切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8298阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 j'uzjs[  
    {i<L<Y(3  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of Z!+n/ D-1  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of 6fm oI K{  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 5E#8F  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 %N #A1   
    l3Qt_I)L  
    %fid=fopen('e21.dat','w'); !ra,HkU'  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) &s8vmUt  
    M1 =3000;              % Total number of space steps 03n+kh  
    J =100;                % Steps between output of space g8R@ol0  
    T =10;                  % length of time windows:T*T0 #e[S+a  
    T0=0.1;                 % input pulse width ?!.L#]23f  
    MN1=0;                 % initial value for the space output location );/p[Fd2]  
    dt = T/N;                      % time step 782 oXyD  
    n = [-N/2:1:N/2-1]';           % Index Z5V_?bm$  
    t = n.*dt;   B un^EJ)  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 84lT# ^q  
    u20=u10.*0.0;                  % input to waveguide 2 _ G$21=  
    u1=u10; u2=u20;                 ?>1wZ  
    U1 = u1;   Y1;jRIOA  
    U2 = u2;                       % Compute initial condition; save it in U P\y ZcL  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. v'Pbx  
    w=2*pi*n./T; q:1n=i Ei  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 12V-EG i  
    L=4;                           % length of evoluation to compare with S. Trillo's paper *m8{yh  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 L=@8Z i!2<  
    for m1 = 1:1:M1                                    % Start space evolution  6o1[fr  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS +V9(4la  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; b5#Jo2C`AJ  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform z:8ieJ)C  
       ca2 = fftshift(fft(u2)); ]*X z~Ox2  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation k]9y+WC2  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   -;O"Y?ME  
       u2 = ifft(fftshift(c2));                        % Return to physical space "H9q%S,FH  
       u1 = ifft(fftshift(c1)); 5`6U:MDq  
    if rem(m1,J) == 0                                 % Save output every J steps. u}?|d8$h\  
        U1 = [U1 u1];                                  % put solutions in U array . )E1|U[L  
        U2=[U2 u2]; q26 qY5D  
        MN1=[MN1 m1]; NE><(02qW  
        z1=dz*MN1';                                    % output location Eb8~i_B-  
      end !TN)6e7`  
    end Ekn3ODz,  
    hg=abs(U1').*abs(U1');                             % for data write to excel sD9OV6^{?K  
    ha=[z1 hg];                                        % for data write to excel WQ9VcCY  
    t1=[0 t']; On(.(7sNc  
    hh=[t1' ha'];                                      % for data write to excel file Q yhu=_&  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format Rw<O%i5/d  
    figure(1) xS;tmc  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn y~z&8XrH  
    figure(2)  O[$XgPM  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn ltv ~Kh  
    )=!|^M  
    非线性超快脉冲耦合的数值方法的Matlab程序 {*"\6 8e  
    e35")z~  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   4WPco"xH!  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 bduHYs+rq  
    KuF>2KX~Y  
    [sK'jQo-[1  
    Rl (+TE  
    %  This Matlab script file solves the nonlinear Schrodinger equations TCK#bJ  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of 4YXp,U  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear "$3~):o  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ~lbm^S}-  
    xiVbVr#[  
    C=1;                           %6x3 G  
    M1=120,                       % integer for amplitude F5H]$AjW  
    M3=5000;                      % integer for length of coupler J&L#^f*d  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) +E+I.}sOB  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. U^Iq]L  
    T =40;                        % length of time:T*T0. `69xR[f  
    dt = T/N;                     % time step id)J;!^;J  
    n = [-N/2:1:N/2-1]';          % Index D77$aCt  
    t = n.*dt;   L?(m5u~b  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. u}7r\MnwK,  
    w=2*pi*n./T; >}r 1A  
    g1=-i*ww./2; N.vkM`Z  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; R8|F qBs  
    g3=-i*ww./2; /S9n!H:MT  
    P1=0; =j@8/  
    P2=0; SJlL!<i$  
    P3=1; 1]aya(  
    P=0; 0L \vi  
    for m1=1:M1                 9LUk[V  
    p=0.032*m1;                %input amplitude ~2UmX'  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ]_hXg*?  
    s1=s10; lWFm>DiLY  
    s20=0.*s10;                %input in waveguide 2 [bEm D  
    s30=0.*s10;                %input in waveguide 3 {sUc2vR  
    s2=s20; 5 HN,y  
    s3=s30; 6W'2w?qj?4  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   hOe$h,E']  
    %energy in waveguide 1 `nL^]i  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   lAAPV  
    %energy in waveguide 2 zTze %  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   R/&C}6G n  
    %energy in waveguide 3 >+S* Wtm5  
    for m3 = 1:1:M3                                    % Start space evolution ;_1 >nXh  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS mZ.E;X& ,*  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; nVk]Qe  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; ,]=Qg n  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform TzrU |D?  
       sca2 = fftshift(fft(s2)); X6oY-4O  
       sca3 = fftshift(fft(s3)); *4 Kc "M  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   HgRfMiC  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); e{,[\7nF  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); e0<L^|S  
       s3 = ifft(fftshift(sc3)); DO? bJ01  
       s2 = ifft(fftshift(sc2));                       % Return to physical space u_S>`I  
       s1 = ifft(fftshift(sc1)); NAfu$7  
    end uzLIllVX*  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); |9 4xRC  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); ~wd~57i@  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); mWU*}-M  
       P1=[P1 p1/p10]; (ZEDDV2  
       P2=[P2 p2/p10]; Zx,a j  
       P3=[P3 p3/p10]; +,}CuF  
       P=[P p*p]; ~{s7(^ P  
    end ]TKM.[[  
    figure(1)  h93  
    plot(P,P1, P,P2, P,P3); e7gWz~  
    I\ y>I?X  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~