非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 u]dpA
function z = zernfun(n,m,r,theta,nflag) yAi4v[
%ZERNFUN Zernike functions of order N and frequency M on the unit circle. A5H[g`&
% Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N } |SVt`n
% and angular frequency M, evaluated at positions (R,THETA) on the |um)vlN;9
% unit circle. N is a vector of positive integers (including 0), and 7gQt
k
% M is a vector with the same number of elements as N. Each element K4RjGSaF
% k of M must be a positive integer, with possible values M(k) = -N(k) _R-#I
% to +N(k) in steps of 2. R is a vector of numbers between 0 and 1, um8ZhXq
% and THETA is a vector of angles. R and THETA must have the same q0c)pxD%`
% length. The output Z is a matrix with one column for every (N,M) ~{NDtB)
% pair, and one row for every (R,THETA) pair. xq~=T:>/A
% / TJTu_#
% Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike &P+cTN9)
% functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), `7
B
[<
% with delta(m,0) the Kronecker delta, is chosen so that the integral v#/,,)m
% of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ?1412Tq5
% and theta=0 to theta=2*pi) is unity. For the non-normalized ,~4(td+R7
% polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Ppp&3h[dW)
% \Fj4Gy?MW
% The Zernike functions are an orthogonal basis on the unit circle. F
H%yyT
% They are used in disciplines such as astronomy, optics, and A|a\pL` @
% optometry to describe functions on a circular domain. Tf[]vqa`G
% s~63JDy"E
% The following table lists the first 15 Zernike functions. n&V(c&C
% 1Gqtd^*;
% n m Zernike function Normalization QB@*/Le
% -------------------------------------------------- C3<3
% 0 0 1 1 !EW]:u
% 1 1 r * cos(theta) 2 VI+Y 4T@
% 1 -1 r * sin(theta) 2 hOC,Eo
% 2 -2 r^2 * cos(2*theta) sqrt(6) b~~}(^Bg
% 2 0 (2*r^2 - 1) sqrt(3) #F6ak,9S4
% 2 2 r^2 * sin(2*theta) sqrt(6) hs*:!&E
% 3 -3 r^3 * cos(3*theta) sqrt(8) 7SM/bJ-M#
% 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8) Fwqv1+
% 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8) Ebk@x=E
% 3 3 r^3 * sin(3*theta) sqrt(8) #]'V#[;~
% 4 -4 r^4 * cos(4*theta) sqrt(10) "l@~WE
% 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) (J;?eeP
% 4 0 6*r^4 - 6*r^2 + 1 sqrt(5) a&cV@~
% 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 6x7=0}'
% 4 4 r^4 * sin(4*theta) sqrt(10) 'qD9kJ`
% -------------------------------------------------- UM]wDFn'E
% g ` {0I[
% Example 1: \ lKQ'_
% jGWLYI=V2
% % Display the Zernike function Z(n=5,m=1) G?g7G,|d
% x = -1:0.01:1; S:j0&*
% [X,Y] = meshgrid(x,x); ~iSW^mi
% [theta,r] = cart2pol(X,Y); Af%?WZlOq
% idx = r<=1; eyG.XAP
% z = nan(size(X)); $k?L?R1
% z(idx) = zernfun(5,1,r(idx),theta(idx)); t.TQ@c+,J
% figure QRjt.Ry|
% pcolor(x,x,z), shading interp %In"Kh*
% axis square, colorbar i0!F
% title('Zernike function Z_5^1(r,\theta)') 4CCux4)N
% FSB$D)4z>b
% Example 2: K_xOY
*
% &sWyh[`P
% % Display the first 10 Zernike functions +Oscy-;
% x = -1:0.01:1; 5C&f-* Bh
% [X,Y] = meshgrid(x,x); ,jWd?-NH
% [theta,r] = cart2pol(X,Y); c%dy$mkqgK
% idx = r<=1; !<)_ F
% z = nan(size(X)); &Y>u2OZ
% n = [0 1 1 2 2 2 3 3 3 3]; !L_ SHlU
% m = [0 -1 1 -2 0 2 -3 -1 1 3]; Y^G3<.B
% Nplot = [4 10 12 16 18 20 22 24 26 28]; ^`7t@G$ D
% y = zernfun(n,m,r(idx),theta(idx)); /%c^ i!=f"
% figure('Units','normalized') bi[l ,
% for k = 1:10 K6U>Qums
% z(idx) = y(:,k); ^m=%Ctu#
% subplot(4,7,Nplot(k)) .R'i=D`Pz
% pcolor(x,x,z), shading interp 8GP}g?%
% set(gca,'XTick',[],'YTick',[]) g2]-Q.
% axis square 1sJN^BvuG
% title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 85
hYYB0v
% end @FV;5M:I
% yd~fC:_ ]
% See also ZERNPOL, ZERNFUN2. B@=<'/S\7
E0Djo'64
% Paul Fricker 11/13/2006 6~S0t1/t?
d/&|%Z
r
B,>Fh X>h
% Check and prepare the inputs: <&2,G5XA
% ----------------------------- pYG,5+g
if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) D2p6&HNT
error('zernfun:NMvectors','N and M must be vectors.') ^IH1@
end {p
0'Lc<3n
4QNR_w
if length(n)~=length(m) MDPM OA
error('zernfun:NMlength','N and M must be the same length.') 3Y-v1.^j
end E2|iAT+=.
5m42Bqy"
n = n(:); -#6*T,f0P(
m = m(:); l,FoK76G
if any(mod(n-m,2)) pG6-.F;
error('zernfun:NMmultiplesof2', ... !&lPdEc@T
'All N and M must differ by multiples of 2 (including 0).') Ak Tw?v'
end PuaosMn(9
#pSOZX
if any(m>n) oNZW#<K
error('zernfun:MlessthanN', ... 29^bMau)v
'Each M must be less than or equal to its corresponding N.') H>f{3S-%
end fm>K4\2
j*4S] !
if any( r>1 | r<0 ) rj~ian
error('zernfun:Rlessthan1','All R must be between 0 and 1.') ssITe.,ny
end }!V<"d,!
9Oyi:2A
if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) +3>/,w(x
error('zernfun:RTHvector','R and THETA must be vectors.') ; ZV^e
end HDyZzjgG
*hs<Ez.cC
r = r(:); 2TEeP7
theta = theta(:); :QV6z*#zD
length_r = length(r); -/c1qLdQ
if length_r~=length(theta) /'6[*]IZP
error('zernfun:RTHlength', ... \)ZX4rs{8
'The number of R- and THETA-values must be equal.') O^weUpe\
end 43=-pyp
dY@Tt&k8E
% Check normalization: cGta4;
% -------------------- D{c>i`\G
if nargin==5 && ischar(nflag) Z'dI!8(Nf
isnorm = strcmpi(nflag,'norm'); 8M+F!1-#
if ~isnorm _np>({
error('zernfun:normalization','Unrecognized normalization flag.') 0Y*gJ!a
end #4 &N0IG
else */dh_P<Yj
isnorm = false; vC<kpf!
end EJaaW&>[
\w[ZY$/
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% H0 n@kKr
% Compute the Zernike Polynomials n3g
WMC
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sk6|_
4*XP;`
% Determine the required powers of r: LY!3u0PnlT
% ----------------------------------- 'Oy5G7^R
m_abs = abs(m); 3KFrVhB=
rpowers = []; `[ ` *@O(y
for j = 1:length(n) .Xz"NyW
rpowers = [rpowers m_abs(j):2:n(j)]; I u~aTgHX%
end %802H%+
rpowers = unique(rpowers); zHc 4e
b;`#Sea
% Pre-compute the values of r raised to the required powers, o p5^9`"
% and compile them in a matrix: `(Q_ 65y
% ----------------------------- VfC[U)w*vm
if rpowers(1)==0 _B7?C:8Q-
rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); f.84=epv
rpowern = cat(2,rpowern{:}); p9}c6{Wp
rpowern = [ones(length_r,1) rpowern]; .'{6u;8
else -kri3?Y,
rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); (VI* c!N
rpowern = cat(2,rpowern{:}); V<NsmC=g
end l^y?L4hg)
)tI2?YIR
% Compute the values of the polynomials: -KJ!
% -------------------------------------- grfdvN
y = zeros(length_r,length(n)); 9Bvn>+_K
for j = 1:length(n) M=
q~EMH
s = 0:(n(j)-m_abs(j))/2; \%?8jQ'tX
pows = n(j):-2:m_abs(j); dYew7
for k = length(s):-1:1 iMeRQYW
p = (1-2*mod(s(k),2))* ... 031.u<_
prod(2:(n(j)-s(k)))/ ... ':2*+
prod(2:s(k))/ ... g9weJ6@}M
prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... UFIAgNKl
prod(2:((n(j)+m_abs(j))/2-s(k))); B/9<b{6
idx = (pows(k)==rpowers); JXRf4QmG
y(:,j) = y(:,j) + p*rpowern(:,idx); 5)n:<U*
end am'p^Z@
)4F/T, {;m
if isnorm 0O['-x
y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); qfP"UAc{/
end d,J<SG&L&
end B[/['sD
% END: Compute the Zernike Polynomials ,ORG"]_F
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >]XaUQ-
7MuK/q.
% Compute the Zernike functions: vPl6Dasr
% ------------------------------ id#k!*$7
idx_pos = m>0; 7ru9dg1?
idx_neg = m<0; K.iH
.1z$ A
z = y; 9>[.=
if any(idx_pos) o S:vTr+$
z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ekl?K~
end R!V5-0%
if any(idx_neg) peTO-x^a-
z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); gcW{]0%L^
end [,o5QH\Etq
leb^,1/D6
% EOF zernfun