采用matlab编程,其主函数如下,可以模拟各阶的zernike多项式: rq1kj 8%2
%Display the Zernike function Z(n=5,m=1) v2n0[b0
clc TN
%"RL
clear r$#G%FMv
a=5;%%%%%%%%%%Z的阶数下标 l'W+^
b=1;%%%%%%%%%%Z的阶数的上标 {a3kn\6H0
x = -1:0.01:1; //
}8HY)>
[X,Y] = meshgrid(x,x); baNfS
[theta,r] = cart2pol(X,Y); Ke ?uE
idx = r<=1; Vf?#W,5>=
z = nan(size(X)); jOb[h=B"
z(idx) = zernfun(a,b,r(idx),theta(idx)); H{f_:z{{
figure(1) ~t:b<'/
pcolor(x,x,z), shading interp <nvWC/LU
axis square, colorbar z/YMl3$l~
xlabel('X'); N4To#Q1w
ylabel('Y'); KCk?)Qv
title(['Zernike function Z^a_b','(r,\theta)']) 2\w=U,;(
figure(2) u!uDu,y
mesh(x,x,z) t%U[\\ic
xlabel('X'); ;-?ZI$
ylabel('Y'); &{ {DS
title(['Zernike function Z^a_b','(r,\theta)'])