切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 3037阅读
    • 1回复

    [原创]在框架结构确定的情况下,基于matlab的消四种像差的三反系统初始结构的求解 [复制链接]

    上一主题 下一主题
    离线songshaoman
     
    发帖
    661
    光币
    2655
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-25
    %无中间像,焦距输入为负数 (W7cQ>  
    function sjr=nfdre(~) p+O 2 :  
    PD$g W`V  
    %系统焦距及各镜间距输入,间距取负正负 Yy4? |wVl  
    (f^K\7HM  
    f=input('f:'); <bPn<QI  
    d1=input('d1:'); :EISms  
    d2=input('d2:'); Zhl}X!:c?\  
    d3=input('d3:'); -?A,N,nnX  
    8+Y+\XZG  
    A=f^2/(d3*d2)-f/d1; IH;+pN  
    B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); PKoB~wLH  
    C=d3/d2-f/d1; r@_`ob RW;  
    \X5>HPB  
    a1=(-B+sqrt(B^2-4*A*C))/(2*A);%α1 3Z *'  
    a2=d3/(a1*f);%α2 k!gft'iU  
    b2=a1*(1-a2)*f/d2;%β2 7|A9  
    b1=(1-a1)*f/(d1*b2);%β1 SBBDlr^P  
    L{K:XiPn  
    Rh7unJ  
    %曲率半径 VO|2  
    -saisH6  
    R1=2*f/(b1*b2) ;%r#p v~  
    R2=2*a1*f/(b2*(1+b1)) k%iZ..  
    R3=2*a1*a2*f/(1+b2) l@ +]XyLj  
    DwXzmp[qWH  
    A1=b2^3*(a1-1)*(1+b1)^3; w<?v78sT  
    B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; 6m_whGosi  
    C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; gDP\u<2!  
    S!0ocS!t  
    A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); wl1JKiodg  
    B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); k<xiP@b{y  
    C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); 6e1/h@p\7  
    ~/hyf]*j  
    CB=[C1 B1;C2 B2]; A^PCI*SN[  
    AB=[A1 B1;A2 B2]; aB9Pdu t  
    AC=[A1 C1;A2 C2]; %,u_ `P  
    YYrXLt:  
    %非球面系数 8y!d^EQ  
    k2=-(det(CB)/det(AB)); (>THN*i  
    k3=-(det(AC)/det(AB)); X G fLi  
    k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 s 2t'jIB  
    k2=k2 ^c1%$@H  
    k3=k3 ;<Dou7=  
    :IFTiq5a;  
    end rs$sAa*f  
    3lc'(ts %  
    %有中间像,焦距输入为正数 ~Uw **PT3M  
    A&#P=m j  
    function sjr=yfdre(~) 5gP#V K  
    5}3Q}o#  
    f=input('f:'); Z~}=q  
    d1=input('d1:'); c?i=6C dD'  
    d2=input('d2:'); J]8nbl  
    d3=input('d3:'); }-H<wQ&x  
    |I7-7d-; /  
    A=f^2/(d3*d2)-f/d1; e[fzy0  
    B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); k> I;mEV  
    C=d3/d2-f/d1; &:g5+([<  
    k;v2 3  
    a1=(-B-sqrt(B^2-4*A*C))/(2*A); B mq7w,L.  
    a2=d3/(a1*f); L^:+8g  
    b2=a1*(1-a2)*f/d2; q^],K'  
    b1=(1-a1)*f/(d1*b2); 8UArl3  
    0Y#S2ty  
    %曲率半径 s8T} ah!  
    CybHr#LBc  
    R1=2*f/(b1*b2) /[YH  W]  
    R2=2*a1*f/(b2*(1+b1)) T)Byws  
    R3=2*a1*a2*f/(1+b2) ^|DI9G(Bs  
    24_F`" :-=  
    A1=b2^3*(a1-1)*(1+b1)^3; wrq0fHwM  
    B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; 7Wg0-{yK4  
    C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; M$L1!o1Xf  
    "=I ioY  
    A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); O@ jW&-;  
    B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); {.tUn`j6V  
    C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); &) 7umdSgi  
    'ypJGm  
    CB=[C1 B1;C2 B2]; +D|y))fE  
    AB=[A1 B1;A2 B2]; 0}]k>ndT  
    AC=[A1 C1;A2 C2]; 3IHya=qN  
    n|F$qV_p\  
    %二次系数 TCJH^gDt  
    z5Hz-.  
    k2=-(det(CB)/det(AB)); 1,fjdd8OM;  
    k3=-(det(AC)/det(AB)); IH?.s k  
    k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 :`6E{yfM  
    k2=k2 e$|g  
    k3=k3 l+S08IZ  
    ;Dg8>  
    end
     
    分享到
    离线doushan
    发帖
    14
    光币
    0
    光券
    0
    只看该作者 1楼 发表于: 2023-03-01
    谢谢分享,学习一下 SLRQ3<0W_