采用matlab编程,其主函数如下,可以模拟各阶的zernike多项式: R@[gkj
%Display the Zernike function Z(n=5,m=1) f0d*%
clc $pLJtQ
clear K#>@T<
a=5;%%%%%%%%%%Z的阶数下标 c> }fy
b=1;%%%%%%%%%%Z的阶数的上标 P/e6b
.M
x = -1:0.01:1; 4[o/p8*/
[X,Y] = meshgrid(x,x); xP61^*-2
[theta,r] = cart2pol(X,Y); 7i@vj7K
idx = r<=1; J+o6*t2|
z = nan(size(X)); zD z"Dn9
z(idx) = zernfun(a,b,r(idx),theta(idx)); p}:"@6
figure(1) []I_r=
pcolor(x,x,z), shading interp 9iy3 dy^
axis square, colorbar Y:-O/X
xlabel('X'); X]T&kdQ6q
ylabel('Y'); fp`k1Uq@
title(['Zernike function Z^a_b','(r,\theta)']) [42EqVR
figure(2) ]XS[\qo
mesh(x,x,z) 2C59fXfd
xlabel('X'); !x@3U^${
ylabel('Y'); L $ki>._i\
title(['Zernike function Z^a_b','(r,\theta)'])