(* -T8
gV1*(<
Demo for program"RP Fiber Power": thulium-doped fiber laser, dNobvK
pumped at 790 nm. Across-relaxation process allows for efficient r;C\eN
population of theupper laser level. z,)sS<t(
*) !(* *)注释语句 ;cr6Xop#?
>N
J$ac
diagram shown: 1,2,3,4,5 !指定输出图表 o;mIu#u
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 Q(6(Scp{
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 lo: ~~l
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 \7/_+)0}'
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 )'~FDw\6
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 L'Zud,JKg
v~Qy{dn
P
include"Units.inc" !读取“Units.inc”文件中内容 N 3c*S"1
E2IV R]C2^
include"Tm-silicate.inc" !读取光谱数据 M<unQ1+wh
G{.+D2
; Basic fiberparameters: !定义基本光纤参数 t]
wM_]+
L_f := 4 { fiberlength } !光纤长度 6hK"k
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 gpWS_Dw9
r_co := 6 um { coreradius } !纤芯半径 T6$<o\g'
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 D3xaR
#pSOZX
; Parameters of thechannels: !定义光信道 uN
62>
l_p := 790 nm {pump wavelength } !泵浦光波长790nm _vH!0@QFU
dir_p := forward {pump direction (forward or backward) } !前向泵浦 !@{[I:5
P_pump_in := 5 {input pump power } !输入泵浦功率5W 3L?a4,Q"k}
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um VWy:U#;+8
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 9 Zm<1Fw
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 2hJ3m+N^
Nh9!lB m*]
l_s := 1940 nm {signal wavelength } !信号光波长1940nm (dF;Gcw+
w_s := 7 um !信号光的半径 g{hA,-3
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 !^fR8Tp9
loss_s := 0 !信号光寄生损耗为0 3SDWR@x&
{Ch"zuPX
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 }27Vh0v
H$amt^|zQ4
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 RCYbRR4y
calc ~^~RltY
begin X-#mv|3
global allow all; !声明全局变量 7 afA'.=
set_fiber(L_f, No_z_steps, ''); !光纤参数 N>%KV8>{L
add_ring(r_co, N_Tm); sDm},=X}
def_ionsystem(); !光谱数据函数 ]wpYxos
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 kZ-~
;fBe
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 ',`4 U F
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 l0\>zWLZZ9
set_R(signal_fw, 1, R_oc); !设置反射率函数 -#;VFSz,9*
finish_fiber(); 0Y*gJ!a
end; #4 &N0IG
*/dh_P<Yj
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 \Ntdl:fSw
show "Outputpowers:" !输出字符串Output powers: ({kGK0
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) ?>jArzI
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) D.R|HqZ
zMzf=~
36WzFq#
; ------------- rbun5&RCyW
diagram 1: !输出图表1 vKf;&`^qE
^%$W S,
"Powers vs.Position" !图表名称 2mU-LQ1WN
=tRe3o0(
x: 0, L_f !命令x: 定义x坐标范围 O\F^@;]F6
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 mRnzP[7-\)
y: 0, 15 !命令y: 定义y坐标范围 -_*XhD
y2: 0, 100 !命令y2: 定义第二个y坐标范围 [-Tt11
frame !frame改变坐标系的设置 QqK{~I|l
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) >wk=`&+V@
hx !平行于x方向网格 gc:p@<
hy !平行于y方向网格 `)!2E6 =
%%,hR'+|
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 f.84=epv
color = red, !图形颜色 NT9- j#V
width = 3, !width线条宽度 _E<O+leWf
"pump" !相应的文本字符串标签 dms:i)L2
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 y#Za|nt
color = blue, i2}=/
width = 3, <\9Ijuq}k
"fw signal" h-+a;![
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 HD8"=7zJk
color = blue, IfmIX+t?
style = fdashed, 8j+:s\
width = 3, p9 ,\ {Is
"bw signal" sEJ;t0.LX
3G/ mB
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 lp0T\
%
yscale = 2, !第二个y轴的缩放比例 ?r'TH/>
color = magenta, zmfRZ!Eh
width = 3, I%Po/+|+
style = fdashed, v6DxxE2n
"n2 (%, right scale)" pT;-1c%:
o`T<