(* P~h0Ul
Demo for program"RP Fiber Power": thulium-doped fiber laser, n'83P%x
pumped at 790 nm. Across-relaxation process allows for efficient yX%NFXD
population of theupper laser level. r<!/!}fE,
*) !(* *)注释语句 .o)
l*b0uF
diagram shown: 1,2,3,4,5 !指定输出图表 ?0?+~0sI
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 Zp+orc7
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 ZVDi;
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 Ww
=ksggpB
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 V-ONC
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 ~\u~>mtchu
^K0oJg.E
include"Units.inc" !读取“Units.inc”文件中内容 4[rX\?^e
<])kO`+G
include"Tm-silicate.inc" !读取光谱数据 ]%Lk#BA@A
x.>&|Ej
; Basic fiberparameters: !定义基本光纤参数 KJW^pAj$B
L_f := 4 { fiberlength } !光纤长度 |?\2F
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 P\&n0C~
r_co := 6 um { coreradius } !纤芯半径 7ZFd;-
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 LfMN 'Cb
8gW$\
; Parameters of thechannels: !定义光信道 s]Z++Lh<{
l_p := 790 nm {pump wavelength } !泵浦光波长790nm VLC=>w\,
dir_p := forward {pump direction (forward or backward) } !前向泵浦 rTzXRMv@o
P_pump_in := 5 {input pump power } !输入泵浦功率5W D
4<,YBvV
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um -SF50.[
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 b&!x.+d-z
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 c>+hY5?C
)JOo|pr-K
l_s := 1940 nm {signal wavelength } !信号光波长1940nm B3Ws)nF"
w_s := 7 um !信号光的半径 o"g<Vz
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 OySn[4`(i
loss_s := 0 !信号光寄生损耗为0 bdj')%@n
(t"e#b(:
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 h%&2M58:
.e|\Bf0P
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 9,$
n6t;
calc -932[+
begin ?:Rw[T@
l
global allow all; !声明全局变量 !=]cASPGD
set_fiber(L_f, No_z_steps, ''); !光纤参数 })C}'!+]
add_ring(r_co, N_Tm); RpzW-
def_ionsystem(); !光谱数据函数 JPq' C$
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 @!B%ynrG
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 vlPViHF.
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 j9|1G-CM
set_R(signal_fw, 1, R_oc); !设置反射率函数 m'U>=<!D
finish_fiber(); K%YR; )5A
end; u XVs<im
rhC
x&L
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 B1va]=([)W
show "Outputpowers:" !输出字符串Output powers: rGQY
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) RC^k#+
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) j5m]zh5\J=
<1E5[9
q
^`f qK4<
; ------------- 8:k-]+#o
diagram 1: !输出图表1 r[3 2'E
CzI/Z+\
"Powers vs.Position" !图表名称 4)d"}j
PDpDkcy|QM
x: 0, L_f !命令x: 定义x坐标范围 JxQGL{)
>
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 )odz/\9n3c
y: 0, 15 !命令y: 定义y坐标范围 R?8/qGSVqJ
y2: 0, 100 !命令y2: 定义第二个y坐标范围 gqDSHFm:
frame !frame改变坐标系的设置 838@jip
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) gNSsT])
hx !平行于x方向网格 QVe<Z A8N;
hy !平行于y方向网格 ,Ofou8C6
F<(?N!C?@
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 `FAZAC\
color = red, !图形颜色 >Slu?{l'
width = 3, !width线条宽度 gCM(h[7A
"pump" !相应的文本字符串标签 f&?
8fB8{
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 kI,O9z7A7
color = blue, 3 H`ES_JL
width = 3, OGPrjL+
"fw signal" 9O-*iK
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 }kMKA.O"
color = blue, ZC9S0Z
style = fdashed, }XfRKGQw
width = 3, **F-#",
"bw signal" ._(5; PB"
:CG;:( |
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 V(OD^GU
yscale = 2, !第二个y轴的缩放比例 >H,PST
color = magenta, #z9@x}p5g
width = 3, +kT
o$_Wkz
style = fdashed, aV G4Df
"n2 (%, right scale)" LR
y&/d
J pKCux
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 7
'{wl,u
yscale = 2, xi=Qxgx0I
color = red, b#:!b
width = 3, XO}v8nWV
style = fdashed, L!^^3vn
"n3 (%, right scale)" J;Eg"8x]
xcQ:&q
4?l:.\fB:
; ------------- %^bN^Sq
-
diagram 2: !输出图表2 y-o54e$4Cq
&Tk@2<5=
"Variation ofthe Pump Power" EN)0b,ax
}?[a>.]u
x: 0, 10 en29<#8TO
"pump inputpower (W)", @x z_ L><}H
y: 0, 10 N|asr,
y2: 0, 100 z&Lcl{<MA
frame Vn6]h|vm
hx w'<"5F`
hy sF p% T4j
legpos 150, 150 {Zf 9}
!qF
ihopQb+k^m
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 %Q|Hvjk=E
step = 5, [u7i)fn5?
color = blue, {GS$7n
width = 3, $J]o\~Z J
"signal output power (W, leftscale)", !相应的文本字符串标签 Og(|bs!6
finish set_P_in(pump, P_pump_in) "M=1Eb$6=
Dh .<&ri
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 P#qQde/y
yscale = 2, YFs!,fw'
step = 5, 9oxn-)6JC
color = magenta, $@<cZ4
width = 3, C7_#D O6"
"population of level 2 (%, rightscale)", ^MUvd
finish set_P_in(pump, P_pump_in) 4_h?E:sBb
] F2{:RW
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 6_O3/
yscale = 2, Yk
yB
step = 5, 7/6%92T/B
color = red, +%LR1+/%b
width = 3, 0-Vx!(
"population of level 3 (%, rightscale)", RV_+-m{]
finish set_P_in(pump, P_pump_in) D'oy%
1Q}
GA2kg7
L'<.#(|
; ------------- @JpkG%eK
diagram 3: !输出图表3 P6u%-#
zAO|{m<A2
"Variation ofthe Fiber Length" aYcc2N%C
[PL]!\NJ
x: 0.1, 5 .X{U\{c| a
"fiber length(m)", @x 2G)q?_Q4S
y: 0, 10 YB"=eld
"opticalpowers (W)", @y O@sJ#i>
frame T:!Re*=JJ
hx ljJR7<
hy xc_-1u4a9
eTZ2f
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 [K"&1h<>
step = 20, */A ~lR|
color = blue, z;6,,
width = 3, d @>1m:p
"signal output" Kp%:\s,lO
)P
#MUC
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 v}BXH4 &Y
step = 20, color = red, width = 3,"residual pump" Q7XlFjzcm
+<w\K*
! set_L(L_f) {restore the original fiber length } D~7L~Q]xI
::8c pUc`f
!Yu|au
; ------------- l$3YJ.n|s~
diagram 4: !输出图表4 "wj-Qgz
b]@@x;v$@
"TransverseProfiles" f%Vdao[
Pm!/#PtX
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) [?nM)4d
C!6d`|
x: 0, 1.4 * r_co /um G~KYFNHr
"radialposition (µm)", @x Kzrt%DA
y: 0, 1.2 * I_max *cm^2 x$=""?dd
"intensity (W/ cm²)", @y DE" Y(;S
y2: 0, 1.3 * N_Tm JFh_3r'
frame <^fvTb &*
hx f'%Pkk
hy Bf{c4YiF
ZCz#B2Sf8
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 AQIBg9y7
yscale = 2, eD?f|bif
color = gray, :XeRc"m<
width = 3, )|j?aVqZ
maxconnect = 1, hLF ;MH@
"N_dop (right scale)" jC_m0Iwc
l&oc/$&|[
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 FgTWym_
color = red, C7xmk;c
w
maxconnect = 1, !限制图形区域高度,修正为100%的高度 E>Lgf&R#W
width = 3, .+$ox-EK8
"pump" vnD `+y
RGy+W-
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 :FX|9h
color = blue, p~f=0K
maxconnect = 1, -8m3L
width = 3, ?yy,3:
"signal" #MAXH7[
MyaJhA6c
1AAOg+Y@U"
; ------------- WWG+0jQ9
diagram 5: !输出图表5 eq,`T;
aDZ] {;
"TransitionCross-sections" oxXCf%!
(fcJp)D
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) I@q(P>]X9
osZ]R
x: 1450, 2050 B<oBo&uA
"wavelength(nm)", @x P9jPdls
y: 0, 0.6 *^[j6
"cross-sections(1e-24 m²)", @y 0Ait7`
frame hD9b2KZv
hx Usq.'y/o
hy )>I-j$%=2
Hp5.jor(k
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 'T(@5%Db
color = red, aDda&RM
width = 3, z4{:X Da
"absorption" Nx=rw h
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 qrufnu5cC
color = blue, xq<X:\O
width = 3, RZP7h>y6@
"emission" e-*-91D
hO; XJyv