切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8313阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 Jb4A!g5C  
    j*05!j<'  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of &$ /}HND  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of RIQw+RG >  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 6 SosVE>Z  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 70&]nb6f  
    *zR   
    %fid=fopen('e21.dat','w'); L_4Zx sIv  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) N>J"^GX  
    M1 =3000;              % Total number of space steps QC\][I>  
    J =100;                % Steps between output of space (xhwl=MX)  
    T =10;                  % length of time windows:T*T0 dfoFs&CSKh  
    T0=0.1;                 % input pulse width sXaIQhZ  
    MN1=0;                 % initial value for the space output location |vY0[#E8&  
    dt = T/N;                      % time step  U|HF;L  
    n = [-N/2:1:N/2-1]';           % Index Qy+&N*k>  
    t = n.*dt;   l[J'FR:  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 4z##4^9g  
    u20=u10.*0.0;                  % input to waveguide 2 h&4f9HhS=  
    u1=u10; u2=u20;                 )|@ H#kv?  
    U1 = u1;   *1 [v08?!  
    U2 = u2;                       % Compute initial condition; save it in U P5*~ Wi`  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. T]fu[yRVvg  
    w=2*pi*n./T; CrIt h/Z  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T ~yvOR`2Gg  
    L=4;                           % length of evoluation to compare with S. Trillo's paper Uc3-n`C  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 79svlq=  
    for m1 = 1:1:M1                                    % Start space evolution lV0\UySH  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS h^D]@H  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; m% {4  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform LJ|2=lI+jb  
       ca2 = fftshift(fft(u2)); JM@}+pX  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation AGN5=K*D  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   9w=GB?/  
       u2 = ifft(fftshift(c2));                        % Return to physical space x1}7c9n K  
       u1 = ifft(fftshift(c1)); DP D%8a)?  
    if rem(m1,J) == 0                                 % Save output every J steps. t TAql n|  
        U1 = [U1 u1];                                  % put solutions in U array lc71Pp>  
        U2=[U2 u2]; =k1 ,jn+  
        MN1=[MN1 m1]; #iOoi9(  
        z1=dz*MN1';                                    % output location xjOj1Hv  
      end AIvIQ$6}  
    end K;u<-?En  
    hg=abs(U1').*abs(U1');                             % for data write to excel %Hk9.1hn5  
    ha=[z1 hg];                                        % for data write to excel HCI|6{k  
    t1=[0 t']; ZgcJxWC<  
    hh=[t1' ha'];                                      % for data write to excel file 0 7CufoI  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format D9;2w7v  
    figure(1) LH4!QDK-  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn wW~y?A"{2  
    figure(2) ]Fc<% wzp  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn cGhnI&  
    o 26R]  
    非线性超快脉冲耦合的数值方法的Matlab程序 ) /kf  
    W -Yv0n3  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   (hB&OP5Fne  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 8X@p?43  
    |=^p`CT  
    UvSvgDMl  
    fAu^eS%>7  
    %  This Matlab script file solves the nonlinear Schrodinger equations Lbka*@  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of B>3joe}  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear tSVN}~1\  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 oh k.;  
    j9@7\N<  
    C=1;                           k !S0-/ h  
    M1=120,                       % integer for amplitude 0UEEvD5  
    M3=5000;                      % integer for length of coupler +rw?k/  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) S <C'#vj  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. .{` :  
    T =40;                        % length of time:T*T0. sw.cw}1  
    dt = T/N;                     % time step ,9I %t%sb  
    n = [-N/2:1:N/2-1]';          % Index +*2]R~"M  
    t = n.*dt;   GJ:65)KU  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. T5; zgr  
    w=2*pi*n./T; QxRT%;'Zh]  
    g1=-i*ww./2; @l)HX'z0d  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; 3BuG_ild  
    g3=-i*ww./2; ~s@PP'!  
    P1=0; ^ lrq`1k  
    P2=0; /;7\HZ$@/  
    P3=1; zW^_w&fd^j  
    P=0; |H`}w2U[j  
    for m1=1:M1                 sb Wn1 T U  
    p=0.032*m1;                %input amplitude %#xdD2oN  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 :Ve>tZeW  
    s1=s10; "~R,%sYb(  
    s20=0.*s10;                %input in waveguide 2 EZy:_xjZ  
    s30=0.*s10;                %input in waveguide 3 sN`2"t/s  
    s2=s20; A>@ i TI  
    s3=s30; n[~kcF  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   Zd~'%(q  
    %energy in waveguide 1 8$k`bZ  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   woCmpCN*I  
    %energy in waveguide 2 <L4.*  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   WmO.&zp  
    %energy in waveguide 3 k3F* D  
    for m3 = 1:1:M3                                    % Start space evolution < Y5pAStg  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS DQC=f8  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; |'$E -[  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; .lclW0*  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform ?b?6/_W~R  
       sca2 = fftshift(fft(s2)); Gwyjie9t  
       sca3 = fftshift(fft(s3)); x=1Iuc;&3  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   rI/;L<c  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); ,$"*X-1  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); tPv3nh  
       s3 = ifft(fftshift(sc3)); =L,s6J8_'  
       s2 = ifft(fftshift(sc2));                       % Return to physical space  -&N^S?  
       s1 = ifft(fftshift(sc1)); `/ W6, ]  
    end {y5v"GR{YM  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); nitKX.t8  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); &J>XKO nl  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); D hN{Y8'~  
       P1=[P1 p1/p10]; j#}wg`P"A  
       P2=[P2 p2/p10]; I4[sf  
       P3=[P3 p3/p10];  rG#o*oA  
       P=[P p*p]; $1aJdZC7  
    end %2H0JXKa,  
    figure(1) Hz?C9q3BX  
    plot(P,P1, P,P2, P,P3); <ttrd%VW  
    0\qLuF[)  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~