采用matlab编程,其主函数如下,可以模拟各阶的zernike多项式: liBFx6\"S
%Display the Zernike function Z(n=5,m=1) sf
O{.#5<
clc 85q!FpuH
clear 3:<[;yo
a=5;%%%%%%%%%%Z的阶数下标 *x_e] /}
b=1;%%%%%%%%%%Z的阶数的上标 xt6%[)
x = -1:0.01:1; PZY6
I
[X,Y] = meshgrid(x,x); 8_Z"@
[theta,r] = cart2pol(X,Y); U] P{~
idx = r<=1; r)B55;*Fh
z = nan(size(X)); %XQJ!sC`
z(idx) = zernfun(a,b,r(idx),theta(idx)); "EVf1iQ
figure(1) MAp#1+k
pcolor(x,x,z), shading interp Qb7&S5m
axis square, colorbar /i
xlabel('X'); oBs5xH7@-
ylabel('Y'); \~r_S
title(['Zernike function Z^a_b','(r,\theta)']) :Dfl ,=S
figure(2) .@\(ay
mesh(x,x,z) OnyAM{$g
xlabel('X'); )=cJW(nfP
ylabel('Y'); {P3gMv;
title(['Zernike function Z^a_b','(r,\theta)'])