采用matlab编程,其主函数如下,可以模拟各阶的zernike多项式: ej(< Le\
%Display the Zernike function Z(n=5,m=1) <hgfgk7<
clc V4,\vgGu
clear C,<FV+r=^
a=5;%%%%%%%%%%Z的阶数下标 cj#.Oaeq*
b=1;%%%%%%%%%%Z的阶数的上标 [cfXcl
x = -1:0.01:1; =%[vHQ\%
[X,Y] = meshgrid(x,x); $JK,9G[Vu
[theta,r] = cart2pol(X,Y); P}!pmg6V
idx = r<=1; G*zhy!P
z = nan(size(X)); UH5A;SrTqR
z(idx) = zernfun(a,b,r(idx),theta(idx)); rPifiLl A>
figure(1) ]qk`Yi
pcolor(x,x,z), shading interp JY D\VaW
axis square, colorbar Orlf5{P
xlabel('X'); )@.0ai
ylabel('Y'); iVM% ]\
title(['Zernike function Z^a_b','(r,\theta)']) {'?PGk%v
figure(2) W#x~x| (c
mesh(x,x,z) !}"P Hby5N
xlabel('X'); 2P|j<~JS
ylabel('Y'); ORIXcj]
title(['Zernike function Z^a_b','(r,\theta)'])