(* T8&eaAoo
Demo for program"RP Fiber Power": thulium-doped fiber laser, O<#8R\v
pumped at 790 nm. Across-relaxation process allows for efficient }9glr]=
population of theupper laser level. ;&'r yYrex
*) !(* *)注释语句 :@a0h
+TX4,"
diagram shown: 1,2,3,4,5 !指定输出图表 KuW>^mF(I
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 n_:EWm$\
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 'oH3|
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 e-OKv#]
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 _#MKp H
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 yPY{ZADkQ
UWhJkJsX
include"Units.inc" !读取“Units.inc”文件中内容 3rd8mh&l
M2c7|
include"Tm-silicate.inc" !读取光谱数据 L62%s[
aGfp"NtL
; Basic fiberparameters: !定义基本光纤参数 c{ +bY.J
L_f := 4 { fiberlength } !光纤长度 9|[uie
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 z'Z[mrLq
r_co := 6 um { coreradius } !纤芯半径 ^do6?e`?-
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 O&&_)
7\[fjCg\w
; Parameters of thechannels: !定义光信道 -Sn'${2
l_p := 790 nm {pump wavelength } !泵浦光波长790nm t\a|Gp W
dir_p := forward {pump direction (forward or backward) } !前向泵浦 OZd
(~E
P_pump_in := 5 {input pump power } !输入泵浦功率5W ,I ][
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um +95v=[t#Ut
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 BvH?d]%
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 [~X&J#
$4~Z]-38#A
l_s := 1940 nm {signal wavelength } !信号光波长1940nm 8qaU[u&$
w_s := 7 um !信号光的半径 e$2P/6k>
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 1Lk(G9CoY
loss_s := 0 !信号光寄生损耗为0 d0C _:_
VumM`SH
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 )B)f`(SA"<
aWH
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 nm& pn*1
calc {qbe
ye!
begin rGXUV`5Na
global allow all; !声明全局变量 -%gEND-AP
set_fiber(L_f, No_z_steps, ''); !光纤参数 So8
Dwz?
add_ring(r_co, N_Tm); !c{F{t-a
def_ionsystem(); !光谱数据函数 ^6R(K'E}
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 {
PJ>gX$
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 jWV}Ua
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 -ucgET`
set_R(signal_fw, 1, R_oc); !设置反射率函数 >iRkhA=Vg
finish_fiber(); EU>`$M&w-
end; %[s%H)e)
yN0`JI
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 t*-cX
show "Outputpowers:" !输出字符串Output powers: -zn_d]NV
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) Mp>(cs
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) y+w,j]
(Nk[ys}%*
AO]cnhC
; ------------- )wCNLi>4
diagram 1: !输出图表1 _ZFEo< `'
r
1jt~0&K
"Powers vs.Position" !图表名称 c-}[v<o
pMy:h
x: 0, L_f !命令x: 定义x坐标范围 5oSp/M
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 M@<9/xPS
y: 0, 15 !命令y: 定义y坐标范围 vNrn]v=|}7
y2: 0, 100 !命令y2: 定义第二个y坐标范围 i}P{{kMJ
frame !frame改变坐标系的设置 X-kOp9/.
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) #vxq|$e
hx !平行于x方向网格 4oueLT(zc
hy !平行于y方向网格 {\%I;2X
`>`b;A4
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 {7@*cBqN
color = red, !图形颜色 B(94; ,(
width = 3, !width线条宽度 Ez0zk9
"pump" !相应的文本字符串标签 {srxc4R`
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 h=:/9O{H
color = blue, dXQ C}JA
width = 3, w4Df?)Z
"fw signal" ?6&8-zt1?
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 F;8Q`$n
color = blue, C !Srv7
style = fdashed, L
1!V'Hm{
width = 3, (IVhj^dQm
"bw signal" AH5;6Q
^Y%_{
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 $P?^GB>u
yscale = 2, !第二个y轴的缩放比例 xlu4
color = magenta, =gM@[2
width = 3, ?_^{9q%9
style = fdashed, "O<ETHd0
"n2 (%, right scale)" Q= xXj'W-
z|D*ymz*EY
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 @x+2b0 b
yscale = 2, ?SElJ?Z
color = red, 7<;oz30G!L
width = 3, 0FI
|7
style = fdashed, [i ~qVn2vT
"n3 (%, right scale)"
Pap6JR{7
SnQT1U%
Wu/#}Bw#
; ------------- `w\P- q
diagram 2: !输出图表2 HdI)Z<Krp
9tPRQM7
"Variation ofthe Pump Power" :vG0 l\
D\-\U
E/
x: 0, 10 -LszaMR}
"pump inputpower (W)", @x qE8aX*A1/
y: 0, 10 bC1G5`v_D
y2: 0, 100 &tAYF_}
frame ,_RNZ
sa;&
hx )B0%"0?`8
hy 0~^RHb.NA8
legpos 150, 150 m\0_1 #(
()l3X.t,$
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 e@W+ehx"
step = 5, uI/
wR!
color = blue, "O4A&PJD
width = 3, ?}4,s7PR
"signal output power (W, leftscale)", !相应的文本字符串标签 KRC"3Qt
finish set_P_in(pump, P_pump_in) X$ZVY2
ngl +`|u
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 @i; )`k5b
yscale = 2, ()?83Xj[c
step = 5, h7UNmwj
color = magenta, zR^Gy"
width = 3, WqCC4R,-
"population of level 2 (%, rightscale)", c_D(%Vf5
finish set_P_in(pump, P_pump_in) nm,LKS7
Q7$o&N{
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 {4G/HW28
yscale = 2, aIV
/ c
step = 5, _y^r==
color = red, r@{TN6U
width = 3, T"_'sSI>tF
"population of level 3 (%, rightscale)", ,
,{UGe3
finish set_P_in(pump, P_pump_in) Ww2@!ng
Z_\p8@3aH
a,c!#iyl3
; ------------- +y?Ilkk;j
diagram 3: !输出图表3 r[a7">n
>Q\Kc=Q|
"Variation ofthe Fiber Length" TQF+aP8[L
EJ9hgE
x: 0.1, 5
:-46"bP.
"fiber length(m)", @x :x*)o+
y: 0, 10 l[38cF
"opticalpowers (W)", @y >5t%_/yeB
frame @i1e0;\
hx }oRBQP^&K
hy TJO$r6&
h^yqrDyJ
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 pa[/6(
step = 20, 27e!KG[&
color = blue, _s=H|#l
width = 3, kt/,& oKI
"signal output" J~k9jeq9
l<`>
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 {arqcILr
step = 20, color = red, width = 3,"residual pump" 4N,mcV
8s0+6{vW
! set_L(L_f) {restore the original fiber length } f<Hi=Qpm
WEimJrAn
j<B9$8x&
; ------------- 5`QcPDp{z
diagram 4: !输出图表4 KUAzJ[>
gsk?
!D
"TransverseProfiles" Gmz^vpQ]t
4+RR`I8$Ge
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) { qNPhi
+3)r
szb72
x: 0, 1.4 * r_co /um <xOX+D
"radialposition (µm)", @x hH8&g%{2
y: 0, 1.2 * I_max *cm^2 E7:xPNU
"intensity (W/ cm²)", @y %;,fI'M
y2: 0, 1.3 * N_Tm ^`&'u_B!+
frame fK J-/{|
hx fE-R(9K
hy nI\6aG?`
uzy5rA==
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 VfX^iG r
yscale = 2, ~dYCY_a
color = gray, UerbNz|
width = 3, C0wtMD:G
maxconnect = 1, Yj/afn(Jt
"N_dop (right scale)" gq7tSkH@
uE-(^u
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 )6OD@<r{
color = red, _%w680b'
maxconnect = 1, !限制图形区域高度,修正为100%的高度 zJe KB8
width = 3, 2{-29bq
"pump" ?b
(iWq
KGz Nj%
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 u_(~zs.N]
color = blue, RY , <*
maxconnect = 1, ig,.>'+l
width = 3, hsC T:1i
"signal" 3gA %Q`"
<xI<^r'C9e
nf.Ox.kM)
; ------------- QJ|@Y(KV0
diagram 5: !输出图表5 8dGsV5" *
!J$r|IX5
"TransitionCross-sections" sh<Q2X
$DbnPZ2$
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) @(t3<g
6 d-\+t8
x: 1450, 2050 ;*A'2ymXUT
"wavelength(nm)", @x Nu5|tf9%A
y: 0, 0.6 "r9Rr_,
>
"cross-sections(1e-24 m²)", @y "H-s_Y#
frame a3@E`Z
hx Q Be6\oq
hy NXW*{b
Ds9)e&yYrb
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 K d&/9<{>
color = red, `|dyT6V0I_
width = 3, b9bIvjm_
"absorption" P`Np+E#I
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 u#0snw~)/
color = blue, J=g)rd[`
width = 3, C/kf?:j
"emission" osW"wh_
3:J>-MO