切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 3332阅读
    • 4回复

    [交流]3个智力题,羞愧自己脑子笨的来找自信啊~ [复制链接]

    上一主题 下一主题
    离线elvis
     
    发帖
    35
    光币
    63
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2007-01-05
    1)称球问题——有十二个外表相同的球,其中有一个坏球,它的重量和其它十一个有轻微的(但是可以测量出来的)差别。现在有一架没有砝码的很灵敏的天平,问如何称三次就保证找出那个坏球,并知道它比标准球重还是轻。 1%N*GJlwJ  
      2)过桥问题——在漆黑的夜里,四位旅行者来到了一座狭窄而且没有护栏的桥边。如果不借助手电筒的话,大家是无论如何也不敢过桥去的。不幸的是,四个人一共只带了一只手电筒,而桥窄得只够让两个人同时过。如果各自单独过桥的话,四人所需要的时间分别是1、2、5、8分钟;而如果两人同时过桥,所需要的时间就是走得比较慢的那个人单独行动时所需的时间。问题是,如何设计一个方案,让这四人尽快过桥。 eQ8t.~5;-  
      3)倒水问题——假设有一个池塘,里面有无穷多的水。现有2个空水壶,容积分别为5升和6升。问题是如何只用这2个水壶从池塘里取得3升的水。
     
    分享到
    离线qhq1998
    发帖
    26
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2007-01-05
    3. 6升水倒入5升空壶,再将5升壶中的水倒掉。将6升壶中的1升水倒入5升空壶。 q jc4IW t~  
      类推 Jkbeh.  
    ku]?"{Xx  
    6-5=1,5-1=4 得到4升 V|sV U  
    6-4=2,5-2=3 得到3升 |D/a}Av>B  
    6-3=3,3升水出来了
    离线elvis
    发帖
    35
    光币
    63
    光券
    0
    只看该作者 2楼 发表于: 2007-01-06
    6升水倒入5升空壶,再将5升壶中的水倒掉。将6升壶中的1升水倒入5升空壶。 zN]%p>,)HB  
    然后在装有一升水的5升壶的水位线上划个记号,把水倒到6升水壶里。用水位记号再装2次一升的水,倒在一起就是3升了~ 嘻嘻~
    离线westlake18
    发帖
    4
    光币
    4
    光券
    0
    只看该作者 3楼 发表于: 2007-01-08
    第1次称: VlA]A,P}i  
    ----左边 4个 / 右边 4个 !R\FCAW[x  
    结果只能有2个,相同 / 不相同,相同的处理方法比较简单,看如下的解决方法: '&#gs P9  
    第1次称的结果(1)相同,表示 没有放上去的4个有异常,我们编号为 C1/C2/C3/C4,其他8个正常 r=Lgh#9S  
    -------第2次称:左边放3个正常的球 右边 C1/C2/C3 `{Q'iydU  
    ---------根据第2次称的结果: +8N6tw/&  
    --------------相同:表示C1/C2/C3是正常的,C4有问题 &5b 3k[K"  
    --------------------第3次称:左边放1个正常的球 右边 C4 GVnDN~[  
    ----------------------根据第3次称的结果: N=2T~M 1  
    ---------------------------相同,不可能!(否则就没有异常的了) /R=MX>JA;  
    ---------------------------右边轻,结论:C4轻了! o&%v"#H2  
    ---------------------------右边重,结论:C4重了! %ZWt 45A  
    --------------右边轻:表示C4是正常的,C1/C2/3有一个是轻的 X]@"ZV[  
    --------------------第3次称:左边C1 右边 C2 (iir,Ks2C  
    ----------------------根据第3次称的结果: U6@c)_* <  
    ---------------------------相同,肯定是C3是异常的,结论:C3轻! $B%KkD  
    ---------------------------右边轻,肯定是C2是异常的,结论:C2轻! [F+W]Jk,  
    ---------------------------左边轻,肯定是C1是异常的,结论:C1轻! EC,`t*<  
    --------------右边重:表示C4是正常的,C1/C2/3有一个是重的 ;;+AdN5  
    --------------------第3次称:左边C1 右边 C2 }p2iF2g9`  
    ----------------------根据第3次称的结果: <Jhd%O  
    ---------------------------相同,C1/C2没有问题,C3是异常的,结论:C3重! T&]-p:mg^  
    ---------------------------左边重,肯定是C2是异常的,结论:C2重! vFR *3$ R  
    ---------------------------右边重,肯定是C1是异常的,结论:C1重! Jk\-e`eE  
    >rEZ$h  
    ******************************************************************* ..u{v}4&  
    第1次称的结果(2)不相同: HBE[q#  
    如果不相同, 我们将轻的一边编号为 A1/A2/A3/A4 ,重的编号为B1/B2/B3/B4 ;Hk3y+&]a  
    根据第1次称的结果,我们得到了如下的结论(此结论对下面的判断很重要): _(h=@cv  
    A1/A2/A3/A4 不可能是重的,只能是都是正常的或者有1个是轻的, 04|ZwX$>+  
    B1/B2/B3/B4 不可能是轻的,只能是都是正常的或者有1个是重的, 8ex;g^e  
    还有4个球是正常的! N?vb^?  
    k B]`py!  
    第2次称的设计要有技巧,目的是通过此次称将有问题的球锁定在3个上。 H"AL@=  
    第2次称:左边A1/A2/B1 右边 A3/B2+正常的球(前面已经有4个球判断出是正常了) n Ab~  
    第2次称的结果(1)相同: %w65)BFQ  
    ----相同 表示 A1/A2/B1/A3/B2都没有问题了,只有A4可能轻或者B3/B4中间有一个重! g[pU5%|"[  
    --------第3次称:左边B3 右边 B4 \vT~2Y(K  
    -----------根据称的结果: ^)>( <6  
    -----------相同,B3/B4没有问题了,结论:A4轻! 66eJp-5e8  
    -----------不相同,则哪个重,哪个有问题,因为B3/B3只能是都是正常的或者有1个是重的 t7F0[E'=5\  
    ---------------左边重,肯定是B3是异常的,结论:B3重! !X-\;3kC0  
    ---------------右边重,肯定是B4是异常的,结论:B4重! Q NMZR  
    第2次称的结果(2):左边轻 P5_Ajb(@'  
    ----左边轻 表示 B1/A3和没有放上去的A4/B3/B4都没有问题了,只有A1/A2中间有一个轻或者B2可能重! )f:i4.M  
    ---------第3次称:左边A1 右边 A2 tp cB}HUv  
    ----------根据称的结果: . i4aM;Qy  
    -----------相同,A1/A2没有问题了,结论:B2重! `~u=[}w  
    -----------不相同,则哪个轻,哪个有问题,因为A1/A2只能是都是正常的或者有1个是轻的 }bS1M  
    ---------------左边轻,肯定是A1是异常的,结论:A1轻! I&La0g_E  
    ---------------右边轻,肯定是A2是异常的,结论:A2轻! E! NtD).=S  
    第2次称的结果(3):左边重 o1(;"5MM  
    ----左边重 表示 A1/A2/B2和没有放上去的A4/B3/B4都没有问题了,只有A3可能轻或者B1可能重! VR>!Ch  
    ---------第3次称:左边 一个正常球 右边 A3 uKk#V6t#  
    ----------根据称的结果: n~yKq"^  
    -----------相同,A3没有问题了,结论:B1重! %(eQ1ir+  
    -----------不相同,结论:A3轻!
    离线westlake18
    发帖
    4
    光币
    4
    光券
    0
    只看该作者 4楼 发表于: 2007-01-08
    假设这四人分别为A、B、C、D。 q ][kD2  
    A B → 2   u9S*2'  
    A ← 1           [l5jPL}6  
    C D → 8            :[n~(~7?  
    B ← 2           'W_NRt:  
    A B → 2 $GRwk>N  
    -1Li&K7  
    一共15分钟