采用matlab编程,其主函数如下,可以模拟各阶的zernike多项式: G{!(2D 4!
%Display the Zernike function Z(n=5,m=1) cw,|,uXq
6
clc &Oc
`|r*
clear bcUSjG>
a=5;%%%%%%%%%%Z的阶数下标 qu\U^F
b=1;%%%%%%%%%%Z的阶数的上标 D_?dy4\
x = -1:0.01:1; r PTfwhs
[X,Y] = meshgrid(x,x); Ng2Z7k
[theta,r] = cart2pol(X,Y); <KJ|U0/jGd
idx = r<=1; H.;2o(vD
z = nan(size(X)); HV'M31m~q
z(idx) = zernfun(a,b,r(idx),theta(idx)); /BN=Kl]
figure(1) Y4+]5;B8
pcolor(x,x,z), shading interp j/jFS]iC
axis square, colorbar $DaQM'-
xlabel('X'); _F(Np\%_
ylabel('Y'); WL|<xNL
title(['Zernike function Z^a_b','(r,\theta)']) ]T{v~]7:{
figure(2) xSqr=^
mesh(x,x,z) 9 I:3
xlabel('X'); )%b 5uZ
ylabel('Y'); l<qEX O
title(['Zernike function Z^a_b','(r,\theta)'])