(* d"#gO,H0
Demo for program"RP Fiber Power": thulium-doped fiber laser, C=fsJ=a5;
pumped at 790 nm. Across-relaxation process allows for efficient 9YP*f
population of theupper laser level. s%eyW _
*) !(* *)注释语句 P!kw;x
CzYGq
diagram shown: 1,2,3,4,5 !指定输出图表 $o]r]#B+
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 Lltc4Mzw
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 &^V~cJ
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 V,V*30K5
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 q`XW5VV{K
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 C>.e+V+':
B\\6#
include"Units.inc" !读取“Units.inc”文件中内容 !Citzor
EQ4#fAM)
include"Tm-silicate.inc" !读取光谱数据 EE+`i%
M'kVL0p?vN
; Basic fiberparameters: !定义基本光纤参数 M70c{s`w5
L_f := 4 { fiberlength } !光纤长度 FY$fV"s
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 6yY.!HRkr
r_co := 6 um { coreradius } !纤芯半径 m23+kj)+VY
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 h@=7R
]1m"V;vZ
; Parameters of thechannels: !定义光信道 J , V
l_p := 790 nm {pump wavelength } !泵浦光波长790nm n5|l|#c$N
dir_p := forward {pump direction (forward or backward) } !前向泵浦 wMGk!N
P_pump_in := 5 {input pump power } !输入泵浦功率5W OFA{
KZga
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um -K"4rz
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 7W"/N#G
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 [r(Qs|
Bs[nV}c>>
l_s := 1940 nm {signal wavelength } !信号光波长1940nm 9Gca6e3
w_s := 7 um !信号光的半径 iZaeoy
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 S='
wJ@?;
loss_s := 0 !信号光寄生损耗为0 :-?Ct
] /+D^6
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 qD#VbvRc9+
Y$g}XN*)E
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 P.djd$#
calc Z`Pd2VRp
begin ;imRh'-V6
global allow all; !声明全局变量 $$hv`HE^l
set_fiber(L_f, No_z_steps, ''); !光纤参数 ibJHU@l
add_ring(r_co, N_Tm); 77V
.["=7
def_ionsystem(); !光谱数据函数 p,F^0OU2}:
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 [*)Z!)
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 R[LsE^
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 ZU^IH9
set_R(signal_fw, 1, R_oc); !设置反射率函数 FW8-'~
finish_fiber(); Bn?:w\%Ue
end; m
41t(i
LvJGvj
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 K^zDNIQU
show "Outputpowers:" !输出字符串Output powers: - hzjV|
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) &-%X:~|:X
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) 3NIUW!gr
2| B[tt1Z
Q6IQV0{p
; ------------- X<]qU3k5
diagram 1: !输出图表1 ?7jg(`Yh
H2;X
"Powers vs.Position" !图表名称 Z)pz,
ymWgf6r<
x: 0, L_f !命令x: 定义x坐标范围 e}0:"R%E
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 )4R:)-"f
y: 0, 15 !命令y: 定义y坐标范围 vMla'5|l
y2: 0, 100 !命令y2: 定义第二个y坐标范围 Ue*C>F
frame !frame改变坐标系的设置 )zq.4
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) K=?VDN
hx !平行于x方向网格 Z{R[Wx
hy !平行于y方向网格 ]3B %8
|.P/:e9
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 Jq
]:<TQ
color = red, !图形颜色 |E@djosyC
width = 3, !width线条宽度 Xf
d*D
"pump" !相应的文本字符串标签 8i}<
k$S
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 l&$$w!n0w
color = blue, e-5?p~>
width = 3, ,RxYd6
"fw signal" -x`G2i
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 (\a6H2z8l
color = blue, O7t(,uox3y
style = fdashed, )US:.7A[.
width = 3, N^w'Hw0
"bw signal" Q;u SWt<{
k(%QIJH
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 7v7G[n
yscale = 2, !第二个y轴的缩放比例 7@}$|u:JUF
color = magenta, {/<6v. v
width = 3, sC"}8+[)S3
style = fdashed, >dzsQ^Nj
"n2 (%, right scale)" RthT\%R
{HOy_Fiih
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 x3pND
yscale = 2, 17.x0gW,
color = red, BZv+H=b
width = 3, :_kAl? eJ
style = fdashed, N#C1-*[C
"n3 (%, right scale)" *e#<n_%R
QK`i%TXJ
$ (=~r`O+1
; ------------- 7piuLq+
diagram 2: !输出图表2 EGq;7l6u&?
o>/O++7R a
"Variation ofthe Pump Power" } MbH3ufC
V DS23Bo
x: 0, 10 *Vw\'%p*
"pump inputpower (W)", @x k0-G$|QgIp
y: 0, 10 7OCwG~_^
y2: 0, 100 $,>@o=)_
frame Mg,:UC:
hx 3jH \yXj
hy evA/+F,&
legpos 150, 150 (b,[C\RBF
in`aGFQO
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 U$dh1;
step = 5, eM7Bc4V
color = blue, 6[E|
width = 3, 9`//^8G:=
"signal output power (W, leftscale)", !相应的文本字符串标签 6]zd.W
finish set_P_in(pump, P_pump_in) 4_ v]O
`+:.L>5([
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 iJ' xh n
yscale = 2, ^ci3F<?Q=
step = 5, *+'2?*
color = magenta, "P-lSF?T
width = 3, VQ5nq'{v
"population of level 2 (%, rightscale)", W|:lVAP.|}
finish set_P_in(pump, P_pump_in) me6OPc;:!
C;QAT
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 p[lNy{u~M
yscale = 2, v[plT2"s
step = 5, Io4(f
color = red, m'\ 2:mDu0
width = 3, $D
v\
e
"population of level 3 (%, rightscale)", r;L>.wl*I
finish set_P_in(pump, P_pump_in) -Y
Bd, k3
gBh;=vOD
/&F,V+x
; ------------- 3p2P=
T
diagram 3: !输出图表3 yme^b
;a
~c)~015`
"Variation ofthe Fiber Length" A1P
K
i
wxVl)QL
x: 0.1, 5 fFjgrK8
"fiber length(m)", @x P`s
y: 0, 10 \<}&&SuH
"opticalpowers (W)", @y Ev7J+TmXM
frame -C(b,F%%
hx c|F[.;cR
hy p ~noM/*2r
6 3`{.yZ*z
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 OO?]qZa1
step = 20, M?&h~V1OI~
color = blue, 2C{H$
A,pW
width = 3, X#3et'
"signal output" ?bM_q_5
x+f2GA$
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 OGl$W>w1
step = 20, color = red, width = 3,"residual pump" ebPgYxVZR
:l|%17N
! set_L(L_f) {restore the original fiber length } |#6QThK
h/B>S
|6=p{y
; ------------- N2.AKH
diagram 4: !输出图表4 ={LMdC~5X
z1^gDjkZ
"TransverseProfiles" \J+*
"4vy lHIo
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) s
w39\urf
J|'7_0OAx
x: 0, 1.4 * r_co /um G8Nt
8U~
"radialposition (µm)", @x +w=AJdc
y: 0, 1.2 * I_max *cm^2 asY[8r?U
"intensity (W/ cm²)", @y (JM4R8fR&
y2: 0, 1.3 * N_Tm JaB<EL-9r2
frame /dv<qp
hx \:'%9 x
hy z<B8mB
\P1S|ufv
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 6N)!aT9eo
yscale = 2, ?c0xRO%y
color = gray, JyR/1 W
width = 3, vN3Zr34
maxconnect = 1, ^bEc6`eE
"N_dop (right scale)" JH:0
L
pp7$J2s+j
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 Sm~l:v0%
color = red, o.q/O)'V u
maxconnect = 1, !限制图形区域高度,修正为100%的高度 z{Mr$%'EY
width = 3, UI>Y0O
"pump" ~I{n^Q/a
Ok n(pJ0
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 pZtu&R%GU
color = blue, LBF 1;zjK
maxconnect = 1, rXA*NeA3v
width = 3, fu90]upz~
"signal" ?B:a|0pf
!9xp cQ>
Y(44pA&oN
; ------------- B" 3dQwQ
diagram 5: !输出图表5 -eX5z
da (km+
"TransitionCross-sections" !qX_I db\
}#X8@
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) e^ v.)
=zyC-;r!
x: 1450, 2050 }d<}FJ-,
"wavelength(nm)", @x c+2FC@q{l
y: 0, 0.6 H@ t'~ZO
"cross-sections(1e-24 m²)", @y W"Gkq!3u{
frame `X3^fg
hx gdkwWoN.
hy _Gu-
uuy
?wO-cnl
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 6P';DB
color = red, =C~/7N,lW]
width = 3, 8>7&E-
"absorption" 4q<=K= F
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 Zfyo-Wk
color = blue, L:9F:/G
width = 3, H/Llj.-jg
"emission" < P`u}
K# Jk _"W