切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2959阅读
    • 1回复

    [原创]在框架结构确定的情况下,基于matlab的消四种像差的三反系统初始结构的求解 [复制链接]

    上一主题 下一主题
    离线songshaoman
     
    发帖
    661
    光币
    2653
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-25
    %无中间像,焦距输入为负数 WQ<J<$$uu  
    function sjr=nfdre(~) ~(aQ!!H6  
    j` 9pZAF  
    %系统焦距及各镜间距输入,间距取负正负 {v}f/ cu  
    Aj#CB.y  
    f=input('f:'); S " R]i  
    d1=input('d1:'); 5*xk8*  
    d2=input('d2:'); V{p*N*  
    d3=input('d3:'); r]sv50Fy  
    SG2s!Ht  
    A=f^2/(d3*d2)-f/d1; -LJbx<'  
    B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); Igt:M[ /  
    C=d3/d2-f/d1; ".O+";wk  
    m:59f9WXA  
    a1=(-B+sqrt(B^2-4*A*C))/(2*A);%α1 2K'3ry)[y  
    a2=d3/(a1*f);%α2 \C5YVl#  
    b2=a1*(1-a2)*f/d2;%β2 8C#R  
    b1=(1-a1)*f/(d1*b2);%β1 r9sW:cM:e  
    ?1K|.lr  
    ,`v)nwP  
    %曲率半径 F=U3o=-:  
    8 sZ~3  
    R1=2*f/(b1*b2) UM(tM9  
    R2=2*a1*f/(b2*(1+b1)) jxU1u"WU  
    R3=2*a1*a2*f/(1+b2) O6NgI2[O  
    "~0m_brf  
    A1=b2^3*(a1-1)*(1+b1)^3; xAw$bJj~s  
    B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; im_WTZz2P  
    C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; U+F?b\  
    Sg(fZ' -  
    A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2);  iUJqAi1o  
    B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); eEePK~%c  
    C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2);  d!5C$C/x  
    L}*:,&Y/  
    CB=[C1 B1;C2 B2]; j-8v$ 0'  
    AB=[A1 B1;A2 B2]; ml<X92Y  
    AC=[A1 C1;A2 C2]; wN\%b}pp  
    2`tdH|Z`  
    %非球面系数 lG/M%i  
    k2=-(det(CB)/det(AB)); 2F[smUL  
    k3=-(det(AC)/det(AB)); @,F8gv*  
    k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 9>\P]:  
    k2=k2 "Kx2k>ym  
    k3=k3 @.;] $N&J  
    hqIYo .<  
    end !'o5X]s  
    0)`{]&  
    %有中间像,焦距输入为正数 [`nY /g:  
    o4,fwPkB  
    function sjr=yfdre(~) YjN2 ,Xi  
    wYQTG*&h  
    f=input('f:'); s+&Ts|c#  
    d1=input('d1:'); W L$nchS9  
    d2=input('d2:'); P,r9  <  
    d3=input('d3:'); M9'Qs m  
    ~G|un}g=  
    A=f^2/(d3*d2)-f/d1; 99w;Q 2k  
    B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); LW<DhMV  
    C=d3/d2-f/d1; S*-n%D0q5  
    WJbdsPs  
    a1=(-B-sqrt(B^2-4*A*C))/(2*A); 64;F g/t  
    a2=d3/(a1*f); V#["Z}  
    b2=a1*(1-a2)*f/d2; z/6/   
    b1=(1-a1)*f/(d1*b2); xP%`QTl\  
    J0CEZ  
    %曲率半径 l!CWE  
    Bf33%I~  
    R1=2*f/(b1*b2) }_93}e  
    R2=2*a1*f/(b2*(1+b1)) 6REv(E]  
    R3=2*a1*a2*f/(1+b2) F4'g}y OLd  
    }1E'a>^|  
    A1=b2^3*(a1-1)*(1+b1)^3; g"vg {Q  
    B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; 7OY<*ny  
    C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; ^HYmi\`  
    [ fvip_Pt  
    A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); jiQJ{yY  
    B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); ,_;+H*H>"  
    C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); 'zCJK~x`x  
    "D0:Y(\  
    CB=[C1 B1;C2 B2]; n!=%MgF'*p  
    AB=[A1 B1;A2 B2]; [5K& J-W  
    AC=[A1 C1;A2 C2]; e=K2]Y Q{  
    5N "fD{v{  
    %二次系数 ?&$??r^i  
    Y2709LWmP  
    k2=-(det(CB)/det(AB)); F F<xsoZJ  
    k3=-(det(AC)/det(AB)); VeK^hz R^Z  
    k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 q] g'rO'  
    k2=k2 }% (e`[?1  
    k3=k3 dYEF,\Z'  
    <tkxE!xF`J  
    end
     
    分享到
    离线doushan
    发帖
    14
    光币
    0
    光券
    0
    只看该作者 1楼 发表于: 2023-03-01
    谢谢分享,学习一下 {TT@Mkz_QC