切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2951阅读
    • 1回复

    [原创]在框架结构确定的情况下,基于matlab的消四种像差的三反系统初始结构的求解 [复制链接]

    上一主题 下一主题
    离线songshaoman
     
    发帖
    661
    光币
    2653
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-25
    %无中间像,焦距输入为负数 n6f  
    function sjr=nfdre(~) HI}9 "(t}  
    h *JzJ0X  
    %系统焦距及各镜间距输入,间距取负正负 Q-:IE T  
    ub* j&L=  
    f=input('f:'); s/"?P/R  
    d1=input('d1:'); |d B`URP  
    d2=input('d2:'); Pfv| K;3i  
    d3=input('d3:'); 4tb y N  
    +9[/> JM  
    A=f^2/(d3*d2)-f/d1; jbU=D:|  
    B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); dmkd.aP4  
    C=d3/d2-f/d1; ojA i2uz  
    ie f~*:5  
    a1=(-B+sqrt(B^2-4*A*C))/(2*A);%α1 V?*\ISB`}  
    a2=d3/(a1*f);%α2 RTgR>qI&)  
    b2=a1*(1-a2)*f/d2;%β2 a9=pZ1QAG  
    b1=(1-a1)*f/(d1*b2);%β1 V#Px  
    v_$'!i$  
    =(^-s Jk  
    %曲率半径 A"`^A brm  
    8a;I,DK=j  
    R1=2*f/(b1*b2) #`>46T  
    R2=2*a1*f/(b2*(1+b1)) W]t!I}yPR  
    R3=2*a1*a2*f/(1+b2) "&,Gn#'FG  
     d Xiv8B1  
    A1=b2^3*(a1-1)*(1+b1)^3; %bp8VR sY  
    B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; lOc!KZHUp  
    C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; \ M_}V[1+  
    79?%g=#=  
    A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); DD4fV`:kG  
    B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); aNLkkkJg<;  
    C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); 2K Um(B.I  
    *XCid_{(  
    CB=[C1 B1;C2 B2]; /_`f b)f  
    AB=[A1 B1;A2 B2]; Y}/e" mp  
    AC=[A1 C1;A2 C2]; d0;$k,  
    Y)-)owx7  
    %非球面系数 6^oQ8unmS  
    k2=-(det(CB)/det(AB)); g@<E0 q&`$  
    k3=-(det(AC)/det(AB)); .5;Xd?  
    k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 _7O;ED+  
    k2=k2 1ud+~y$K  
    k3=k3 aa'u5<<W  
    VGVZ`|  
    end  ;m;a"j5  
    qJQ!e  
    %有中间像,焦距输入为正数 .!kO2/:6  
    Jf/X3\0N7  
    function sjr=yfdre(~) ~is$Onf99#  
    h|MTE~   
    f=input('f:'); /%#LA  
    d1=input('d1:'); F%8W*Y699  
    d2=input('d2:');  !IZbMn6  
    d3=input('d3:'); Q UQ"2oC  
    (\Iz(N["G  
    A=f^2/(d3*d2)-f/d1; :< )"G&  
    B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); lYS+EVcR  
    C=d3/d2-f/d1; :DxCjv  
    x}`]9XQ  
    a1=(-B-sqrt(B^2-4*A*C))/(2*A); .)7r /1o  
    a2=d3/(a1*f); Xy74D/ocui  
    b2=a1*(1-a2)*f/d2; ~4YLPMGKl  
    b1=(1-a1)*f/(d1*b2); ,<^7~d{{3m  
    n>_EE w2/  
    %曲率半径 HOn,c@.9Y  
    :%!}%fkxH  
    R1=2*f/(b1*b2) "71,vUW  
    R2=2*a1*f/(b2*(1+b1)) #SHmAB  
    R3=2*a1*a2*f/(1+b2) rcC}4mNe  
    O:=%{/6&D  
    A1=b2^3*(a1-1)*(1+b1)^3; tA?cHDp4E  
    B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; Y4\BHFq  
    C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; $Vi[195]2  
    |NbF3 fD  
    A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); Lv`*+;1 K  
    B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); -`iXAyr)m  
    C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); JYY:~2  
    "5KJ /7q!  
    CB=[C1 B1;C2 B2]; ];-DqK'  
    AB=[A1 B1;A2 B2]; Y: ~A-_  
    AC=[A1 C1;A2 C2]; o)X(;o  
    D^?jLfW8  
    %二次系数 +0w~Skd,  
    !besMZ  
    k2=-(det(CB)/det(AB)); I^M %+\  
    k3=-(det(AC)/det(AB)); }@6/sg  
    k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 QF  P3S(  
    k2=k2 5/v,|  
    k3=k3 -xJ_5  
    B?Vr9H7n  
    end
     
    分享到
    离线doushan
    发帖
    14
    光币
    0
    光券
    0
    只看该作者 1楼 发表于: 2023-03-01
    谢谢分享,学习一下 Q*S|SH-cZ0