切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2712阅读
    • 1回复

    [原创]在框架结构确定的情况下,基于matlab的消四种像差的三反系统初始结构的求解 [复制链接]

    上一主题 下一主题
    离线songshaoman
     
    发帖
    653
    光币
    2615
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-25
    %无中间像,焦距输入为负数 _+B y=B.'  
    function sjr=nfdre(~) aPelt`  
    @6G)(NGD  
    %系统焦距及各镜间距输入,间距取负正负 AT1cN1:4?  
    {KHI(*r;  
    f=input('f:'); i-wRwl4aEF  
    d1=input('d1:'); veq3t$sj  
    d2=input('d2:'); gttsxOgktH  
    d3=input('d3:'); +H3~Infr4f  
    Cw(e7K7&  
    A=f^2/(d3*d2)-f/d1; MOQ6&C`7q  
    B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); u"qu!EY2  
    C=d3/d2-f/d1; cIwX sx  
    sR9$=91`  
    a1=(-B+sqrt(B^2-4*A*C))/(2*A);%α1 CBd%}il  
    a2=d3/(a1*f);%α2 )<V!lsUx'-  
    b2=a1*(1-a2)*f/d2;%β2 } 9\_s*  
    b1=(1-a1)*f/(d1*b2);%β1 Nl YFS?5  
    /=;,lC  
    $^fF}y6N  
    %曲率半径 s8,YQ5-  
    5Hu[*  
    R1=2*f/(b1*b2) #` 3Q4  
    R2=2*a1*f/(b2*(1+b1)) X&zGgP/  
    R3=2*a1*a2*f/(1+b2) ~JT2el2W7p  
    )L9eLxI  
    A1=b2^3*(a1-1)*(1+b1)^3; fsjLD|?|:  
    B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; +1T>Ob;hk  
    C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; v>LK+|U  
    q.=Q  
    A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); W\>O$IX^e  
    B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); ywp_,j9F  
    C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); /}@F q  
    ]z'L1vQl7  
    CB=[C1 B1;C2 B2]; #|E#Rkw!  
    AB=[A1 B1;A2 B2]; qR cSB  
    AC=[A1 C1;A2 C2]; I+ |uyc  
    "J,|),Yd  
    %非球面系数 Nmx\qJUR(  
    k2=-(det(CB)/det(AB)); AHs%?5YTY;  
    k3=-(det(AC)/det(AB)); Z~SAlh T  
    k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 {oY"CZ2  
    k2=k2 /4Wf\ Zu  
    k3=k3 fh`Y2s|:7R  
    !f(A9V  
    end &C MBTY#u  
    ,5zY1C==Ut  
    %有中间像,焦距输入为正数 Cl3vp_  
    R7rM$|n=o  
    function sjr=yfdre(~) WILa8"M  
    AT I=&O`  
    f=input('f:'); dsw^$R}   
    d1=input('d1:'); =k<b* 8  
    d2=input('d2:'); ;cf$u}+  
    d3=input('d3:'); =b$g_+  
    D-@6 hWh~  
    A=f^2/(d3*d2)-f/d1; uH$hMg  
    B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); B)7:*Kj  
    C=d3/d2-f/d1; 4e>f}u 5  
    4OM ]8I!  
    a1=(-B-sqrt(B^2-4*A*C))/(2*A); vfqXHc unj  
    a2=d3/(a1*f); gtH^'vFZ  
    b2=a1*(1-a2)*f/d2; e/Z{{FP%6  
    b1=(1-a1)*f/(d1*b2); BD]J/o  
    !KXcg9e  
    %曲率半径 ;sA 5&a>!  
    L$c 1<7LU  
    R1=2*f/(b1*b2) 2n>mISy+  
    R2=2*a1*f/(b2*(1+b1)) >AV9 K  
    R3=2*a1*a2*f/(1+b2) x=>dmi3  
    xKL(:ePS  
    A1=b2^3*(a1-1)*(1+b1)^3; *H/)S5  
    B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; Uot(3p!S6  
    C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; ?W ^`Fa)]o  
    gAvNm[=wD2  
    A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); Tg O]q4  
    B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); x3'ANw6E  
    C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); o!h::j0,~  
    RQ|K?^k v  
    CB=[C1 B1;C2 B2]; ]NaH *\q  
    AB=[A1 B1;A2 B2]; I|*<[/)]y  
    AC=[A1 C1;A2 C2]; N@0/=B[n  
    Z5rL.a&  
    %二次系数 " xC$Ko _  
    &56\@t^  
    k2=-(det(CB)/det(AB)); fATnza  
    k3=-(det(AC)/det(AB)); w`boQ_Ir  
    k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 6@0? ~  
    k2=k2 m6 M/G  
    k3=k3 zLr:zfl  
    l{rHXST|  
    end
     
    分享到
    离线doushan
    发帖
    14
    光币
    0
    光券
    0
    只看该作者 1楼 发表于: 2023-03-01
    谢谢分享,学习一下 I&8!V)r)