切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2649阅读
    • 1回复

    [原创]在框架结构确定的情况下,基于matlab的消四种像差的三反系统初始结构的求解 [复制链接]

    上一主题 下一主题
    离线songshaoman
     
    发帖
    653
    光币
    2615
    光券
    0
    只看楼主 正序阅读 楼主  发表于: 2020-05-25
    %无中间像,焦距输入为负数 G_4K+ -K  
    function sjr=nfdre(~) 0R2S@4%Y  
    A52LH,  
    %系统焦距及各镜间距输入,间距取负正负 }.fZy&_  
    dXf]G6  
    f=input('f:'); bUY:XmA  
    d1=input('d1:'); yoq\9* ?u^  
    d2=input('d2:'); Cy`<^_i  
    d3=input('d3:'); WcV\kemf  
    Zi2Eu4p l{  
    A=f^2/(d3*d2)-f/d1; Mm:a+T  
    B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); AaCnTRG  
    C=d3/d2-f/d1; \UkNE5  
    e{q p!N1!  
    a1=(-B+sqrt(B^2-4*A*C))/(2*A);%α1 Xy3g(x]  
    a2=d3/(a1*f);%α2 qY*%p  
    b2=a1*(1-a2)*f/d2;%β2 46Y7HTwE  
    b1=(1-a1)*f/(d1*b2);%β1 \S|VkPv  
    |g: '')>[  
    z<3}TD  
    %曲率半径 Kd AR)EU>  
    =DmPPl{  
    R1=2*f/(b1*b2) )sY$\^'WY  
    R2=2*a1*f/(b2*(1+b1)) MIk #60Ab  
    R3=2*a1*a2*f/(1+b2) eY6gb!5u  
    $w";*">:0  
    A1=b2^3*(a1-1)*(1+b1)^3; rS,* s'G  
    B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; 4X(1   
    C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; j:de}!wc  
    ~8Dd<4?F]  
    A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); z Et6  
    B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); pDq^W @Rq  
    C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); b}EYNCw_7S  
    Rpa A)R,  
    CB=[C1 B1;C2 B2]; ^Xt]wl*]+  
    AB=[A1 B1;A2 B2]; jiw`i  
    AC=[A1 C1;A2 C2]; ATXx? b8h  
    ~PH1|h6  
    %非球面系数 w'5dk3$"  
    k2=-(det(CB)/det(AB)); K_<lO,[S  
    k3=-(det(AC)/det(AB)); g[D,\  
    k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 wFoR,oXtL/  
    k2=k2 LzEE]i  
    k3=k3 x9{Sl[2&  
    1VPN#Q!  
    end yo Q?lh  
    U(Hq4D  
    %有中间像,焦距输入为正数 .x-Z+Rs{g  
    =vqE=:X6  
    function sjr=yfdre(~) u[6`Jr~  
    Fm[?@Z&wP  
    f=input('f:'); ek0;8Ds9  
    d1=input('d1:'); Jb)eC?6O  
    d2=input('d2:'); u=ds]XP@  
    d3=input('d3:'); +2k|g2  
    7:R{~|R  
    A=f^2/(d3*d2)-f/d1;  S9ak '  
    B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); t KqCy\-q  
    C=d3/d2-f/d1; gYH:EuY,  
    XM5;AcD  
    a1=(-B-sqrt(B^2-4*A*C))/(2*A); 4{;8 ]/.a  
    a2=d3/(a1*f); ][>M<J  
    b2=a1*(1-a2)*f/d2; K&"Pm9  
    b1=(1-a1)*f/(d1*b2); mG8  
    >FMT#x t  
    %曲率半径 83 ^,'Z  
    Spr:K,  
    R1=2*f/(b1*b2) 2YP"nj#  
    R2=2*a1*f/(b2*(1+b1)) ?` ZGM  
    R3=2*a1*a2*f/(1+b2) Y$`hudJ&  
    {/|8g(  
    A1=b2^3*(a1-1)*(1+b1)^3; 7+Jma!o  
    B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; BoiIr[ (  
    C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; C6=;(=?C  
    krnk%ug  
    A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); oe_[h]Hgl  
    B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); 8Q)mmkI\=  
    C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); ?PxYS%D_L  
    TXvt0&-  
    CB=[C1 B1;C2 B2]; !+26a*P  
    AB=[A1 B1;A2 B2]; $P}]|/Yb  
    AC=[A1 C1;A2 C2]; MFdFZkpiV  
    4`5Qt=}  
    %二次系数 Xy8ie:D  
    Vwh&^{Eh  
    k2=-(det(CB)/det(AB)); 0|+hm^'_  
    k3=-(det(AC)/det(AB)); {pJ@I=q  
    k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 - 9<yB  
    k2=k2 4;~lpty  
    k3=k3 kKk |@  
    8!fAv$g0  
    end
     
    分享到
    离线doushan
    发帖
    14
    光币
    0
    光券
    0
    只看该作者 1楼 发表于: 2023-03-01
    谢谢分享,学习一下 Q_|S^hx Q