(* (K6vXq.;\\
Demo for program"RP Fiber Power": thulium-doped fiber laser, h8.(Q`tli
pumped at 790 nm. Across-relaxation process allows for efficient (]mBAQ#hw
population of theupper laser level. |,n(9Ix
*) !(* *)注释语句 !Y UT*
#]i^L;u1A
diagram shown: 1,2,3,4,5 !指定输出图表 !7]^QdBLY
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响
`_neYT
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 m|?1HCRXRI
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 + rN#
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 jsV1~1:83
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 ,{iMF
(Nj
$@{d\@U
include"Units.inc" !读取“Units.inc”文件中内容 15|gG<-
p|0SA=?k"
include"Tm-silicate.inc" !读取光谱数据 #>CWee;
qS}{O0
; Basic fiberparameters: !定义基本光纤参数 +('xzW
L_f := 4 { fiberlength } !光纤长度 pkG8g5(w
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 H_Hr=_8}-
r_co := 6 um { coreradius } !纤芯半径 Gyi0SM6v5&
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 M9VAs~&S
SJ8
~:"\P
; Parameters of thechannels: !定义光信道 buKkm$@w
l_p := 790 nm {pump wavelength } !泵浦光波长790nm `tH F}
dir_p := forward {pump direction (forward or backward) } !前向泵浦 !L|VmLqa
P_pump_in := 5 {input pump power } !输入泵浦功率5W *6_>/!ywI
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um %dmQmO,
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布
S[8nGH#m
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 0 >(hiTy<
QRdtr
l_s := 1940 nm {signal wavelength } !信号光波长1940nm T9}dgf
w_s := 7 um !信号光的半径 '|tmmoY6a:
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 VL\Ah3+
loss_s := 0 !信号光寄生损耗为0 }DvT6
- t4F
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 8-L -W[
54]UfmT%I
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 b83m'`vRM
calc rP(;^8l"
begin JGhK8E
global allow all; !声明全局变量 s/;S2l$`
set_fiber(L_f, No_z_steps, ''); !光纤参数 Yv{$XI7
add_ring(r_co, N_Tm); b9Eb"
def_ionsystem(); !光谱数据函数 aNICSxDN
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 @%MGLR{pH
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 L[+4/a!HQ
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 uXGAcUx(
set_R(signal_fw, 1, R_oc); !设置反射率函数 &xC5Mecb*
finish_fiber(); -ebyW#
end; Ni;jMc
eY:jVYG(
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 1NN#-U
show "Outputpowers:" !输出字符串Output powers: oSR;Im<2
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) zb!RfQ,
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) ,}^;q58
);p:[=$71
cGg~+R2P
; ------------- +=kz".$
diagram 1: !输出图表1 ZoqE,ucH
.g_Kab3?L
"Powers vs.Position" !图表名称 Wjd_|Kui
wX@g>(
x: 0, L_f !命令x: 定义x坐标范围 %x^ U3"7
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 g`=Z%{z%
y: 0, 15 !命令y: 定义y坐标范围 @Rqn&tA8
y2: 0, 100 !命令y2: 定义第二个y坐标范围 0n?^I>j
frame !frame改变坐标系的设置 z_$F)*PL
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) 9$R}GK
hx !平行于x方向网格 ^7`gf
hy !平行于y方向网格 +4]f6Zz({
Q\le3KB
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 phcYQqR
color = red, !图形颜色 N/B-u)?\:
width = 3, !width线条宽度 Cj6$W5I m
"pump" !相应的文本字符串标签 5.U|CL
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 ,V+,3TT
color = blue, 7t%
|s!~
width = 3, `jGG^w3
"fw signal" 6l(HD([_p
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 s";9G^:
color = blue, =%crSuP
style = fdashed, eC$ Jdf
width = 3, Yc>.P
"bw signal" *b(nX,e
t "[2^2G
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 #<R6!"TNoz
yscale = 2, !第二个y轴的缩放比例 yt`K^07@
color = magenta, mv`ND&
width = 3, p}a0z?
style = fdashed, `+T"^{
Z
"n2 (%, right scale)" ";w"dfC^
CGZ3-OW@E
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 Zx%6pZ(.
yscale = 2, lMb&F[KJ7
color = red, Z2I2 [pA
width = 3, ,D{D
QJ(B
style = fdashed, pb|,rLNZ
"n3 (%, right scale)" 6"U$H$i.G
m+dJ3
o;{BI
Q1
; ------------- Nb/Z +
diagram 2: !输出图表2 z CFXQi
= _/XFN
"Variation ofthe Pump Power" sK|+&BC
;Z-%'5hKM
x: 0, 10 %_ Vj'z~T
"pump inputpower (W)", @x 9at_F'>R
y: 0, 10 0{.[#!CSk
y2: 0, 100
o+FDkqEN
frame bG!/%,s
hx iiTt{ab\Y
hy sk~inIj-
legpos 150, 150 DYW&6+%,hO
mW 'sdb
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 LZ1)zoJ
step = 5, e#|YROHf
color = blue, HV8=b"D"
width = 3, /zIUYY
"signal output power (W, leftscale)", !相应的文本字符串标签 `:YCOF
finish set_P_in(pump, P_pump_in) Na$[nv8qh
|aS272'
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 #b$qtp!,
yscale = 2, lWk/vj<5
step = 5, Fz@9
@
color = magenta, e4Q2$Q@b
width = 3, <4%vl+qW
"population of level 2 (%, rightscale)", CjUYwAy$k
finish set_P_in(pump, P_pump_in) s73' h
Zd8`95
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 `z<I<
yscale = 2, e3]v
*<bj
step = 5, -5#cfi4^*
color = red, VqnM>||
width = 3, J)="Im)
"population of level 3 (%, rightscale)", z--Y
finish set_P_in(pump, P_pump_in) K4Hu0
EEj.Kch}4
Q4F&#^02y
; ------------- ..UA*#%1
diagram 3: !输出图表3 @*-t.b2k
i@#=Rxp
"Variation ofthe Fiber Length" E5g|*M.+f
<^Jdl.G
x: 0.1, 5 jAy0k
"fiber length(m)", @x "WzD+<oL
y: 0, 10 B PG&R
"opticalpowers (W)", @y 80 ckh
frame q:u,)6
hx 7(C:ty9
hy "43F.!P
gvoYyO#cm
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 p'\zL:3
step = 20, _~O*V&
color = blue, ,#K{+1z:
width = 3, >- U+o.o
"signal output" t_jnp $1m
J(w 3A)(
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 e$o]f"(
step = 20, color = red, width = 3,"residual pump" qpV"ii
=TJ9Gr/R&:
! set_L(L_f) {restore the original fiber length } @z>DJ>htN
1\-r5e; BE
Tb}op XYK
; ------------- H7(D8.y )
diagram 4: !输出图表4 %#C9E kr
PP8627uP
"TransverseProfiles" w$"^)EG,7
y'(a:.%I
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) BRXDE7vw
in `|.#
x: 0, 1.4 * r_co /um r0*Y~
KHw
"radialposition (µm)", @x USZBk0$
y: 0, 1.2 * I_max *cm^2 @S1Z"%S
"intensity (W/ cm²)", @y %a']TX
y2: 0, 1.3 * N_Tm 63/a 0Yn
frame k5)a|
hx i@mS8%|l
hy zZ;V9KM>v
q1Mt5O}
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 P|t2%:_
yscale = 2, lcK4 Uq\q
color = gray, ic}mru
width = 3, Q hdG(`PY~
maxconnect = 1, &z@}9U*6b
"N_dop (right scale)" RoNE7|gF:
DMlr%)@{
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 oSIP{lfp2Q
color = red, /QT>"
maxconnect = 1, !限制图形区域高度,修正为100%的高度 3Uej]}c
width = 3, <Yg6=e
"pump" ~ +h4i'
v2k@yxt(
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 |5jrl|
color = blue, AkCy
C1
maxconnect = 1, Po*!eD
width = 3, 2D/bMq
"signal" oRZe?h^r#
HvmE'O8
pog
; ------------- snYeo?|b
diagram 5: !输出图表5 d:"7Tw2v+
_qk
yU )z
"TransitionCross-sections" 2_}oOt?qiM
FC
WF$'cO
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) A]ZQ?-L/
Gn<0Fy2
x: 1450, 2050 %xr'96d
"wavelength(nm)", @x 'x5p ?m
y: 0, 0.6 (2UA ,
"cross-sections(1e-24 m²)", @y 0s79rJ
frame ~'F.tB
hx +;4;~>Y
hy oW^>J-
X ]W)D
S
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 g#`}HuPoE
color = red, _]-8gr-T
width = 3, HJBGxyw
"absorption" Kp^"<%RT
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 Ve${g`7&
color = blue, Z_fwvcZ?05
width = 3, 'T$Cw\F&
"emission" maeQ'Sv_&
:{4C2qK>