切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 9655阅读
    • 9回复

    [求助]ansys分析后面型数据如何进行zernike多项式拟合? [复制链接]

    上一主题 下一主题
    离线niuhelen
     
    发帖
    19
    光币
    28
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-03-12
    小弟不是学光学的,所以想请各位大侠指点啊!谢谢啦 B~QX{  
    就是我用ansys计算出了镜面的面型的数据,怎样可以得到zernike多项式系数,然后用zemax各阶得到像差!谢谢啦! zJWBovT/  
     
    分享到
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 1楼 发表于: 2011-03-12
    可以用matlab编程,用zernike多项式进行波面拟合,求出zernike多项式的系数,拟合的算法有很多种,最简单的是最小二乘法,你可以查下相关资料,挺简单的
    离线phility
    发帖
    69
    光币
    11
    光券
    0
    只看该作者 2楼 发表于: 2011-03-12
    泽尼克多项式的前9项对应象差的
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 3楼 发表于: 2011-03-12
    回 2楼(phility) 的帖子
    非常感谢啊,我手上也有zernike多项式的拟合的源程序,也不知道对不对,不怎么会有 s'' ?: +  
    function z = zernfun(n,m,r,theta,nflag) :=vB|Ch:~  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. P.Pw .[:3  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N <6^MVaD  
    %   and angular frequency M, evaluated at positions (R,THETA) on the y%)5r}S^  
    %   unit circle.  N is a vector of positive integers (including 0), and EM]~yn!+  
    %   M is a vector with the same number of elements as N.  Each element ?#?[6t  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) Dz/I"bZLC  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, Sp$~)f'  
    %   and THETA is a vector of angles.  R and THETA must have the same Z*S 9pkWcF  
    %   length.  The output Z is a matrix with one column for every (N,M) | n5F_RL  
    %   pair, and one row for every (R,THETA) pair. m<)0 XE6w  
    % l<5O\?Vo]  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike N|hNh$J[  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), v(D{_  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral Qb}7lm{r  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, OrP-+eg  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized n ^P=a'+  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. BE. v+'c"  
    % )R$+dPu>  
    %   The Zernike functions are an orthogonal basis on the unit circle. 9z7^0Ruw  
    %   They are used in disciplines such as astronomy, optics, and 2`>/y  
    %   optometry to describe functions on a circular domain. 7NC"}JB&  
    % }@MOkj  
    %   The following table lists the first 15 Zernike functions. U ^1Xc#Ff  
    % p'UYH t  
    %       n    m    Zernike function           Normalization & V :q}Q  
    %       -------------------------------------------------- tu\;I{ h=0  
    %       0    0    1                                 1 D>M a3g  
    %       1    1    r * cos(theta)                    2 #- $?2?2  
    %       1   -1    r * sin(theta)                    2 )1ia;6}  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) <,p|3p3  
    %       2    0    (2*r^2 - 1)                    sqrt(3) L4`bGZl55  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) Qr]xj7\@i  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) _[;>V*?zp5  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) N: 'v^0  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) `:cnu;  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) p\I,P2on  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) #mg6F$E  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) x*td nor&  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) tdSy&]P  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) %,f|H :+>u  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) KrE:ilm#^Y  
    %       -------------------------------------------------- )W9W8>Cc5_  
    % i? 5jl&30  
    %   Example 1: taOD,}c|$  
    % [of{~  
    %       % Display the Zernike function Z(n=5,m=1) `|K30hRp:  
    %       x = -1:0.01:1; O{Bll;C  
    %       [X,Y] = meshgrid(x,x); 5W"&$6vj  
    %       [theta,r] = cart2pol(X,Y); K6<@DP+/  
    %       idx = r<=1; E!<w t  
    %       z = nan(size(X)); ,l`4)@{G  
    %       z(idx) = zernfun(5,1,r(idx),theta(idx)); _j{^I^P  
    %       figure sv`+?hjG  
    %       pcolor(x,x,z), shading interp .;j}:<  
    %       axis square, colorbar rFJ(t7\9h  
    %       title('Zernike function Z_5^1(r,\theta)') QX}O{LQR  
    % %^){Z,}M}  
    %   Example 2: gi!{y   
    % !G E-5\*  
    %       % Display the first 10 Zernike functions X,VOKj.%  
    %       x = -1:0.01:1; =4`#OQ&g  
    %       [X,Y] = meshgrid(x,x); |uo<<-\jTO  
    %       [theta,r] = cart2pol(X,Y); P 1`X<A  
    %       idx = r<=1; gN#&Ag<?  
    %       z = nan(size(X)); XnC`JO+7M  
    %       n = [0  1  1  2  2  2  3  3  3  3]; \49LgN@\  
    %       m = [0 -1  1 -2  0  2 -3 -1  1  3]; vi?{H*H4c  
    %       Nplot = [4 10 12 16 18 20 22 24 26 28]; ! bbVa/  
    %       y = zernfun(n,m,r(idx),theta(idx)); o,l3j|1  
    %       figure('Units','normalized') u,AZMjlF  
    %       for k = 1:10 [1{#a {4  
    %           z(idx) = y(:,k); ZL[~[  
    %           subplot(4,7,Nplot(k)) 9x;CJhX  
    %           pcolor(x,x,z), shading interp ^q``f%Xt  
    %           set(gca,'XTick',[],'YTick',[]) 0<f\bY02  
    %           axis square R'R LF =  
    %           title(['Z_{' num2str(n(k)) '}^{' num2str(m(k)) '}']) qOaI4JP@  
    %       end RC(fhqV  
    % 57r?`'#*  
    %   See also ZERNPOL, ZERNFUN2. r #H(kJu,  
    ^M?O  
    %   Paul Fricker 11/13/2006 !ceT>i90h  
    LASR*  
    cHN eiOF  
    % Check and prepare the inputs: E}eu]2=nU}  
    % ----------------------------- q{D_p[q  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) 7_t\wmvYp  
        error('zernfun:NMvectors','N and M must be vectors.') lq0@)'D  
    end S[!sJ-rG  
    AQX~do\A  
    if length(n)~=length(m) ^6&?R?y  
        error('zernfun:NMlength','N and M must be the same length.') -*q:B[d  
    end bvHF;Qywg  
    'iy &%?  
    n = n(:); ",wv*z)_>  
    m = m(:); paFiuQ  
    if any(mod(n-m,2)) xWkCP2$?P  
        error('zernfun:NMmultiplesof2', ... :4 9ttJl  
              'All N and M must differ by multiples of 2 (including 0).') #H9J/k_  
    end 'N1_:$z@(  
    4`Com~`6"  
    if any(m>n) aju!Aq54G  
        error('zernfun:MlessthanN', ... JP$@*F@t  
              'Each M must be less than or equal to its corresponding N.') {2u#Q 7]|  
    end 6J/"1 _  
    aD yHIh8  
    if any( r>1 | r<0 ) Ejc%DSG  
        error('zernfun:Rlessthan1','All R must be between 0 and 1.') 7R9S%  
    end fq*. 4s #  
    |#<PI9)`  
    if ( ~any(size(r)==1) ) || ( ~any(size(theta)==1) ) /8V#6d_  
        error('zernfun:RTHvector','R and THETA must be vectors.') ^kg[n908Nw  
    end y$6m|5  
    )$18a  
    r = r(:); AhjK*nJF  
    theta = theta(:); );4lM%]eb  
    length_r = length(r); 8?ig/HSt2  
    if length_r~=length(theta) vZEeb j  
        error('zernfun:RTHlength', ... tqI]S X  
              'The number of R- and THETA-values must be equal.') X\X* -.]{  
    end gFk~SJd  
    q5X \wz2N  
    % Check normalization: py9zDWk~  
    % -------------------- (r8Rb*OP  
    if nargin==5 && ischar(nflag) J;Y=o B  
        isnorm = strcmpi(nflag,'norm'); 5nq0#0O c  
        if ~isnorm hh\\api  
            error('zernfun:normalization','Unrecognized normalization flag.') H>8B$fi)$  
        end =,Y i" E  
    else +T}:GBwD7  
        isnorm = false; L2"fO  
    end !>$tRW?gH~  
    |7@[+  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *=]hc@  
    % Compute the Zernike Polynomials pJM~'tlHV  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% p-]vf$u  
    3+6s}u)  
    % Determine the required powers of r: D{h sa  
    % ----------------------------------- 9 *>@s  
    m_abs = abs(m); ~*-(_<FH  
    rpowers = []; L_fu<W  
    for j = 1:length(n) @ 2r9JqR[=  
        rpowers = [rpowers m_abs(j):2:n(j)]; X+l &MD  
    end /S29\^  
    rpowers = unique(rpowers); <~9z.v7  
    H{*~d+:ol  
    % Pre-compute the values of r raised to the required powers, bLMN9wGOgK  
    % and compile them in a matrix: BE n$~4-  
    % ----------------------------- j^DoILw  
    if rpowers(1)==0 0fgt2gA33  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); $N$ ZJC6(@  
        rpowern = cat(2,rpowern{:}); .h)o\6Wq  
        rpowern = [ones(length_r,1) rpowern]; Lf+M +^l  
    else }UwDHq=  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); 2z/qbzG7  
        rpowern = cat(2,rpowern{:}); dZnAdlJ  
    end xf1@mi[a  
    x1['+!01  
    % Compute the values of the polynomials: 9|yn{4E  
    % -------------------------------------- GX4HW \>a  
    y = zeros(length_r,length(n)); \!HG kmd  
    for j = 1:length(n) S{cy|QD  
        s = 0:(n(j)-m_abs(j))/2; 6?-vj2,  
        pows = n(j):-2:m_abs(j); ?yKW^,q+  
        for k = length(s):-1:1 w_-v!s2  
            p = (1-2*mod(s(k),2))* ... 5mNd5IM  
                       prod(2:(n(j)-s(k)))/              ... CRy;>UI  
                       prod(2:s(k))/                     ... (rfU=E  
                       prod(2:((n(j)-m_abs(j))/2-s(k)))/ ... H]@M00C  
                       prod(2:((n(j)+m_abs(j))/2-s(k))); /A3tY"Vn  
            idx = (pows(k)==rpowers); jkd'2  
            y(:,j) = y(:,j) + p*rpowern(:,idx); +bwSu)k  
        end Hm=!;xAFX  
         0pP;[7k\  
        if isnorm BElVkb  
            y(:,j) = y(:,j)*sqrt((1+(m(j)~=0))*(n(j)+1)/pi); #DMt<1#:  
        end HorFQ?8  
    end =,B44:`r  
    % END: Compute the Zernike Polynomials T;(k  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  M1>< K:  
    BbA7X  
    % Compute the Zernike functions: h WvQh  
    % ------------------------------ Obd@#uab  
    idx_pos = m>0; #biI=S  
    idx_neg = m<0; c]]OV7;)>  
    hS) X`M  
    z = y; Z1j3F  
    if any(idx_pos) 9pN},F91n:  
        z(:,idx_pos) = y(:,idx_pos).*sin(theta*m(idx_pos)'); ]qZs^kQ  
    end __Kn 1H{  
    if any(idx_neg) BM+v,hGY  
        z(:,idx_neg) = y(:,idx_neg).*cos(theta*m(idx_neg)'); O)g\/uRy  
    end .Y}~2n  
    m Cvgs  
    % EOF zernfun
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 4楼 发表于: 2011-03-12
    function z = zernfun2(p,r,theta,nflag) fi*@m,-  
    %ZERNFUN2 Single-index Zernike functions on the unit circle. s+{)K  
    %   Z = ZERNFUN2(P,R,THETA) returns the Pth Zernike functions evaluated 9VyY [&  
    %   at positions (R,THETA) on the unit circle.  P is a vector of positive _tJp@\rOz=  
    %   integers between 0 and 35, R is a vector of numbers between 0 and 1, pSM\(kVKa  
    %   and THETA is a vector of angles.  R and THETA must have the same :77dl/d%  
    %   length.  The output Z is a matrix with one column for every P-value, cE3g7(a  
    %   and one row for every (R,THETA) pair. CAX)AN  
    % IKT3T_\-I  
    %   Z = ZERNFUN2(P,R,THETA,'norm') returns the normalized Zernike 9$)I=Rpk =  
    %   functions, defined such that the integral of (r * [Zp(r,theta)]^2) qx,>j4y w  
    %   over the unit circle (from r=0 to r=1, and theta=0 to theta=2*pi) B%P g:|  
    %   is unity.  For the non-normalized polynomials, max(Zp(r=1,theta))=1 {C6,h#|pg  
    %   for all p. kXw&*B-/  
    % b4o`eR  
    %   NOTE: ZERNFUN2 returns the same output as ZERNFUN, for the first 36 M`6rI  
    %   Zernike functions (order N<=7).  In some disciplines it is B(+J?0Dj  
    %   traditional to label the first 36 functions using a single mode ] B ZSW  
    %   number P instead of separate numbers for the order N and azimuthal JDi\?m d.  
    %   frequency M. 6M({T2e  
    % n#F:(MSOp  
    %   Example: b^WTX  
    % `_`\jd@  
    %       % Display the first 16 Zernike functions p:kHb@  
    %       x = -1:0.01:1; 7f!"vhCXM;  
    %       [X,Y] = meshgrid(x,x); v<+5B5"1  
    %       [theta,r] = cart2pol(X,Y); (^x ,  
    %       idx = r<=1; RM/q\100  
    %       p = 0:15; #^|"dIZ_M  
    %       z = nan(size(X)); >NL4&MV:  
    %       y = zernfun2(p,r(idx),theta(idx)); VJp; XM  
    %       figure('Units','normalized') BhJag L ^o  
    %       for k = 1:length(p) (-'Jf#&X^  
    %           z(idx) = y(:,k); -?T:> *]p  
    %           subplot(4,4,k) }@R*U0*E  
    %           pcolor(x,x,z), shading interp ^*!Tq&Dst|  
    %           set(gca,'XTick',[],'YTick',[]) ;8!L*uMI  
    %           axis square B.O &KRo  
    %           title(['Z_{' num2str(p(k)) '}']) >"}z % #  
    %       end EZICH&_  
    % ?]1_ 2\M  
    %   See also ZERNPOL, ZERNFUN. IdP"]Sv{<  
    ElBpF8xJ|o  
    %   Paul Fricker 11/13/2006 o5k7$0:t/  
    ",9QqgY+  
    VZ69s{/.B  
    % Check and prepare the inputs: YzasT:EZN  
    % ----------------------------- S3cV^CzNg  
    if min(size(p))~=1 xA?(n!{P  
        error('zernfun2:Pvector','Input P must be vector.') /EW1&  
    end iLd_{  
    y+R *<5qC<  
    if any(p)>35 [^rMM1^,OB  
        error('zernfun2:P36', ... 0+H4sz%.  
              ['ZERNFUN2 only computes the first 36 Zernike functions ' ...  ' ];|  
               '(P = 0 to 35).']) j,:vK  
    end {:peArO  
    @fjVCc;  
    % Get the order and frequency corresonding to the function number: }iOFB&)w  
    % ---------------------------------------------------------------- 2m! T .$  
    p = p(:); PG@Uygahu  
    n = ceil((-3+sqrt(9+8*p))/2); (fSpY\JPI  
    m = 2*p - n.*(n+2); I=vGS  
    7Pb: z4j  
    % Pass the inputs to the function ZERNFUN:  9hbn<Y  
    % ---------------------------------------- i.~*G8!DM  
    switch nargin 2.6F5&:($  
        case 3 HutwgPvy  
            z = zernfun(n,m,r,theta); /*$B  
        case 4 wO>P< KBU  
            z = zernfun(n,m,r,theta,nflag); |ORro r}  
        otherwise ]ULE>a  
            error('zernfun2:nargin','Incorrect number of inputs.') klUW_d-  
    end L("zS%qr  
    sTmY'5ry  
    % EOF zernfun2
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 5楼 发表于: 2011-03-12
    function z = zernpol(n,m,r,nflag) <"}Gvi  
    %ZERNPOL Radial Zernike polynomials of order N and frequency M. >U%:Nfo3  
    %   Z = ZERNPOL(N,M,R) returns the radial Zernike polynomials of D on8xk  
    %   order N and frequency M, evaluated at R.  N is a vector of +DpiX&^h   
    %   positive integers (including 0), and M is a vector with the ue/GB+U  
    %   same number of elements as N.  Each element k of M must be a M~o\K'  
    %   positive integer, with possible values M(k) = 0,2,4,...,N(k) vwc)d{ND  
    %   for N(k) even, and M(k) = 1,3,5,...,N(k) for N(k) odd.  R is ){_D  
    %   a vector of numbers between 0 and 1.  The output Z is a matrix I7Uj<a=(q  
    %   with one column for every (N,M) pair, and one row for every "&@v[O)!xu  
    %   element in R. _7^4sR8=  
    % (*XSr Q  
    %   Z = ZERNPOL(N,M,R,'norm') returns the normalized Zernike poly- 5VLJ:I?0O  
    %   nomials.  The normalization factor Nnm = sqrt(2*(n+1)) is KcW]"K>p!  
    %   chosen so that the integral of (r * [Znm(r)]^2) from r=0 to Uiz#QGt  
    %   r=1 is unity.  For the non-normalized polynomials, Znm(r=1)=1  n}f*>Mn  
    %   for all [n,m]. p%?VW  
    % }}cS-p  
    %   The radial Zernike polynomials are the radial portion of the uFXu9f+  
    %   Zernike functions, which are an orthogonal basis on the unit rNl` w.  
    %   circle.  The series representation of the radial Zernike 0</]Jo%  
    %   polynomials is CSBk  
    % 6q8b>LG|  
    %          (n-m)/2 >axf_k  
    %            __ bq}hj Cy  
    %    m      \       s                                          n-2s YtWO=+rX  
    %   Z(r) =  /__ (-1)  [(n-s)!/(s!((n-m)/2-s)!((n+m)/2-s)!)] * r hj<h]dhp  
    %    n      s=0 kv)IG$S 0  
    % j,%<16f^A  
    %   The following table shows the first 12 polynomials. x9lG$0k:V  
    % X / {;  
    %       n    m    Zernike polynomial    Normalization }ag -J."5M  
    %       --------------------------------------------- tt%lDr1A)  
    %       0    0    1                        sqrt(2) ;`(l)X+7  
    %       1    1    r                           2 :RqTbE4B  
    %       2    0    2*r^2 - 1                sqrt(6) InCJ4D  
    %       2    2    r^2                      sqrt(6) <"SOH; w  
    %       3    1    3*r^3 - 2*r              sqrt(8) b5Sgf'B^  
    %       3    3    r^3                      sqrt(8) Af V a[{E  
    %       4    0    6*r^4 - 6*r^2 + 1        sqrt(10) )q>mt/,  
    %       4    2    4*r^4 - 3*r^2            sqrt(10) r^2>60q'  
    %       4    4    r^4                      sqrt(10) AD=qB5:  
    %       5    1    10*r^5 - 12*r^3 + 3*r    sqrt(12) TSPFi0PP  
    %       5    3    5*r^5 - 4*r^3            sqrt(12) ~|>q)4is6a  
    %       5    5    r^5                      sqrt(12) O:hCUr  
    %       --------------------------------------------- $vQ#ah/k  
    % LKx<hl$O  
    %   Example: 3EHn}#+U  
    % >3J?O96|f  
    %       % Display three example Zernike radial polynomials M|l`2Hpe  
    %       r = 0:0.01:1; C@$!'^ 61  
    %       n = [3 2 5]; }CoR$K   
    %       m = [1 2 1]; L]_1z  
    %       z = zernpol(n,m,r); o2J-&   
    %       figure YgFmJ.1  
    %       plot(r,z)  oRbG6Vv/  
    %       grid on <Y9 L3O`[  
    %       legend('Z_3^1(r)','Z_2^2(r)','Z_5^1(r)','Location','NorthWest') UF$JVb  
    % oU`J~6.&S  
    %   See also ZERNFUN, ZERNFUN2. IL\2?(&Z  
    4)zHkN+  
    % A note on the algorithm. a'U}.w}  
    % ------------------------ c-dOb.v0  
    % The radial Zernike polynomials are computed using the series [RqL0EP  
    % representation shown in the Help section above. For many special e=yQFzQT)  
    % functions, direct evaluation using the series representation can c[h{C!d1  
    % produce poor numerical results (floating point errors), because B_u1FWc  
    % the summation often involves computing small differences between +wwb+aG6{  
    % large successive terms in the series. (In such cases, the functions nB#m?hK  
    % are often evaluated using alternative methods such as recurrence R[l9f8  
    % relations: see the Legendre functions, for example). For the Zernike v_7?Zik8E  
    % polynomials, however, this problem does not arise, because the 1_aUU,|.  
    % polynomials are evaluated over the finite domain r = (0,1), and 5R?[My  
    % because the coefficients for a given polynomial are generally all u3Qm"?$`  
    % of similar magnitude. !pwY@} oL  
    % =gYKAr^p5  
    % ZERNPOL has been written using a vectorized implementation: multiple U<aT%^_  
    % Zernike polynomials can be computed (i.e., multiple sets of [N,M] h yPVt6Gkj  
    % values can be passed as inputs) for a vector of points R.  To achieve oQ=v:P]  
    % this vectorization most efficiently, the algorithm in ZERNPOL xlW`4\ Pa  
    % involves pre-determining all the powers p of R that are required to =[7[F)I~O  
    % compute the outputs, and then compiling the {R^p} into a single LMF@-j%  
    % matrix.  This avoids any redundant computation of the R^p, and \@3B%RW0  
    % minimizes the sizes of certain intermediate variables. p;P"mp\'  
    % ^^O @ [_  
    %   Paul Fricker 11/13/2006 pel{ ;r  
    \bc ob8u  
    ]rpU3 3  
    % Check and prepare the inputs: )U?O4| \P  
    % ----------------------------- ry2ZVIFa  
    if ( ~any(size(n)==1) ) || ( ~any(size(m)==1) ) ?hXeZB+b4  
        error('zernpol:NMvectors','N and M must be vectors.') !(-lY(x  
    end rKtr&w7X  
    9;L5#/E  
    if length(n)~=length(m) Exy|^Dr0  
        error('zernpol:NMlength','N and M must be the same length.') zn=Ifz)#|  
    end rQuozbBb  
    vzr?#FG  
    n = n(:); I 19 /  
    m = m(:); ;E!(W=]*F  
    length_n = length(n); !P_8D*^9  
    L355uaj  
    if any(mod(n-m,2)) T@S\:P  
        error('zernpol:NMmultiplesof2','All N and M must differ by multiples of 2 (including 0).') \E!a=cL!  
    end 'UW(0 PXw  
    EINjI:/D  
    if any(m<0) 08+cNT  
        error('zernpol:Mpositive','All M must be positive.') lVw77bZ  
    end CXe2G5  
    tJ_6dH8Y  
    if any(m>n) N>+s8L.?  
        error('zernpol:MlessthanN','Each M must be less than or equal to its corresponding N.') 3>+9Rru  
    end =}$YZuzmU  
    h8ikM&fl  
    if any( r>1 | r<0 ) /CE]7m,7~K  
        error('zernpol:Rlessthan1','All R must be between 0 and 1.') e Qz_,vTk  
    end P_[A  
    ]z%X%wL  
    if ~any(size(r)==1) "L(4 EcO@  
        error('zernpol:Rvector','R must be a vector.') } ^}fx [  
    end h0=Q.Yz6  
    e1EFZ,EcaO  
    r = r(:); {1<XOp#b  
    length_r = length(r); CSA.6uIT  
    5*q!:$ W  
    if nargin==4 5)T=^"IHXi  
        isnorm = ischar(nflag) & strcmpi(nflag,'norm'); iut[?#f^  
        if ~isnorm +# 38  
            error('zernpol:normalization','Unrecognized normalization flag.') o~_wx  
        end wU9H=w^  
    else fpDx)lQ  
        isnorm = false; [\Ks+S  
    end =)2sehU/  
    _D{V(c<WD  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9(\eL9^  
    % Compute the Zernike Polynomials <3 b|Sk:T  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [32]wgw+{1  
    .[@TC@W  
    % Determine the required powers of r: DR d|m<Z  
    % ----------------------------------- n%SR5+N"  
    rpowers = []; 3!&PI  
    for j = 1:length(n) yR`X3.:*]  
        rpowers = [rpowers m(j):2:n(j)]; d>RoH]K4  
    end ="k9 y  
    rpowers = unique(rpowers); (O$PJLI  
    P ,%IZ.  
    % Pre-compute the values of r raised to the required powers, @y|ZXPC#  
    % and compile them in a matrix:  ]\qbe  
    % ----------------------------- g}cb>'=={  
    if rpowers(1)==0 ?$ft3p}  
        rpowern = arrayfun(@(p)r.^p,rpowers(2:end),'UniformOutput',false); 0`LR!X  
        rpowern = cat(2,rpowern{:}); 8RA]h?$$J  
        rpowern = [ones(length_r,1) rpowern]; vxey $Ir  
    else MHuQGc"e+4  
        rpowern = arrayfun(@(p)r.^p,rpowers,'UniformOutput',false); a5)<roWQ  
        rpowern = cat(2,rpowern{:}); B8f BX!u/  
    end d(=*@epjR  
    17\5 NgB  
    % Compute the values of the polynomials: :RxWHh3O  
    % -------------------------------------- lj U|9|v  
    z = zeros(length_r,length_n); N=JZtf/i  
    for j = 1:length_n [SJ)4e|)  
        s = 0:(n(j)-m(j))/2; !XJvhsKXy  
        pows = n(j):-2:m(j); y1oQ4|KSI  
        for k = length(s):-1:1 C1x"q9| \`  
            p = (1-2*mod(s(k),2))* ... &n}eF-  
                       prod(2:(n(j)-s(k)))/          ... 4 8}\  
                       prod(2:s(k))/                 ... pX\Y:hCug  
                       prod(2:((n(j)-m(j))/2-s(k)))/ ... DX*eN"z[  
                       prod(2:((n(j)+m(j))/2-s(k))); &B3[:nS2  
            idx = (pows(k)==rpowers); 5t,W'a_  
            z(:,j) = z(:,j) + p*rpowern(:,idx); A;06Zrf1  
        end (i 3=XfZ!C  
         &=KNKE`  
        if isnorm -msfiO  
            z(:,j) = z(:,j)*sqrt(2*(n(j)+1)); ;Nd,K C0k  
        end <kmH^ viX  
    end bzl-|+!yB  
    (3_m[N\F  
    % EOF zernpol
    离线niuhelen
    发帖
    19
    光币
    28
    光券
    0
    只看该作者 6楼 发表于: 2011-03-12
    这三个文件,我不知道该怎样把我的面型节点的坐标及轴向位移用起来,还烦请指点一下啊,谢谢啦!
    离线li_xin_feng
    发帖
    59
    光币
    0
    光券
    0
    只看该作者 7楼 发表于: 2012-09-28
    我也正在找啊
    离线guapiqlh
    发帖
    846
    光币
    834
    光券
    0
    只看该作者 8楼 发表于: 2014-03-04
    我也一直想了解这个多项式的应用,还没用过呢
    离线phoenixzqy
    发帖
    4347
    光币
    8695
    光券
    1
    只看该作者 9楼 发表于: 2014-04-22
    回 guapiqlh 的帖子
    guapiqlh:我也一直想了解这个多项式的应用,还没用过呢 (2014-03-04 11:35)  OM1pyt  
    }w%W A&"W  
    数值分析方法看一下就行了。其实就是正交多项式的应用。zernike也只不过是正交多项式的一种。 a=%QckR*  
    L74Sx0nk=  
    07年就写过这方面的计算程序了。
    提供免费光学设计培训,请关注子在川上光学公众号。详细内容请咨询13661915143(同微信号)