切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 7506阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 f0BdXsV#g  
    mI>,.&eo  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of 6l4mS~/  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of b&5lYp"d  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear hjQ~uqbg  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ;j)FnY=:-  
    ._+J_ts  
    %fid=fopen('e21.dat','w'); PxfY&;4n!  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) w#g#8o>'  
    M1 =3000;              % Total number of space steps X 51Yfr  
    J =100;                % Steps between output of space T0]*{k(FR  
    T =10;                  % length of time windows:T*T0 s$a09x  
    T0=0.1;                 % input pulse width !eUDi(   
    MN1=0;                 % initial value for the space output location Nq@+'<@p$  
    dt = T/N;                      % time step ubmrlH\d  
    n = [-N/2:1:N/2-1]';           % Index L^{|uP15N  
    t = n.*dt;   '_$uW&{NI  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 @S 7sr-  
    u20=u10.*0.0;                  % input to waveguide 2 $&2UTczp  
    u1=u10; u2=u20;                 Vo"RO$%ow*  
    U1 = u1;   qVs\Y3u(  
    U2 = u2;                       % Compute initial condition; save it in U :,DM*zBV p  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. hsw9(D>jp  
    w=2*pi*n./T; Bk+{RN(w  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T "1-}A(X  
    L=4;                           % length of evoluation to compare with S. Trillo's paper "hdvHUz  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 p}<w#p |  
    for m1 = 1:1:M1                                    % Start space evolution L*x[?x;)@  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS MX ;J5(Ae  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; i}~SDY  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform 0p@k({]<  
       ca2 = fftshift(fft(u2)); DzheoA-+L'  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation UDL RCS8i  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   A.5i"Ci[ie  
       u2 = ifft(fftshift(c2));                        % Return to physical space 3ux0 Jr2yT  
       u1 = ifft(fftshift(c1)); \{EpduwZ  
    if rem(m1,J) == 0                                 % Save output every J steps. Dxk+P!!K  
        U1 = [U1 u1];                                  % put solutions in U array ykFJ%sw3X  
        U2=[U2 u2]; Z*FrB58  
        MN1=[MN1 m1]; %b^OeWip  
        z1=dz*MN1';                                    % output location 1NcCy! +  
      end U. @*`Fg  
    end IO/4.m-aN#  
    hg=abs(U1').*abs(U1');                             % for data write to excel XduV+$ 03  
    ha=[z1 hg];                                        % for data write to excel [S@}T zE  
    t1=[0 t']; }E7:ihy  
    hh=[t1' ha'];                                      % for data write to excel file a:_I  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format ts8+V<g  
    figure(1) TET`b7G  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn "C*B,D*}:  
    figure(2) {$1J=JbE  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn _kY#D;`:r  
    ,<Q~b%(3  
    非线性超快脉冲耦合的数值方法的Matlab程序 g38&P3/  
    84{Q\c  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   ZlojbL@|4  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 "rAY.E]  
    %xQ.7~  
    _A~4NW{U7  
    5~yNqC  
    %  This Matlab script file solves the nonlinear Schrodinger equations 8j4z{+'TQ  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of @+WQ ^  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear L.=w?%:H=  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 )$Z=t-q  
    @EoZI~  
    C=1;                           E~kG2x{a  
    M1=120,                       % integer for amplitude ^xZ e2@  
    M3=5000;                      % integer for length of coupler 3.)b4T  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) nJbbzQ,e  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. Ea( ,aVlj  
    T =40;                        % length of time:T*T0. 5p +ZD7jK  
    dt = T/N;                     % time step A4QcQ"  
    n = [-N/2:1:N/2-1]';          % Index P%MfCpyj  
    t = n.*dt;   {W\T"7H  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. :h1pBEiH  
    w=2*pi*n./T; ?J,AB #+  
    g1=-i*ww./2; y4Er @8I`  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; (7DXRcr<  
    g3=-i*ww./2; n$:IVX"2b  
    P1=0; Urgtg37  
    P2=0; nP UqMn'  
    P3=1; ^W7X(LQ*+  
    P=0; Ux2U*a ;  
    for m1=1:M1                 1J? dK|% b  
    p=0.032*m1;                %input amplitude  LZ~"VV^  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 &J!aw  
    s1=s10; |/ }\6L]  
    s20=0.*s10;                %input in waveguide 2 c={Ft*N  
    s30=0.*s10;                %input in waveguide 3 !JBae2Z  
    s2=s20; 5TUNX^AW  
    s3=s30; *x>3xQq&  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   Y $-3v.  
    %energy in waveguide 1 %5\3Aw  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   Yif*"oO  
    %energy in waveguide 2 \VSATL:]  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   ~l~Tk6EM  
    %energy in waveguide 3 [\Qr. 2  
    for m3 = 1:1:M3                                    % Start space evolution HvxJj+X9  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS g-vg6@6  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; C}5M;|%3)  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; ~ np,_yI  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform rNl.7O9b  
       sca2 = fftshift(fft(s2)); 26n^Dy>}  
       sca3 = fftshift(fft(s3)); /VHi >  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   n,O5".aa<  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 3^=+gsc  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); OU7 %V)X5  
       s3 = ifft(fftshift(sc3)); 8p1ziz`4>$  
       s2 = ifft(fftshift(sc2));                       % Return to physical space ZlKw_Sq:  
       s1 = ifft(fftshift(sc1)); FP"$tt(  
    end ;PyZ?Z;  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); m?[5J)eR  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); {I{:GcS  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); V84*0&qOW  
       P1=[P1 p1/p10]; #hw/^AaD-  
       P2=[P2 p2/p10]; i.1U|Pi  
       P3=[P3 p3/p10]; pe&UQ C^  
       P=[P p*p]; !8tS|C#2  
    end /Y^8SO4  
    figure(1) c3 &m9zC  
    plot(P,P1, P,P2, P,P3); q1k{  
    D';eTy Y  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~