切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 10628阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 oiO3]P]P  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! i40r}?-  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 u]dpA  
    function z = zernfun(n,m,r,theta,nflag) yAi4v[  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. A5H[g`&  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N }|SVt`n  
    %   and angular frequency M, evaluated at positions (R,THETA) on the |um)vlN;9  
    %   unit circle.  N is a vector of positive integers (including 0), and 7gQt k  
    %   M is a vector with the same number of elements as N.  Each element K4R jGSaF  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) _R-#I  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, um8ZhXq  
    %   and THETA is a vector of angles.  R and THETA must have the same q0c)pxD%`  
    %   length.  The output Z is a matrix with one column for every (N,M) ~{NDtB)  
    %   pair, and one row for every (R,THETA) pair. xq~=T:>/A  
    % / TJTu_#  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike &P+cTN9)  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), `7 B [<  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral v#/,,)m  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, ?1412Tq5  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized ,~4(td+R7  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. Ppp&3h[dW)  
    % \Fj4Gy?MW  
    %   The Zernike functions are an orthogonal basis on the unit circle. F H%yyT  
    %   They are used in disciplines such as astronomy, optics, and A|a\pL`@  
    %   optometry to describe functions on a circular domain. Tf[ ]vqa`G  
    % s~63JDy"E  
    %   The following table lists the first 15 Zernike functions. n&V(c&C  
    % 1Gqtd^*;  
    %       n    m    Zernike function           Normalization QB@*/Le   
    %       --------------------------------------------------  C3<3  
    %       0    0    1                                 1 !EW]: u  
    %       1    1    r * cos(theta)                    2 VI+Y4T@  
    %       1   -1    r * sin(theta)                    2 hOC,Eo  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) b~~}(^Bg  
    %       2    0    (2*r^2 - 1)                    sqrt(3) #F6ak,9S4  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) hs*:!&E  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) 7SM/bJ-M#  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) Fwqv 1+  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) Ebk@x=E  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) #]'V#[;~  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) "l@~WE  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) (J;?eeP  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) a&cV@~  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) 6x7=0}'  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) 'qD9k J`  
    %       -------------------------------------------------- UM]wDFn'E  
    % g ` {0I[  
    %   Example 1: \ lKQ'_  
    % jGWLYI=V2  
    %       % Display the Zernike function Z(n=5,m=1) G?g7G,|d  
    %       x = -1:0.01:1; S:j0&*  
    %       [X,Y] = meshgrid(x,x); ~iSW^mi  
    %       [theta,r] = cart2pol(X,Y); Af%?WZlOq  
    %       idx = r<=1; eyG.XAP  
    %       z = nan(size(X)); $k?L?R1  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); t.TQ@c+,J  
    %       figure QRjt.Ry|  
    %       pcolor(x,x,z), shading interp %In"Kh*  
    %       axis square, colorbar i0!F  
    %       title('Zernike function Z_5^1(r,\theta)') 4CCux4)N  
    % FSB$D)4z>b  
    %   Example 2: K_xOY *  
    % &sWyh[`P  
    %       % Display the first 10 Zernike functions +Oscy-;  
    %       x = -1:0.01:1; 5C&f-* Bh  
    %       [X,Y] = meshgrid(x,x); ,jWd?-NH  
    %       [theta,r] = cart2pol(X,Y); c%dy$mkqgK  
    %       idx = r<=1; !< )_ F  
    %       z = nan(size(X)); &Y>u2OZ  
    %       n = [0  1  1  2  2  2  3  3  3  3]; !L _ SHlU  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; Y^G3<.B  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ^`7t@G$ D  
    %       y = zernfun(n,m,r(idx),theta(idx)); /%c^ i!=f"  
    %       figure('Units','normalized') bi[l,  
    %       for k = 1:10 K6U>Qums  
    %           z(idx) = y(:,k); ^m=%Ctu#  
    %           subplot(4,7,Nplot(k)) .R'i=D`Pz  
    %           pcolor(x,x,z), shading interp 8G P}g?%  
    %           set(gca,'XTick',[],'YTick',[]) g2]-Q.  
    %           axis square 1sJN^BvuG  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) 85 hYYB0v  
    %       end @FV;5M:I  
    % yd~fC:_ ]  
    %   See also ZERNPOL, ZERNFUN2. B@=<'/S\7  
    E0Djo'64  
    %   Paul Fricker 11/13/2006 6~S0t1/t?  
    d/&|%Z r  
    B,>FhX>h  
    % Check and prepare the inputs: < &2,G5XA  
    % ----------------------------- pYG,5+g  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) D2p6&HNT  
        error('zernfun:NMvectors','N and M must be vectors.') ^IH1@  
    end {p 0'Lc<3n  
    4QNR_w  
    if length(n)~=length(m) MDP MOA  
        error('zernfun:NMlength','N and M must be the same length.') 3Y-v1.^j  
    end E2|iAT+=.  
    5m42Bqy"  
    n = n(:); -#6*T,f0P(  
    m = m(:); l,FoK76G  
    if any(mod(n-m,2)) pG6-.F;  
        error('zernfun:NMmultiplesof2', ... !&lPdEc@T  
              'All N and M must differ by multiples of 2 (including 0).') Ak Tw?v'  
    end PuaosMn(9  
    #pSOZX  
    if any(m>n) oNZ W#<K  
        error('zernfun:MlessthanN', ... 29^bMau)v  
              'Each M must be less than or equal to its corresponding N.') H>f{3S-%  
    end fm>K4\2  
    j*4S]!  
    if any( r>1 | r<0 ) rj~ian  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') ssITe., ny  
    end }!V<"d,!  
    9Oyi:2A  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) +3>/,w(x  
        error('zernfun:RTHvector','R and THETA must be vectors.') ; ZV^e  
    end HDyZzjgG  
    *hs<Ez.cC  
    r = r(:); 2TEeP7  
    theta = theta(:); :QV6 z*#zD  
    length_r = length(r); -/c1qLdQ  
    if length_r~=length(theta) /'6[*]IZP  
        error('zernfun:RTHlength', ... \)ZX4rs{8  
              'The number of R- and THETA-values must be equal.') O^weUpe\  
    end 43=-pyp  
    dY@Tt&k8E  
    % Check normalization: cGta4;  
    % -------------------- D{c>i`\G  
    if nargin==5 && ischar(nflag) Z'dI!8(Nf  
        isnorm = strcmpi(nflag,'norm'); 8M+F!1-#  
        if ~isnorm  _np>({  
            error('zernfun:normalization','Unrecognized normalization flag.') 0Y*gJ!a  
        end #4 &N0IG  
    else */dh_P<Yj  
        isnorm = false; vC<kpf!  
    end EJaaW&>[  
    \w[ZY$/  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% H0 n@kKr  
    % Compute the Zernike Polynomials n3g WM C  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% s k6|_  
    4*XP;`  
    % Determine the required powers of r: LY!3u0PnlT  
    % ----------------------------------- 'Oy5G7^R  
    m_abs = abs(m); 3KFrVhB=  
    rpowers = []; `[` *@O(y  
    for j = 1:length(n) .Xz"NyW  
        rpowers = [rpowers m_abs(j):2:n(j)]; I u~aTgHX%  
    end %802H%+  
    rpowers = unique(rpowers); zHc4e   
    b;`#Sea  
    % Pre-compute the values of r raised to the required powers, o p5^9`"  
    % and compile them in a matrix: `(Q_ 65y  
    % ----------------------------- VfC[U)w*vm  
    if rpowers(1)==0 _B7?C:8Q-  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); f.84=epv  
        rpowern = cat(2,rpowern{:}); p9}c6{Wp  
        rpowern = [ones(length_r,1) rpowern]; .'{6u;8  
    else -kri3?Y,  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); (VI* c!N  
        rpowern = cat(2,rpowern{:}); V<NsmC=g  
    end l^y?L4hg)  
    )tI2?YIR  
    % Compute the values of the polynomials: -KJ!  
    % -------------------------------------- grfdvN  
    y = zeros(length_r,length(n)); 9Bvn>+_K  
    for j = 1:length(n) M= q~EMH  
        s = 0:(n(j)-m_abs(j))/2; \%?8jQ'tX  
        pows = n(j):-2:m_abs(j); dYew 7  
        for k = length(s):-1:1 iMeRQYW  
            p = (1-2*mod(s(k),2))* ... 031.u<_  
                       prod(2:(n(j)-s(k)))/              ... ':2*+  
                       prod(2:s(k))/                     ... g9weJ6@}M  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... UFIAgNKl  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); B/9<b{6  
            idx = (pows(k)==rpowers); JXRf4QmG  
            y(:,j) = y(:,j) + p*rpowern(:,idx); 5) n:<U*  
        end am'p^Z @  
         )4F/T,{;m  
        if isnorm 0O['-x  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); qfP"UAc{/  
        end d,J<SG&L&  
    end B[/['sD  
    % END: Compute the Zernike Polynomials ,ORG"]_F  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% >]XaUQ-  
    7MuK/q.  
    % Compute the Zernike functions: vPl6Das r  
    % ------------------------------ id#k!*$7  
    idx_pos = m>0; 7ru9dg1?  
    idx_neg = m<0; K.iH  
    .1z$ A  
    z = y; 9>[.=  
    if any(idx_pos) o S:vTr+$  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ekl? K~  
    end R!V5-0%  
    if any(idx_neg) peTO-x^a-  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); gcW{]0%L^  
    end [,o5QH\Etq  
    leb^,1/D6  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) WDoKbTv  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. 7S dV%"  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated kh>SrW]B%  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive 1 ~B<  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, kuTq8p2E  
    %   and THETA is a vector of angles.  R and THETA must have the same vU8FHVytV  
    %   length.  The output Z is a matrix with one column for every P-value, Q0L@.`~  
    %   and one row for every (R,THETA) pair. _/N'I7g  
    % ,yM}]pwlB  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike i>]<*w  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) a$xeiy9  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) oXQ<9t1(  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 veX"CY`hn  
    %   for all p.  [`hE^chd  
    % 9Ew:.&d  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 22al  
    %   Zernike functions (order N<=7).  In some disciplines it is /.| A  
    %   traditional to label the first 36 functions using a single mode [B"dH-r7  
    %   number P instead of separate numbers for the order N and azimuthal OZ>)sL  
    %   frequency M. y ;{^Ln4{  
    % U=&^H!LVY  
    %   Example: )D Gz`->  
    % :~ZqB\>i  
    %       % Display the first 16 Zernike functions EI=Naq  
    %       x = -1:0.01:1; ;LQ# *NjL\  
    %       [X,Y] = meshgrid(x,x); w PG1P'w;  
    %       [theta,r] = cart2pol(X,Y); 5q(]1|Se i  
    %       idx = r<=1; J8u{K.( *7  
    %       p = 0:15; qLQ <1>u  
    %       z = nan(size(X)); Sc4obcw%  
    %       y = zernfun2(p,r(idx),theta(idx)); .)"_Q/q  
    %       figure('Units','normalized') 9lZAa8Rxi  
    %       for k = 1:length(p) "wnpiB}  
    %           z(idx) = y(:,k); 2qs>Bshf  
    %           subplot(4,4,k) Hhe{ +W@~  
    %           pcolor(x,x,z), shading interp ZR;8r Z](  
    %           set(gca,'XTick',[],'YTick',[]) jb|mip@` <  
    %           axis square *PSvHXNi  
    %           title(['Z_{' num2str(p(k)) '}']) sJ))<,e5I  
    %       end kf%&d}2to  
    % | ((1V^  
    %   See also ZERNPOL, ZERNFUN. '%zN  
    KA5~">l  
    %   Paul Fricker 11/13/2006 :]CzN^k(1c  
    [x2JFS#4  
    !US8aT  
    % Check and prepare the inputs: >lD;0EN  
    % ----------------------------- h4hN1<ky\  
    if min(size(p))~=1 K3vseor  
        error('zernfun2:Pvector','Input P must be vector.') z-EwXE  
    end X,C*qw@  
    eu# ,WwlG  
    if any(p)>35  0dgP  
        error('zernfun2:P36', ... Awu$g.  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ... ,O:EX0  
               '(P = 0 to 35).']) v! 7s M  
    end ~Cjz29|gp  
    403[oOj  
    % Get the order and frequency corresonding to the function number: -PNi^ K_  
    % ---------------------------------------------------------------- vU=9ydAj?  
    p = p(:); bA}AD`5  
    n = ceil((-3+sqrt(9+8*p))/2); %KGq*|GUu  
    m = 2*p - n.*(n+2); ?e F@Q !h  
    XD PL;(?  
    % Pass the inputs to the function ZERNFUN: '3A+"k-}mh  
    % ---------------------------------------- /b{o3, #.M  
    switch nargin z;i4N3-:  
        case 3 ,i?)  
            z = zernfun(n,m,r,theta); ojHhT\M`  
        case 4 A_!QrM  
            z = zernfun(n,m,r,theta,nflag); KAd_zkUA  
        otherwise q@(1Yivk  
            error('zernfun2:nargin','Incorrect number of inputs.') YEzU{J  
    end ^>C 11v  
    ev9; Ld  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) 4'',6KJ@  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. $.pTB(tO  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of Vtr3G.P^  
    %   order N and frequency M, evaluated at R.  N is a vector of hk%k(^ekU]  
    %   positive integers (including 0), and M is a vector with the ?v:ZU~i  
    %   same number of elements as N.  Each element k of M must be a bNGCOj  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) l3.  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is U@'F%nHw  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix hq=,Z1J  
    %   with one column for every (N,M) pair, and one row for every 'BY-OA#xJ  
    %   element in R. F$Hx`hoy  
    % \<~}o I  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 4S|=/f  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is ^T:gb]i'Qa  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to gxwo4.,  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1 a d9CsvW  
    %   for all [n,m]. 8$0\J_  
    % ~:4~2d|  
    %   The radial Zernike polynomials are the radial portion of the Rf)ke("  
    %   Zernike functions, which are an orthogonal basis on the unit ?c]n^GvG  
    %   circle.  The series representation of the radial Zernike 5,1{Tv`  
    %   polynomials is _T5)n=|  
    % ?s?$d&h  
    %          (n-m)/2 ` J]xP$)  
    %            __ P ZxFZvE  
    %    m      \       s                                          n-2s +`B'r '  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r Ha%F"V*  
    %    n      s=0 !4WEk  
    % * RWm47  
    %   The following table shows the first 12 polynomials. 5+- I5HX|~  
    % n2 {SV  
    %       n    m    Zernike polynomial    Normalization [84F0 9HU  
    %       --------------------------------------------- <xo-Fv  
    %       0    0    1                        sqrt(2) x&Cp> +i  
    %       1    1    r                           2 N2ied^* 0  
    %       2    0    2*r^2 - 1                sqrt(6) d,0 }VaY=D  
    %       2    2    r^2                      sqrt(6) Tde0~j}  
    %       3    1    3*r^3 - 2*r              sqrt(8) "0CjP+1k  
    %       3    3    r^3                      sqrt(8) O/Rhf[7v*  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) ujr(K=E  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) tnz+bX26  
    %       4    4    r^4                      sqrt(10) h1[WhBL-O  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) cK@jmGj+  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) c>HK9z{  
    %       5    5    r^5                      sqrt(12) fY,|o3#  
    %       --------------------------------------------- x[(?#  
    % geM6G$V&  
    %   Example:  fvEAIs  
    % [8XLK4e  
    %       % Display three example Zernike radial polynomials 8z2Rry w  
    %       r = 0:0.01:1; ?+0GfIV  
    %       n = [3 2 5]; >9H@|[C  
    %       m = [1 2 1]; n6MM5h/#r  
    %       z = zernpol(n,m,r); t *G/]  
    %       figure g&Vcg`  
    %       plot(r,z) 47r&8C+&\  
    %       grid on y "w|g~x]c  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') +G F#?X0^  
    % Sv'y e  
    %   See also ZERNFUN, ZERNFUN2. I.'b'-^  
    -%CoWcGP  
    % A note on the algorithm. ]Mi.f3QlO6  
    % ------------------------ yxt[= C  
    % The radial Zernike polynomials are computed using the series @U{<a#  
    % representation shown in the Help section above. For many special b'YE9E  
    % functions, direct evaluation using the series representation can ORN6vX(1  
    % produce poor numerical results (floating point errors), because 4|?{VQ  
    % the summation often involves computing small differences between *sw7niw  
    % large successive terms in the series. (In such cases, the functions S4^N^lQ]  
    % are often evaluated using alternative methods such as recurrence 23!;}zHp  
    % relations: see the Legendre functions, for example). For the Zernike X2|Y  
    % polynomials, however, this problem does not arise, because the nH|,T%  
    % polynomials are evaluated over the finite domain r = (0,1), and D*PYr{z'  
    % because the coefficients for a given polynomial are generally all qZv =  
    % of similar magnitude. +rXF{@ l  
    % !7bw5H  
    % ZERNPOL has been written using a vectorized implementation: multiple pd[ncL  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] V'Kgdj  
    % values can be passed as inputs) for a vector of points R.  To achieve )D&M2CUw"f  
    % this vectorization most efficiently, the algorithm in ZERNPOL V/d/L3p  
    % involves pre-determining all the powers p of R that are required to >EsziRm  
    % compute the outputs, and then compiling the {R^p} into a single fBn"kr;  
    % matrix.  This avoids any redundant computation of the R^p, and l_tw<`Ep  
    % minimizes the sizes of certain intermediate variables. I<td1Y1q  
    % %+>s#Q2d  
    %   Paul Fricker 11/13/2006 @Ky> 9m{  
    b2,mCfLsv  
    $2^`Uca  
    % Check and prepare the inputs: /cr}N%HZB  
    % ----------------------------- D]a:@x`+Bz  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 51C2u)HE  
        error('zernpol:NMvectors','N and M must be vectors.') WEg6Kz  
    end 3.d"rl  
    \c v?^AI  
    if length(n)~=length(m) 6lwta`2  
        error('zernpol:NMlength','N and M must be the same length.') D4Al3fe  
    end =]`lN-rYw  
    7?8wyk|x  
    n = n(:); /M;#_+VK<  
    m = m(:); =<r8fXWZ  
    length_n = length(n); im} ?rY  
    0P^L}VVX  
    if any(mod(n-m,2)) Wz4&7KYY  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') 7|\@zQ h   
    end `@d<n  
    v2r&('pV  
    if any(m<0) p.I.iAk%G^  
        error('zernpol:Mpositive','All M must be positive.') XqRJr%JH  
    end 7!,YNy%  
    HoV^Y6  
    if any(m>n) f4-a?bp  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 1g# #sSa6  
    end p.}Ls)I  
    ^, l_{  
    if any( r>1 | r<0 ) |Fm6#1A@  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') \^(0B8|w  
    end NNhL*C[_7  
    >3 yk#U|7}  
    if ~any(size(r)==1) Spo?i.#  
        error('zernpol:Rvector','R must be a vector.') Zwcy4>8  
    end ] Z8Vj7~  
    I? THa<  
    r = r(:); [b{CkX06  
    length_r = length(r); 5D M"0  
    T=hho Gn  
    if nargin==4 7Dnp'*H  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); &l$Q^g  
        if ~isnorm J q{7R  
            error('zernpol:normalization','Unrecognized normalization flag.') 3nT Z)L }  
        end |KB0P@=a  
    else  +`7KSwa  
        isnorm = false; EbeI{ -'aF  
    end DG4 d"Jy  
    e%8|<g+n6  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4Mk-2 Dx  
    % Compute the Zernike Polynomials Z_\C*^  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% s yU9O&<  
    vvUSeG\n#j  
    % Determine the required powers of r: tiN?/  
    % ----------------------------------- =@TQ>Qw%b  
    rpowers = []; e8YMX&0%  
    for j = 1:length(n) ZmOfEg|h\  
        rpowers = [rpowers m(j):2:n(j)]; $+.l*]  
    end ]Jh+'RK\#  
    rpowers = unique(rpowers); %m:m}ziLQ  
    G'YH6x,  
    % Pre-compute the values of r raised to the required powers, .2J L$"  
    % and compile them in a matrix: eEhr140  
    % ----------------------------- XLMb=T~S  
    if rpowers(1)==0 # :T-hRu  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); .NtbL./=|  
        rpowern = cat(2,rpowern{:}); M#|dIbns H  
        rpowern = [ones(length_r,1) rpowern]; cA6lge<{~  
    else )%!XSsY.N|  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); Sa19q.~%  
        rpowern = cat(2,rpowern{:}); uKgZ$-'  
    end RwS@I /  
    - 0?^#G}3}  
    % Compute the values of the polynomials: jxJv.  
    % -------------------------------------- .z13 =yv  
    z = zeros(length_r,length_n); CK, 6ytB  
    for j = 1:length_n ]*7Y~dO  
        s = 0:(n(j)-m(j))/2; [r/k% <  
        pows = n(j):-2:m(j); zhY+x<-  
        for k = length(s):-1:1 1-RIN}CSd  
            p = (1-2*mod(s(k),2))* ... EyY.KxCB  
                       prod(2:(n(j)-s(k)))/          ... NBb6T V}j  
                       prod(2:s(k))/                 ... ^5r9 5  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... %e*@CbO$  
                       prod(2:((n(j)+m(j))/2-s(k))); h*u`X>!!  
            idx = (pows(k)==rpowers); pm{|?R  
            z(:,j) = z(:,j) + p*rpowern(:,idx); \M'-O YH_[  
        end 64:fs?H  
         /%lZu^  
        if isnorm fib}b? vk  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); qY 4#V k  
        end dg4vc][  
    end OT'[:|x ;  
    };'\~g,1  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    850
    光币
    833
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4352
    光币
    5478
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  rE i Ki  
    U3 */v4/  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 4Yxo~ m(  
    wDcj,:h`  
    07年就写过这方面的计算程序了。
    2024年6月28-30日于上海组织线下成像光学设计培训,欢迎报名参加。请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)