切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2955阅读
    • 1回复

    [原创]在框架结构确定的情况下,基于matlab的消四种像差的三反系统初始结构的求解 [复制链接]

    上一主题 下一主题
    离线songshaoman
     
    发帖
    661
    光币
    2653
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2020-05-25
    %无中间像,焦距输入为负数 $N=N(^  
    function sjr=nfdre(~) 9n5<]Q (  
    z7Eg5rm|QZ  
    %系统焦距及各镜间距输入,间距取负正负 6 ]pX>Xho  
    +_xOLiu  
    f=input('f:'); \$OF1i@  
    d1=input('d1:'); V-r3-b  
    d2=input('d2:'); }~h(w^t  
    d3=input('d3:'); o9S+6@  
    GMZv RAu i  
    A=f^2/(d3*d2)-f/d1; SdwS= (e6  
    B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); ^e>Wo7r  
    C=d3/d2-f/d1; U Gpu\TB  
    \3jW~FV  
    a1=(-B+sqrt(B^2-4*A*C))/(2*A);%α1 z.VyRBi0  
    a2=d3/(a1*f);%α2 4T<Lgb  
    b2=a1*(1-a2)*f/d2;%β2 ?8mlZ X9C  
    b1=(1-a1)*f/(d1*b2);%β1 8Bq!4uq\5|  
    F0UVo  
    v[n7"  
    %曲率半径 (V%`k'N7f  
    la?Wnw  
    R1=2*f/(b1*b2) rf%7b8[v  
    R2=2*a1*f/(b2*(1+b1)) ;kJA'|GX  
    R3=2*a1*a2*f/(1+b2) 5 `RiS]IO]  
    ?cEskafb>  
    A1=b2^3*(a1-1)*(1+b1)^3; .*JA!B  
    B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; eBO@7F$  
    C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; :BGA.  
    rzI|?QaPi  
    A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); T!}[yW  
    B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); #vqo -y7@  
    C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); 79yd&5#e?  
    =FT98H2*|  
    CB=[C1 B1;C2 B2]; .+([  
    AB=[A1 B1;A2 B2]; 3TZ*RPmFRm  
    AC=[A1 C1;A2 C2]; 'iY*6<xS<  
    c$QX )V  
    %非球面系数 1I}b|6 `  
    k2=-(det(CB)/det(AB)); )CS.F=  
    k3=-(det(AC)/det(AB)); eV cANP  
    k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 %D`,k*X  
    k2=k2 NCf"tK'5n  
    k3=k3 <(e8sNe  
    kz S=g|_  
    end #s%-INcR  
    mG1 IQ!  
    %有中间像,焦距输入为正数 sW^a`VM  
    KYxBVgJ  
    function sjr=yfdre(~) >u(>aV|A  
    eb8w~   
    f=input('f:'); M#@aB"@J>  
    d1=input('d1:'); .\qj;20W  
    d2=input('d2:'); 7gS1~Q4\V2  
    d3=input('d3:'); 1]T`n/d V  
    y9|K|xO[  
    A=f^2/(d3*d2)-f/d1; *X38{r j  
    B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); qJ_1*!!91  
    C=d3/d2-f/d1; ro[Y-o5Q0  
    KZBrE$@%5  
    a1=(-B-sqrt(B^2-4*A*C))/(2*A); ;*[9Q'lI*  
    a2=d3/(a1*f); \M/6m^zS  
    b2=a1*(1-a2)*f/d2; ,s^<X85gp\  
    b1=(1-a1)*f/(d1*b2); M'1!<a-Mp  
    W];EKj,3W  
    %曲率半径 t=#Pya  
    il:nXpM!  
    R1=2*f/(b1*b2) jRpdft  
    R2=2*a1*f/(b2*(1+b1)) cxYfZ4++m  
    R3=2*a1*a2*f/(1+b2) !z zW2>  
    s/1 #DM"  
    A1=b2^3*(a1-1)*(1+b1)^3; =qvZpB7ZZ  
    B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; bO/*2oau  
    C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; &(xUhX T  
    m$$?icA  
    A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); 0D(cXzQP  
    B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); G;oFTP>o  
    C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); (a6?s{(  
    b]]N{: I  
    CB=[C1 B1;C2 B2]; C6& ( c  
    AB=[A1 B1;A2 B2]; IGAzE(  
    AC=[A1 C1;A2 C2]; em]xtya  
    DjW$?>  
    %二次系数 qU[O1bN  
    ZZ)G5ji  
    k2=-(det(CB)/det(AB)); 8Vt4HD08  
    k3=-(det(AC)/det(AB)); RwTzz] M  
    k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 } IlP:  
    k2=k2 Z#Lx_*p]Q  
    k3=k3 J%dJw}  
    S9Yt1qb  
    end
     
    分享到
    离线doushan
    发帖
    14
    光币
    0
    光券
    0
    只看该作者 1楼 发表于: 2023-03-01
    谢谢分享,学习一下 ^@}#me@