切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2729阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2176
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* d"#gO,H0  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, C=fsJ=a5;  
    pumped at 790 nm. Across-relaxation process allows for efficient 9 YP*f  
    population of theupper laser level. s %eyW _  
    *)            !(*  *)注释语句 P!kw;x  
    CzYGq  
    diagram shown: 1,2,3,4,5  !指定输出图表 $o]r ]#B+  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 Lltc 4Mzw  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 &^ V~cJ  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 V,V*30K5  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 q`XW5VV{K  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 C>.e+V+':  
    B\\6#  
    include"Units.inc"         !读取“Units.inc”文件中内容 !Citzor  
    EQ4#fAM)  
    include"Tm-silicate.inc"    !读取光谱数据 EE+`i%  
    M'kVL0p?vN  
    ; Basic fiberparameters:    !定义基本光纤参数 M70c{s`w5  
    L_f := 4 { fiberlength }      !光纤长度 FY$fV"s  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 6yY.!HRkr  
    r_co := 6 um { coreradius }                !纤芯半径 m23+kj)+VY  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 h@=7R  
    ]1m"V;vZ  
    ; Parameters of thechannels:                !定义光信道 J , V  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm n5|l|#c$N  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 wMGk!N  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W OFA{ KZga  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um -K"4rz  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 7W"/ N#G  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 [r(Qs|  
    Bs[nV}c>>  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm 9Gca6e3  
    w_s := 7 um                          !信号光的半径 iZaeoy  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 S=' wJ@?;  
    loss_s := 0                            !信号光寄生损耗为0 :- ?Ct  
    ] /+D^6  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 qD#VbvRc9+  
    Y$g}XN*)E  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 P.djd$#  
    calc Z`Pd2VRp  
      begin ;imRh'-V6  
        global allow all;                   !声明全局变量 $$hv`HE^l  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 ibJHU@l  
        add_ring(r_co, N_Tm); 77V .["=7  
        def_ionsystem();              !光谱数据函数 p,F^0OU2}:  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 [*)Z!)  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 R[LsE^  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 ZU^I H9  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 FW8-'~  
        finish_fiber();                                   Bn?:w\%Ue  
      end; m 41t(i  
    LvJGvj  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 K^zDNIQU  
    show "Outputpowers:"                                   !输出字符串Output powers: - hzjV|  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) &-%X:~|:X  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) 3NIUW!gr  
    2| B[tt1Z  
    Q6IQV0{p  
    ; ------------- X<]qU3k5  
    diagram 1:                   !输出图表1 ?7jg(`Yh  
    H2;X   
    "Powers vs.Position"          !图表名称 Z)pz,  
    ymWgf 6r<  
    x: 0, L_f                      !命令x: 定义x坐标范围 e}0:"R%E  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 )4R:)-"f  
    y: 0, 15                      !命令y: 定义y坐标范围 vMla'5|l  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 Ue*C>F   
    frame          !frame改变坐标系的设置  )zq.4  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) K=?VDN  
    hx             !平行于x方向网格 Z{R[Wx  
    hy              !平行于y方向网格 ]3B%8  
    |.P/:e9  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 Jq ]:<TQ  
      color = red,  !图形颜色 |E@djosyC  
      width = 3,   !width线条宽度 Xf d*D  
      "pump"       !相应的文本字符串标签 8i}< k$S  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 l&$$w!n0w  
      color = blue,     e-5?p~>  
      width = 3, ,RxYd6  
      "fw signal" -x`G2i  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 (\a6H2z8l  
      color = blue, O7t(,uox3y  
      style = fdashed, )US:.7A[.  
      width = 3, N^w'Hw0  
      "bw signal" Q;u SWt<{  
    k(%QIJH  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 7v7G[n  
      yscale = 2,            !第二个y轴的缩放比例 7@}$|u:JUF  
      color = magenta, {/<6v. v  
      width = 3, sC"}8+[)S3  
      style = fdashed, >dzsQ^Nj  
      "n2 (%, right scale)" RthT \%R  
    {HOy_Fiih  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 x3p ND  
      yscale = 2, 17.x0 gW,  
      color = red, BZv+H=b  
      width = 3, :_kAl? eJ  
      style = fdashed, N#C1-*[C  
      "n3 (%, right scale)" *e#<n_%R  
    QK`i%TXJ  
    $ (=~r`O+1  
    ; ------------- 7piuLq+  
    diagram 2:                    !输出图表2 EGq;7l6u&?  
    o>/O++7Ra  
    "Variation ofthe Pump Power" }MbH3ufC  
    V DS23Bo  
    x: 0, 10 *Vw\'%p*  
    "pump inputpower (W)", @x k0-G$|QgIp  
    y: 0, 10 7OCwG~_^  
    y2: 0, 100 $,>@o=)_  
    frame Mg,:UC:  
    hx 3jH\yXj  
    hy evA/+F ,&  
    legpos 150, 150 (b,[C\RBF  
    in`aGFQO  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 U$dh1;  
      step = 5, eM7Bc4V  
      color = blue, 6[E|  
      width = 3, 9`//^8G:=  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 6]zd.W  
      finish set_P_in(pump, P_pump_in) 4_v]O  
    `+:.L>5([  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 iJ' xh n  
      yscale = 2, ^ci3F<?Q=  
      step = 5, *+'2?*  
      color = magenta, "P-lSF?T  
      width = 3, VQ5nq'{v  
      "population of level 2 (%, rightscale)", W|:lVAP.|}  
      finish set_P_in(pump, P_pump_in) me6OPc;:!  
    C;QAT  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 p[lNy{u~M  
      yscale = 2, v[plT2"s  
      step = 5, Io4(f  
      color = red, m'\2:mDu0  
      width = 3, $D v\ e  
      "population of level 3 (%, rightscale)", r;L>.wl*I  
      finish set_P_in(pump, P_pump_in) -Y Bd, k3  
    gBh;=vOD  
    /&F,V+x  
    ; ------------- 3p2P= T  
    diagram 3:                         !输出图表3 yme^b ;a  
    ~c)~015`  
    "Variation ofthe Fiber Length" A1P K  
    i wxVl)QL  
    x: 0.1, 5 fFj grK8  
    "fiber length(m)", @x P`s  
    y: 0, 10 \<}&&SuH  
    "opticalpowers (W)", @y Ev7J+TmXM  
    frame -C(b,F%%  
    hx c|F[.;cR  
    hy p~noM/*2r  
    63`{.yZ*z  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 OO?]qZa1  
      step = 20,             M?&h~V1OI~  
      color = blue, 2C{H$ A,pW  
      width = 3, X#3et'  
      "signal output" ?bM_q_5  
    x+f2GA$  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 OGl$W>w1  
       step = 20, color = red, width = 3,"residual pump" ebPgYxVZR  
    :l|%17N  
    ! set_L(L_f) {restore the original fiber length } |#6QThK  
    h/B>S  
    |6=p{ y  
    ; ------------- N2.AKH  
    diagram 4:                                  !输出图表4 ={LMdC~5X  
    z1^gDjkZ  
    "TransverseProfiles" \J+*  
    "4vy lHIo  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) s w39\urf  
    J|'7_0OAx  
    x: 0, 1.4 * r_co /um G8Nt 8U~  
    "radialposition (µm)", @x +w=AJdc  
    y: 0, 1.2 * I_max *cm^2 asY[8r?U  
    "intensity (W/ cm&sup2;)", @y (JM4R8fR&  
    y2: 0, 1.3 * N_Tm JaB<EL-9r2  
    frame /dv<qp  
    hx \:'%9 x  
    hy z<B8mB  
    \P1S|ufv  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 6N)!aT9eo  
      yscale = 2, ?c0xRO%y  
      color = gray, JyR/1 W  
      width = 3, vN3Zr34  
      maxconnect = 1, ^ bEc6`eE  
      "N_dop (right scale)" JH:0 L  
    pp7$J2s+j  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 Sm~l:v0%  
      color = red, o.q/O)'V u  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 z{Mr$%'EY  
      width = 3, UI>Y0O  
      "pump" ~I{n^Q/a  
    Ok n(pJ0  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 pZtu&R%GU  
      color = blue, LBF 1;zjK  
      maxconnect = 1, rXA*NeA3v  
      width = 3, fu90]upz~  
      "signal" ?B :a|0pf  
    !9xp cQ>  
    Y(44pA&oN  
    ; ------------- B" 3dQwQ  
    diagram 5:                                  !输出图表5 -eX5z  
    da (km+  
    "TransitionCross-sections" !qX_I db\  
    }#X8@  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) e^ v.)  
    =zyC-;r!  
    x: 1450, 2050 }d<}FJ-,  
    "wavelength(nm)", @x c+2FC@q{l  
    y: 0, 0.6 H@ t'~ZO  
    "cross-sections(1e-24 m&sup2;)", @y W"Gkq!3u{  
    frame `X3^fg  
    hx gdkwWoN .  
    hy _Gu- uuy  
    ?wO-cnl  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 6P';DB  
      color = red, =C~/7N,lW]  
      width = 3, 8>7& E-  
      "absorption" 4q<=K=F  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 Zfyo-Wk  
      color = blue, L:9F:/G  
      width = 3, H/Llj.-jg  
      "emission" < P`u}  
    K# Jk _"W  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚