切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 7500阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 Wvqhl 'J  
    d\Zng!Z'  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of Ve=b16H  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ZN6Z~SL_i~  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear rGkyGz8>  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 kN>!2UfNS  
    <t,x RBk  
    %fid=fopen('e21.dat','w'); XUw/2"D'?  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) T)}) pt!V  
    M1 =3000;              % Total number of space steps y==CT Y@  
    J =100;                % Steps between output of space fzA9'i`  
    T =10;                  % length of time windows:T*T0 m4g$N)  
    T0=0.1;                 % input pulse width "vGW2~*)  
    MN1=0;                 % initial value for the space output location X7 w Ky(g  
    dt = T/N;                      % time step E"@wek.-  
    n = [-N/2:1:N/2-1]';           % Index -^57oU  
    t = n.*dt;   ?rIx/>C9  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 BB'OCN  
    u20=u10.*0.0;                  % input to waveguide 2 M[uA@  
    u1=u10; u2=u20;                 HmwT~  
    U1 = u1;   *4Izy14e  
    U2 = u2;                       % Compute initial condition; save it in U p$>l7?h  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. #,.Hr#3nI  
    w=2*pi*n./T; _[y/Y\{I  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T p^_yU_  
    L=4;                           % length of evoluation to compare with S. Trillo's paper AK#1]i~  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 wT\49DT"7  
    for m1 = 1:1:M1                                    % Start space evolution 9mFE?J  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS PuO&wI]:  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; <|\Lm20 G]  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform HdG2X  
       ca2 = fftshift(fft(u2)); n}V_,:Z  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation 'ah[(F<*@e  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   P2*<GjV`S/  
       u2 = ifft(fftshift(c2));                        % Return to physical space L^Fy#p  
       u1 = ifft(fftshift(c1)); J'2X&2  
    if rem(m1,J) == 0                                 % Save output every J steps. w-{c.x  
        U1 = [U1 u1];                                  % put solutions in U array yOg+iFTr  
        U2=[U2 u2]; ^BL"wk  
        MN1=[MN1 m1]; ~!3r&(  
        z1=dz*MN1';                                    % output location i@ BtM9:  
      end TuYCR>P[  
    end e*n@j  
    hg=abs(U1').*abs(U1');                             % for data write to excel Q dp)cT  
    ha=[z1 hg];                                        % for data write to excel *|E[L^  
    t1=[0 t']; t.'!`5G  
    hh=[t1' ha'];                                      % for data write to excel file 2T TdH)  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format rc>6.sM %  
    figure(1)  JSg$wi8  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn *cnNuT  
    figure(2) 0P(!j_2m  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn Yir [!{  
    +&"zU GTIc  
    非线性超快脉冲耦合的数值方法的Matlab程序 Lu0x (/  
    eNu7~3k}  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   |B2+{@R  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 &l[$*<P5V  
    ?KI,cl  
    %9RF   
    /[>sf[X\I9  
    %  This Matlab script file solves the nonlinear Schrodinger equations UOmY-\ &c  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of zZC9\V}R  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear ivz5H(b  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 m<g~H4  
    o\)F}j&b#=  
    C=1;                           O5t[  
    M1=120,                       % integer for amplitude t@Nyr&|D  
    M3=5000;                      % integer for length of coupler 2Q"K8=s  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) l?^4!&Nm  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. ]P2"[y  
    T =40;                        % length of time:T*T0. Iy3GE[  
    dt = T/N;                     % time step m7>JJX3=<  
    n = [-N/2:1:N/2-1]';          % Index y Ej^=pw  
    t = n.*dt;   AjgF6[B  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. x~j`@k,;  
    w=2*pi*n./T; /_#q@r4ZQ  
    g1=-i*ww./2; Nl(3Xqov  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; !1Cy$}w  
    g3=-i*ww./2; <nK?LcP  
    P1=0; W1FI mlXS  
    P2=0; @[i4^  
    P3=1; az|N-?u  
    P=0; nmi|\mof  
    for m1=1:M1                 .Twk {p  
    p=0.032*m1;                %input amplitude  y%b F&  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ?_"ik[w}  
    s1=s10; f! .<$ih  
    s20=0.*s10;                %input in waveguide 2 ^4Ah_ U  
    s30=0.*s10;                %input in waveguide 3 yD6[\'%  
    s2=s20; r s?R:+  
    s3=s30; y[_Q-   
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   '1)$'   
    %energy in waveguide 1  \qK&q  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   yw3$2EW  
    %energy in waveguide 2 -n<pPau2  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   g]yBA7/S"  
    %energy in waveguide 3 A;|D:;x3G  
    for m3 = 1:1:M3                                    % Start space evolution qXtC^n@x  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS p >t#@Eu|  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; Y6L ~K?  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; kO*$"w#X[p  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform KC#q@InK  
       sca2 = fftshift(fft(s2)); 4G>H  
       sca3 = fftshift(fft(s3)); ?r2` Q  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   fG(SNNl+D  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); )Z?Ym.0/  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); 9dUravC7  
       s3 = ifft(fftshift(sc3)); |(LZ9I  
       s2 = ifft(fftshift(sc2));                       % Return to physical space oVe|M ss6  
       s1 = ifft(fftshift(sc1)); zY!j:FT1HY  
    end Gc;{\VU  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); s '\Uap  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); ~-J]W-n  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); [ )dXIIM  
       P1=[P1 p1/p10]; C"T;Qp~B  
       P2=[P2 p2/p10]; vv+z'(l  
       P3=[P3 p3/p10]; &_|#.  
       P=[P p*p]; -Z Ugx$  
    end hUMf"=q+  
    figure(1) ]cMqahaY  
    plot(P,P1, P,P2, P,P3); 2!J&+r  
    hPePB=  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~