(* rm<`H(cT
Demo for program"RP Fiber Power": thulium-doped fiber laser, z-|d/#h
pumped at 790 nm. Across-relaxation process allows for efficient .4!wp&
population of theupper laser level. h2aO-y>K
*) !(* *)注释语句 }cIj1:
$wcV~'fM
diagram shown: 1,2,3,4,5 !指定输出图表 r3YfY\
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 ?' $}k
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 3P*"$ fH
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 V^\b"1X7N
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 hAB:;r XlI
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 s
~i,R
=I$:-[(
include"Units.inc" !读取“Units.inc”文件中内容 ?`B6I!S0[
WhL"-f
include"Tm-silicate.inc" !读取光谱数据 &qV_|f;
3UcOpq2i\
; Basic fiberparameters: !定义基本光纤参数 !)OA7%3m
L_f := 4 { fiberlength } !光纤长度 F '55BY*!
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 yiczRex%rq
r_co := 6 um { coreradius } !纤芯半径 VjSA&R
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 =V^8RlBi
?nozB|*>ut
; Parameters of thechannels: !定义光信道 cV* 0+5
l_p := 790 nm {pump wavelength } !泵浦光波长790nm 8=3$U+
dir_p := forward {pump direction (forward or backward) } !前向泵浦 Wp=:|J
P_pump_in := 5 {input pump power } !输入泵浦功率5W B)ibxM(n*
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um (<yQA. M
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 =(,dI[v
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 o&HFlDZ5jO
T)cbpkH4
l_s := 1940 nm {signal wavelength } !信号光波长1940nm -axmfE?g0
w_s := 7 um !信号光的半径 H.TPKdVX
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 /7b$C]@k
loss_s := 0 !信号光寄生损耗为0 "\kr;X'
E2|c;{c
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 ;<v9i#K5
@,TCg1@QJ
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 cK2Us+h
calc 7A>glZ/x
begin =A^VzIj(
global allow all; !声明全局变量 tP/R9Ezp
set_fiber(L_f, No_z_steps, ''); !光纤参数 FuO'%3;c
add_ring(r_co, N_Tm);
TGozoPV
def_ionsystem(); !光谱数据函数 xw rleB
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 +tFl
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 qgsKbsl
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 51x)fZQ
set_R(signal_fw, 1, R_oc); !设置反射率函数 f<( ysl1[
finish_fiber(); n5 jzVv
end; MXuiQ;./
qXQ7Jg9
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 `@i!'h
show "Outputpowers:" !输出字符串Output powers: 8Vqh1<
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) V|bN<BYJ
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) (:T\<
]+i~Cbj
{KalVZX2R
; ------------- $v+t~b
diagram 1: !输出图表1 : w 4Sba3
mGqT_
"Powers vs.Position" !图表名称 a;e~D
9%1
OO+QH 2j
x: 0, L_f !命令x: 定义x坐标范围 ~!W{C_*N
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 j]5bs*G
y: 0, 15 !命令y: 定义y坐标范围 Wi(Ac8uh
y2: 0, 100 !命令y2: 定义第二个y坐标范围 4&([<gyR<
frame !frame改变坐标系的设置 2Fsv_t&*>
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) l>O~^41[
hx !平行于x方向网格 'rQ>Z A_8
hy !平行于y方向网格 pe$l'ur
lZ9rB^!
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 BSB;0O M
color = red, !图形颜色 W{(q7>g
width = 3, !width线条宽度 nB1[OB{
"pump" !相应的文本字符串标签 Sq,x57-
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 wR= WS',
color = blue, ("B[P/
width = 3, lUd;u*A
"fw signal" cRhu]fv()
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 |B;tv#mKD
color = blue, t\$P*_
style = fdashed, usR:-1{
width = 3, VgO:`bDF
"bw signal" '=2/0-;Jf
3,<$z1Jm
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 z.q^`01/H
yscale = 2, !第二个y轴的缩放比例 r#%z1u
color = magenta, lU[" ZFP
width = 3, R6A{u(
style = fdashed, hY@rt,! 8
"n2 (%, right scale)" BB694
LzW8)<N
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 S_VZ^1X]
yscale = 2, =x/Ap1
color = red, fvDt_g9 oI
width = 3, i0y^b5@MOb
style = fdashed, *+ql{\am4N
"n3 (%, right scale)" n5~7x
^T#bla893
>vP DF+ u
; ------------- ? %9-5"U[
diagram 2: !输出图表2 1@)kNg)*$
Qt@_C*,P
"Variation ofthe Pump Power" W'BB FG
2+7rLf`l
x: 0, 10 wMB. p2
"pump inputpower (W)", @x bV5 {
y: 0, 10 \CP)$0j-&o
y2: 0, 100 _qq> 43
frame kf8-#Q/B
hx n\v;4ly^
hy iz&$q]P8
legpos 150, 150 4'ym vR
'Olp2g8=
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 rff=ud>Jf
step = 5, 5,I|beM
color = blue, 3++}4%w
width = 3, `u zR!^X
"signal output power (W, leftscale)", !相应的文本字符串标签 1VlRdDg
finish set_P_in(pump, P_pump_in) OD*\<Sc
WUwH W
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 Uq:WW1=kh
yscale = 2, )"W(0M]>
step = 5, Ho}"8YEXNV
color = magenta, ''{REFjK7
width = 3, |,3>A@
"population of level 2 (%, rightscale)", o7/S'Haxc]
finish set_P_in(pump, P_pump_in) g>m)|o'
cjf 8N:4N0
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 0]3 ,0s $}
yscale = 2, u3"0K['3
step = 5, WIe7>wkC
color = red, n9
LTrhLqp
width = 3, 1S&GhJ<wJ
"population of level 3 (%, rightscale)", KT 3W>/#E
finish set_P_in(pump, P_pump_in) emhI1
*}
i++a^f
!Ez5@
; ------------- `&\jOve
diagram 3: !输出图表3 n(i Uc1Y
FeW}tKH
"Variation ofthe Fiber Length" =cwQG&as
"!ZQ`yl
x: 0.1, 5 ^#|Sl D]
"fiber length(m)", @x f<14-R=
y: 0, 10 !cLdoX
"opticalpowers (W)", @y
~ 4v
frame scf.>K2
hx 1V\tKDM
hy >@b]t,rrK
!2.(iuE
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 GI+x,p
step = 20, ?QDHEC62
color = blue, ~XzT~WxW
width = 3, o1kTB&E4B
"signal output" S:bYeD4
yQT
cO^E
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 ^(j}'p,
step = 20, color = red, width = 3,"residual pump" Xkqq$A4
&kR*J<)V
! set_L(L_f) {restore the original fiber length } ', WnT:
HT`k-}ho,
i\zVP.c])*
; ------------- TpAE 9S
diagram 4: !输出图表4 ]u]BxMs
Q #Tg)5.\
"TransverseProfiles" - w{`/
wtl3Ex,DO
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) v)b_bU]Hx
-> ^Ex`
x: 0, 1.4 * r_co /um NJNS8\4
"radialposition (µm)", @x oe'f?IY
y: 0, 1.2 * I_max *cm^2 D-/q-=zd
"intensity (W/ cm²)", @y ^xyU*A}D
y2: 0, 1.3 * N_Tm W\c1QY$E
frame >1}@Q(n/}{
hx +]3kcm7B
hy r|_@S[hZg
o=nF .y
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 ;u8a%h!
yscale = 2, 1dhuLN%Ce
color = gray, gW5yLb_Vz$
width = 3, zA>LrtyK(=
maxconnect = 1, g@O H,h/
"N_dop (right scale)" {;L,|(o^
0"F|)
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 Ke;eI+P[
color = red, gkM Q=;Nn
maxconnect = 1, !限制图形区域高度,修正为100%的高度 2il`'X
width = 3, $a01">q&y
"pump" ELN1F0TneH
;/h&40&
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 T4nWK!}z
color = blue, $ {h1(ec8
maxconnect = 1, }`$s"Iv@
width = 3, ~m'8<B5+
"signal" ri`;
dC<2%y
oj(st{,
; ------------- GGs7]mhA
diagram 5: !输出图表5 yW)r`xpY
-N'wKT5
"TransitionCross-sections"
`-!kqJ
I/*^s
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) FVxORQI
.k-t5d
x: 1450, 2050 x[y}{T
"wavelength(nm)", @x zIA)se
Js
y: 0, 0.6 vdcPpj^d5
"cross-sections(1e-24 m²)", @y 8:;]tt
frame .0rTk$B
hx Sy/Z}H
hy JvsL]yRT
[}=a6Q>)
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 Zq~Rkx
color = red, %g~&$oZmq
width = 3, Ne)3@?
"absorption" Uc,J+j0F
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 >V>`}TIH
color = blue, D<`M<:nq
width = 3, 8(ot<3(D
"emission" /9A6"Z
[4hi/60