?L4hg)
! set_L(L_f) {restore the original fiber length } )tI2?YIR
(:bCOEZ
ah"MzU)
; ------------- ]G
o~]7(5|
diagram 4: !输出图表4 tTh;.88Z{
&B7+>Ix,
"TransverseProfiles" (T#(A4:6S
ocA'goI-
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) {p*hN i)0
tqwk?[y}+l
x: 0, 1.4 * r_co /um K-Dk2(x
"radialposition (µm)", @x CbH T #
y: 0, 1.2 * I_max *cm^2 %=mwOoMk0L
"intensity (W/ cm²)", @y ic{.#R.BY
y2: 0, 1.3 * N_Tm Gg pQ]rw
frame si!9Gz;
hx JU=\]E@8c
hy zTBi{KrZ
{Fp`l\,
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 Vh.;p.!e
yscale = 2, ;$tv8%_L[
color = gray, !%RJC,X
width = 3, u388Wj
maxconnect = 1, L3=YlX`UL
"N_dop (right scale)" LY88;*:S
z1SMQLk
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 )<x;ra^
color = red, kSDa\l!W]
maxconnect = 1, !限制图形区域高度,修正为100%的高度 400Tw`AiJ
width = 3, o )nT
"pump" oA3W
{
j
zmSFK g*
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 9>[.=
color = blue, o S:vTr+$
maxconnect = 1, ekl?K~
width = 3, R!V5-0%
"signal" peTO-x^a-
gcW{]0%L^
C>`.J_N
; ------------- w1"gl0ga$
diagram 5: !输出图表5 */5<L99v
ofPF}
"TransitionCross-sections" X\3,NR,
kTiPZZI
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) =4M.QA@lI!
6Er0o{iI
x: 1450, 2050 ghJ,s|lH
"wavelength(nm)", @x d[>N6?JA/
y: 0, 0.6 #EQx
"cross-sections(1e-24 m²)", @y gSv[4,hXd
frame b!^M}s6
hx B=Zukg1G
hy 9OQ0Yc!3
UP~WP@0F
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 XEUa
color = red, yjOu]K:X
width = 3, RP|>&I
"absorption" 9HJ'p:{)
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 g@k#J"Q'[
color = blue, O'!r]0Q
width = 3, az\<sWb#
"emission" LpiHoavv
IB#iJ#,