切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2773阅读
    • 1回复

    [原创]在框架结构确定的情况下,基于matlab的消四种像差的三反系统初始结构的求解 [复制链接]

    上一主题 下一主题
    离线songshaoman
     
    发帖
    654
    光币
    2617
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-25
    %无中间像,焦距输入为负数 e&f9/rfx  
    function sjr=nfdre(~) ~<Z;)e  
    <=8REA?  
    %系统焦距及各镜间距输入,间距取负正负  ZSq7>}  
    7QP%Pny%  
    f=input('f:'); Tl=cniy]  
    d1=input('d1:'); tS,nO:+x  
    d2=input('d2:'); brJ _q0@  
    d3=input('d3:');  5k.NZ  
    W HO;;j  
    A=f^2/(d3*d2)-f/d1; N+x0"~T}I  
    B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); kf+]bV  
    C=d3/d2-f/d1; kH1hsDe|&y  
    ]Mi ~vG q  
    a1=(-B+sqrt(B^2-4*A*C))/(2*A);%α1 %3scz)4$  
    a2=d3/(a1*f);%α2 vJDK]p<}  
    b2=a1*(1-a2)*f/d2;%β2 24"Trg\WK[  
    b1=(1-a1)*f/(d1*b2);%β1 {4Y@ DQ-  
    !7!xJ&/V  
    \]}|m<R  
    %曲率半径 {.$5:<8aC  
    y0>asl  
    R1=2*f/(b1*b2) tWQ_.,ld  
    R2=2*a1*f/(b2*(1+b1)) LziEF-_  
    R3=2*a1*a2*f/(1+b2) }$3eRu +  
    %se4aeOrX  
    A1=b2^3*(a1-1)*(1+b1)^3; L<!}!v5ja  
    B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; ~n%~ Z|mMF  
    C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; 8 $0D-z  
    F+Rtoq|  
    A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); X=_pQ+j`^  
    B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); j*>+^g\Q6  
    C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); h`dtcJ0  
    e>~g!S}G  
    CB=[C1 B1;C2 B2]; TSqfl/UI  
    AB=[A1 B1;A2 B2]; OiX:h#  
    AC=[A1 C1;A2 C2]; ,~8:^*0s  
    t m?[0@<s  
    %非球面系数 ;vvO#3DWM  
    k2=-(det(CB)/det(AB)); / PG+ s6  
    k3=-(det(AC)/det(AB)); K[0.4+  
    k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 jZeY^T)f"  
    k2=k2 N&7= hni  
    k3=k3 XJy~uks,  
    "OF4#a17  
    end |m7U^  
    ~K}iVX  
    %有中间像,焦距输入为正数 R>SS\YC'X  
    w naP?|/  
    function sjr=yfdre(~) ]|62l+  
    )=l~XV  
    f=input('f:'); &C<K|F!j!  
    d1=input('d1:'); z(2pl}  
    d2=input('d2:'); dfY(5Wc+f  
    d3=input('d3:'); O=UXe]D  
    _@9[c9bO  
    A=f^2/(d3*d2)-f/d1; WZO8|hY  
    B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); L;zwqdI  
    C=d3/d2-f/d1; *,<A[XP  
    WV&T   
    a1=(-B-sqrt(B^2-4*A*C))/(2*A); I Y%M5(&Q  
    a2=d3/(a1*f); x8k7y:  
    b2=a1*(1-a2)*f/d2; yG\^PD  
    b1=(1-a1)*f/(d1*b2); M#X8Rs1`  
    j#QJ5(#  
    %曲率半径 LVKvPi  
    -V0_%Smc  
    R1=2*f/(b1*b2) 4-;"w;  
    R2=2*a1*f/(b2*(1+b1)) Fw5|_@&k  
    R3=2*a1*a2*f/(1+b2) |S.G#za  
    O 4zD >O  
    A1=b2^3*(a1-1)*(1+b1)^3; Q^X  
    B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; ap=m5h27  
    C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; G2 A#&86J{  
    4?Pdld  
    A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); FsQeyh>  
    B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); %B?@le+%  
    C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); u3 k%  
    Cbu/7z   
    CB=[C1 B1;C2 B2]; `)V1GR2 ES  
    AB=[A1 B1;A2 B2]; S :)Aj6>6  
    AC=[A1 C1;A2 C2]; :5Vk+s]8  
    K~'!JP8@  
    %二次系数 & $E[l'  
    F. 5'5%  
    k2=-(det(CB)/det(AB)); e??tp]PLn  
    k3=-(det(AC)/det(AB)); X`i'U7%I  
    k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 mdjPK rF<  
    k2=k2 B1<:nl  
    k3=k3 0K/Pth"*  
    oSVo~F  
    end
     
    分享到
    离线doushan
    发帖
    14
    光币
    0
    光券
    0
    只看该作者 1楼 发表于: 2023-03-01
    谢谢分享,学习一下 _|<kKfd?