采用matlab编程,其主函数如下,可以模拟各阶的zernike多项式: '3g[]M@M
%Display the Zernike function Z(n=5,m=1) L*:jXmUM_~
clc 0\e IQp
clear lv04g} W
a=5;%%%%%%%%%%Z的阶数下标 |j7,Mu+
b=1;%%%%%%%%%%Z的阶数的上标 13>0OKg`#
x = -1:0.01:1; 5k.oW=
[X,Y] = meshgrid(x,x); jbAx;Xt'=M
[theta,r] = cart2pol(X,Y); .X;3,D[w
idx = r<=1; 4T ~}
z = nan(size(X)); 4M2j!Sw
z(idx) = zernfun(a,b,r(idx),theta(idx)); -PfX0y9n
figure(1) a24"yT
pcolor(x,x,z), shading interp .4E&/w+
axis square, colorbar t;}:waZD
xlabel('X'); }|pwz
ylabel('Y'); cH&J{WeZa
title(['Zernike function Z^a_b','(r,\theta)']) U[ 0=L`0e
figure(2) z*!%g[3I
mesh(x,x,z) r8xv#r 1
xlabel('X'); bJX)$G
ylabel('Y'); Ys\Wj%6A
title(['Zernike function Z^a_b','(r,\theta)'])