(* g`f6gxc
Demo for program"RP Fiber Power": thulium-doped fiber laser, |Bf:pG!
pumped at 790 nm. Across-relaxation process allows for efficient 0z<]\a4
population of theupper laser level. kAe-d
*) !(* *)注释语句 Wp~4[f`,
q0KXuMK
diagram shown: 1,2,3,4,5 !指定输出图表 rc{[\1 -N
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 I5<#SW\a?
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 X7B)jH%N
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 LZAj4|~,m
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 77bZ
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 !kk %;XSZ
@x>$_:]
include"Units.inc" !读取“Units.inc”文件中内容 Q17o5##x7
576-X_a,
include"Tm-silicate.inc" !读取光谱数据 i!+3uHWu`)
X-) ]lAP
; Basic fiberparameters: !定义基本光纤参数 0tm "kzy
L_f := 4 { fiberlength } !光纤长度 &.bR1wX
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 C9;X6
r_co := 6 um { coreradius } !纤芯半径 -L'`d
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 Z=5}17kA
#*aGzF
; Parameters of thechannels: !定义光信道 (R|FQdH
l_p := 790 nm {pump wavelength } !泵浦光波长790nm `F`'b)
dir_p := forward {pump direction (forward or backward) } !前向泵浦 FSZoT!
P_pump_in := 5 {input pump power } !输入泵浦功率5W j
&[WE7wf
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um EvardUB)
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 s!RA_%8/>
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 =&g}Y
<}'B-k9
l_s := 1940 nm {signal wavelength } !信号光波长1940nm ^HN
w_s := 7 um !信号光的半径 r D!.N
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 nm|m1Z+U
loss_s := 0 !信号光寄生损耗为0 `m0Uj9)#
5Yibv6:3a
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 YH+\rb_
^3@a0J=F
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 $j2)_(<A%Q
calc E#F9<=mA)
begin >]08".ajS
global allow all; !声明全局变量 la{:RlW
set_fiber(L_f, No_z_steps, ''); !光纤参数 W[Ew6)1T
add_ring(r_co, N_Tm); ^9f`3~!#bc
def_ionsystem(); !光谱数据函数 |l \/ {F
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 nX aX=
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 FveK|-
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 +6Fdi*:
set_R(signal_fw, 1, R_oc); !设置反射率函数 jO
N}&/
finish_fiber(); kvVz-PJy
end; SIVLYi
Cspm\F
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 )0V]G{QN
show "Outputpowers:" !输出字符串Output powers: _eeX]xSSl
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) Pisr&"A
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) \#c+vfq
MxA'T(Ay
Gqb-3ngH
; ------------- GYmB xX87
diagram 1: !输出图表1 JkDZl?x5
HD^~4\%
"Powers vs.Position" !图表名称 !w\;Q8irN
f9=X7"dzP
x: 0, L_f !命令x: 定义x坐标范围 /;m!>{({)
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 rd~W.b_b
y: 0, 15 !命令y: 定义y坐标范围 kAQ Zj3P]
y2: 0, 100 !命令y2: 定义第二个y坐标范围 9s6lt#?b
frame !frame改变坐标系的设置 l0 :xQV`
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) 2jBE+k"M
hx !平行于x方向网格 XFAt\g
hy !平行于y方向网格 TUYl><F5v=
w/Dm
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 w3UJw
color = red, !图形颜色 rX
d2[pp
width = 3, !width线条宽度 ^`5Yxpz
"pump" !相应的文本字符串标签 =C2C~Xd
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 R*#Q=_
color = blue, !+ hgKZ]
width = 3, W G r\R
"fw signal" ,qqV11P]
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 0|vWwZq
color = blue, hRcJ):Wyb
style = fdashed, 9+|,aG s
width = 3, 2Yjysn
"bw signal" +6-!o,(
=W^L8!BE'
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 2~'quA
yscale = 2, !第二个y轴的缩放比例 f TtMmz
color = magenta, Q'M Ez
width = 3, OB@t(KNx*P
style = fdashed, .HJHJ.Js8X
"n2 (%, right scale)" &y+*3,!n8
5-po>1g'
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 ;$;/#8`>
yscale = 2, BJrNbo;T
color = red, a-5$GvG
width = 3, 0~+:~$VrT
style = fdashed, e-t`\5b;
"n3 (%, right scale)" 9xp
;$14
P6'I:/V
oABPGyv
; ------------- ^:j:;\;
diagram 2: !输出图表2 mmK_xu~f28
'FXZ`+r|
"Variation ofthe Pump Power" )ISTb
}PuO$
L
x: 0, 10 7!)%%K.z6
"pump inputpower (W)", @x E/ )+hK&
y: 0, 10 oI/ThM`=q
y2: 0, 100 |th )Q
frame U\6DEnII?!
hx [AwE
hy >f/g:[
legpos 150, 150 #O
]IXo(5z
DR=1';63
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 C" WZsF^3
step = 5, ^Y |s^N
color = blue, 5E=Odep`
width = 3, gC- 0je
"signal output power (W, leftscale)", !相应的文本字符串标签 [%Xfl7;Wh
finish set_P_in(pump, P_pump_in) rJwJ5U
{}e IpK,+
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 v$Z1Lh
yscale = 2, h^,a 1'
step = 5, #YdU,y=B
color = magenta, | w -W=v
width = 3, OwUbm0)h^V
"population of level 2 (%, rightscale)", =G6@:h=
finish set_P_in(pump, P_pump_in) nX'.'3
^u{$$.&
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 IuD<lMeJJ
yscale = 2, ,Nh X%
step = 5, 1uMdgrJRR
color = red, !}?]&[N=
width = 3, uI/
A_
"population of level 3 (%, rightscale)", o~p^`5#
finish set_P_in(pump, P_pump_in) i9tM]/SP
{wySH[V
uyIA]OtyN
; ------------- jT',+
diagram 3: !输出图表3 va<pHSX&I@
db|$7]!w
"Variation ofthe Fiber Length" .+sIjd
$-73}[UA 4
x: 0.1, 5 /FY_LM
"fiber length(m)", @x ML-g"wv
y: 0, 10 >E3OYa?G
"opticalpowers (W)", @y we3t,?`rk7
frame 10(N|2'q
hx mDUS9>
hy 3(kZfH~
Y!zlte|P
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 =9-c*bL
step = 20, zF7T5Ge
color = blue, =1C9lKm
width = 3, sXA=KD8
"signal output" ?fGY,<c
Zh*I0m
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 XOMWqQr|
step = 20, color = red, width = 3,"residual pump" ND*5pRzvp
LJ?7W,?
! set_L(L_f) {restore the original fiber length } hE${eJQ| U
\Uiw:
,
Rd/!CJ@g
; ------------- :s\s3#?
diagram 4: !输出图表4 +}]xuYzo
qW*)]s)z
"TransverseProfiles" [/FIY!nC?
PYGHN
T
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) oVdmgmT.Y
zK v}J
x: 0, 1.4 * r_co /um wbTw\b=
"radialposition (µm)", @x V.qB3V$
y: 0, 1.2 * I_max *cm^2 $|KbjpQ
"intensity (W/ cm²)", @y GI/o!0"_
y2: 0, 1.3 * N_Tm S"*wP[d.9
frame >Uz3F7nHi
hx wXe.zLQ
hy @xo9'M<l
kN)P-![
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 {8eNQ-4I
yscale = 2, %VgR *
color = gray, 74_ji!
width = 3, B4%W,F:@
maxconnect = 1, ~_Aclm?
"N_dop (right scale)" 0[^f9NZ>-
:0/I2:
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 L]Uy+[gg
color = red, &12.|
maxconnect = 1, !限制图形区域高度,修正为100%的高度 -O\`G<s%
width = 3, YIfbcR5
"pump" yo5|~"yZY
\7RP6o
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 wNn6".S
color = blue, cOcm9m#
maxconnect = 1, P69S[aqW
width = 3, tq{
aa
"signal" |X>:"?4t
AyddkjX
Zi^&x6y^
; ------------- 8d-_'MXk3
diagram 5: !输出图表5 ZDlMkHJ
Vx'_fb?wap
"TransitionCross-sections" Y`%:hvy~
Q!c*2hI
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) I_Q '+d
Xcb\N
x: 1450, 2050 ,{$:Q}`
"wavelength(nm)", @x US-P>yF
y: 0, 0.6 "[76>\'H
"cross-sections(1e-24 m²)", @y Y>r9"X|&H
frame k z<We/
hx vO 3fAB
hy 7yK
>
13Q|p,^R
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 M^a QH/=:"
color = red, ~Os~pTo
width = 3, 2%QY~Ku~
"absorption" +PjH2
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 K*>lq|iu
color = blue, bEbnZ<kz*
width = 3, S~hNSw(-
"emission" ))<3+^S0V\
b2hB'!m