(* !CWe1Dm
Demo for program"RP Fiber Power": thulium-doped fiber laser, 4_kN';a4Q
pumped at 790 nm. Across-relaxation process allows for efficient 4lB??`UN
population of theupper laser level. (_zlCHB
*) !(* *)注释语句 8 s$6R|ti
D<;~eZ'
diagram shown: 1,2,3,4,5 !指定输出图表 @wgd
3BU
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 0o=HOCL\
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 Zt!A!Afu
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 zo(#tQ-'m
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 OALNZKP
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面
2Qp}f^
h9)fXW
include"Units.inc" !读取“Units.inc”文件中内容 \4q|Qno8
RkYn6
include"Tm-silicate.inc" !读取光谱数据 Q2VF+g,
1j$\ 48Z
; Basic fiberparameters: !定义基本光纤参数 G n]qh(N>
L_f := 4 { fiberlength } !光纤长度 CpO_p%P
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 E(P
6s;LZ
r_co := 6 um { coreradius } !纤芯半径 h6
{vbYj
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 `y3'v]
8x U*j
; Parameters of thechannels: !定义光信道 k0e}`#t
l_p := 790 nm {pump wavelength } !泵浦光波长790nm I_<XL<
dir_p := forward {pump direction (forward or backward) } !前向泵浦 +gX,r$bX
P_pump_in := 5 {input pump power } !输入泵浦功率5W Nnl3r@
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um /RxP:>hVv
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 =EP`,zqn$9
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 </{Zb.
C7FQc{
l_s := 1940 nm {signal wavelength } !信号光波长1940nm sQa;l]O:NC
w_s := 7 um !信号光的半径 D=-}&w_T"
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 dT|f<E/P
loss_s := 0 !信号光寄生损耗为0 /h0bBP
ZwS:Te9-
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 Tu#;Y."T
iYStl
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 F3}MM
dX
calc '`P%;/z
begin %+(AKZu:
global allow all; !声明全局变量 /l*v *tl
set_fiber(L_f, No_z_steps, ''); !光纤参数 (' 5?-
add_ring(r_co, N_Tm); OOqT 0wN
def_ionsystem(); !光谱数据函数 <
'5~p$
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 KdR4<qVV}
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 &u.{]Yjx
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 &:&89<C'
set_R(signal_fw, 1, R_oc); !设置反射率函数 zFq%[ X
finish_fiber(); W`;;fJe
end; ^3$l!>me
/|
v.A\:
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 Jj-\Eb?
show "Outputpowers:" !输出字符串Output powers: OyZR&,q
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) uQ5h5Cfz
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) DXLXGvcM
fjRVYOG#
IL].!9
; ------------- >!=@TK(~
diagram 1: !输出图表1 UX)GA[WI
_Op%H)
"Powers vs.Position" !图表名称 |Kd#pYt%O
~rb0G*R>
x: 0, L_f !命令x: 定义x坐标范围 0^ODJ7
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 rwF$aR>9
y: 0, 15 !命令y: 定义y坐标范围 Qg*\aa94
y2: 0, 100 !命令y2: 定义第二个y坐标范围 SyvoN,;Q
frame !frame改变坐标系的设置 Bu{Kjv
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) {@InOo!4w]
hx !平行于x方向网格 ?"x4u#x
hy !平行于y方向网格 (;l@d|g
kTb$lLG\xk
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 Je6[q
color = red, !图形颜色 b#6S8C+@
width = 3, !width线条宽度 ipv5JD[
"pump" !相应的文本字符串标签 Z1
D
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 G^c,i5}w
color = blue, Mn0.!J
"
width = 3, yLa@27T\A
"fw signal" 9M96$i`P
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 Z=JKBoAY
color = blue, X1^VdJE
style = fdashed, ^Oz~T|)
width = 3, 46:<[0Psl/
"bw signal" cgb>Naa<
-nb U5o
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 F-;J N
yscale = 2, !第二个y轴的缩放比例 ?@"@9na
color = magenta, i2qN 0?n
width = 3, V;SfW2`)
style = fdashed, +Br<;sW
"n2 (%, right scale)" u3h(EAH>
k\OZ'dS
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 JU8}TX
yscale = 2, $JFjR@j
color = red, Oc)n,D)0
width = 3, a
,mgM&yD
style = fdashed, (PpY*jKR
"n3 (%, right scale)" Q6
*n'6
().C
Ab$E@H#
; ------------- maap X/J
diagram 2: !输出图表2 Y9abRrK
#(]D]f[@
"Variation ofthe Pump Power" Sm/8VSY
`gl?y;xC
x: 0, 10 &^ERaPynd
"pump inputpower (W)", @x H [+'>Id:
y: 0, 10 J.~@j;[2
y2: 0, 100 `
k]
TOc
frame =o@}~G&HA
hx !+$qSD,%x
hy {r&r^!K;
legpos 150, 150 " lD -*e4
Pr>$m{
Z
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 R655@|RT
step = 5, Qe~C}j%
color = blue, 51}C`j|V3{
width = 3, -dMH>e0
"signal output power (W, leftscale)", !相应的文本字符串标签 wW TuEM
finish set_P_in(pump, P_pump_in) @#wG)TA
_3
!s{
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 8h
ol4'B
yscale = 2, .Z7tE?
step = 5, /: !sn-(
color = magenta, ]`-o\,lq
width = 3, |TJ gH<I
"population of level 2 (%, rightscale)", +^:uPW^U
finish set_P_in(pump, P_pump_in) K`=U5vG^
eI|FrBq%
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 YWPkVvI
yscale = 2, s\'t=}0q
step = 5, tdU'cc?M
color = red, ZV Ko$q:F
width = 3, , wk}[MF
"population of level 3 (%, rightscale)", kU:Q&[/jzH
finish set_P_in(pump, P_pump_in) 4gZ R!J
G>dXK,f<B0
?(s9dS,7wZ
; ------------- qPu?rU{2
diagram 3: !输出图表3 %m|BXyf]_B
]_ LAy
"Variation ofthe Fiber Length" 89[/UxM)
i?>>%juK
x: 0.1, 5 BDN}`F[F
"fiber length(m)", @x xqT} 9,
y: 0, 10 iLdUus!
"opticalpowers (W)", @y "dG*HKrr
frame M!G/5:VZ
hx nJH'^rO!C
hy __z/X"H
TGpdl`k\T
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 :hHKm|1FE
step = 20, &~"N/o
color = blue, 7WV"Wrl]
width = 3, Jcvp<
"signal output" ='#7yVVcs
fN`Prs A
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 USE!
step = 20, color = red, width = 3,"residual pump" (>Sy,
T+V:vuK
! set_L(L_f) {restore the original fiber length } 45+kwo0
hzV%QDUpe
sI)jqHZG
; ------------- &Ai+t2
diagram 4: !输出图表4 @
/e{-Q
.j!:Hp(z}
"TransverseProfiles" _=w=!U&W
'mU\X!-
4<
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) V g7+G( ,
q|.0Ja
x: 0, 1.4 * r_co /um q!d7Ms{q
"radialposition (µm)", @x rp-.\Hl/a
y: 0, 1.2 * I_max *cm^2 wh]v{Fi'
"intensity (W/ cm²)", @y <t *3w
y2: 0, 1.3 * N_Tm ]{-ib:f~
frame Dk~
JH9#
hx `yXHb
hy K>+c2;t;
N8wA">u
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 o<S(ODOfi
yscale = 2, Xp^71A?>
color = gray, =rNI&K_<
width = 3, Jl)Q#
maxconnect = 1, yV@~B;eW0
"N_dop (right scale)" K?wo AuY
EU7mP
MxJ
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 Nrp1`qY
color = red, ]gb?3a}A
maxconnect = 1, !限制图形区域高度,修正为100%的高度 B?XqH_=0L
width = 3, -1F+,+m
"pump" j&?@:Zg v
w##$SaTI
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 &W y9%
color = blue, cZ/VMQEr
maxconnect = 1, @}e5T/{X}T
width = 3, L6pw'1'
"signal" DTV"~>@
1`&"U[{
,3ivB8
; ------------- ^X?3e1om
diagram 5: !输出图表5 s4\_%je<v
~p/1
9/
"TransitionCross-sections" n ^C"v6X
[tz}H&
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) [)p>pA2GZj
>]8H@. \
x: 1450, 2050 NHzhGg]
"wavelength(nm)", @x (^Hpe5h&
y: 0, 0.6 tsTCZ);(
"cross-sections(1e-24 m²)", @y ~d6zpQf7>
frame $]]|#}J
hx .37Jrh0Iv
hy arj?U=zy
-6>T0-
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 e/!xyd
color = red, g)~"-uQQ
width = 3, )KD*G;<O]L
"absorption" 5@@ilvwzz
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 sq'bo8r
color = blue, 0W>,RR)
width = 3, HO
=\
"emission" _0e;&2')
r5aOQ