(* }<5\O*kX4
Demo for program"RP Fiber Power": thulium-doped fiber laser, 6SW|H"!!
pumped at 790 nm. Across-relaxation process allows for efficient g[=\KrTSg
population of theupper laser level.
m+72C]9
*) !(* *)注释语句 uZqu xu.
C;58z5*,
diagram shown: 1,2,3,4,5 !指定输出图表 i#@ v_^ q
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 I&'S2=s
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 )M&Azbu
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 zn2"swhq\V
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 ~n8Oyr
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 4 BE:&A
{Gk}3u/
include"Units.inc" !读取“Units.inc”文件中内容 4t+/
8r`VbgI&
include"Tm-silicate.inc" !读取光谱数据 *hk{q/*Qw
c"%_]7
; Basic fiberparameters: !定义基本光纤参数 &P,4EaC9;
L_f := 4 { fiberlength } !光纤长度 vjs|!O=oH
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 !~|"LA!jn
r_co := 6 um { coreradius } !纤芯半径 LhVLsa(-%
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 ^huBqEs
5H'b4Cyi`
; Parameters of thechannels: !定义光信道 y :i[~ y
l_p := 790 nm {pump wavelength } !泵浦光波长790nm eSvc/ CU
dir_p := forward {pump direction (forward or backward) } !前向泵浦 2kp|zX(
P_pump_in := 5 {input pump power } !输入泵浦功率5W _Ssv:xc,
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um hIzPy3
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 #RLch
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 TeGLAt
eo<~1w
l_s := 1940 nm {signal wavelength } !信号光波长1940nm AT8B!m
w_s := 7 um !信号光的半径 5JU(@}Db
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 R
uFu,H-
loss_s := 0 !信号光寄生损耗为0 eBYaq!t
k
dp// p)B>
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 eHnei F
)K\k6HC.
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 g`~lIt[=
calc &23ss/
begin
Skk3M?
global allow all; !声明全局变量 W"}*Q-8W
set_fiber(L_f, No_z_steps, ''); !光纤参数 )qe$rD;N
add_ring(r_co, N_Tm); soQv?4
def_ionsystem(); !光谱数据函数 H,4,~lv|
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 gE6y&a
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 JI[rIL\Ey
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 fbx;-He!
set_R(signal_fw, 1, R_oc); !设置反射率函数 d'g{K]=tF
finish_fiber(); @=<TA0;LL
end; d~z<,_r5c
Tm~#wL
+r
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 p-(ADQS
show "Outputpowers:" !输出字符串Output powers: c J"]yG)=
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) On96N|
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) ?w5nKpG#RI
\ \mO+N47i
+DV6oh
; ------------- `aWwF}
+Y
diagram 1: !输出图表1 *V@MAt
<,]CVo
"Powers vs.Position" !图表名称 1^H<+0
DRmh(T
x: 0, L_f !命令x: 定义x坐标范围 z_,]fd=o
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 -I$txa/"|
y: 0, 15 !命令y: 定义y坐标范围 <GFB'`L
y2: 0, 100 !命令y2: 定义第二个y坐标范围 <hF~L k ,
frame !frame改变坐标系的设置 yg[Oy#^
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) zC>(!fJqq
hx !平行于x方向网格 ?=@Q12R)X
hy !平行于y方向网格 *
SON>BSF
,IVr4#w0=
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 Mb/6>
color = red, !图形颜色 kq.R(z+
width = 3, !width线条宽度 HS&uQc a
"pump" !相应的文本字符串标签 A@Yi{&D_Q]
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 |s3HeY+Co
color = blue, v,.n/@s|X
width = 3, _~#C $-T
"fw signal" HOQ
_T4
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 Xi`U`7?D(=
color = blue, `_{'?II
style = fdashed, 3L!&~'.Ro
width = 3, d<cbp[3F
"bw signal" W2.1xNWO
)
ImIPSL
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 PM?Ri^55<L
yscale = 2, !第二个y轴的缩放比例 {R8P $
color = magenta, 2'^OtM,
width = 3, bg3jo1J
style = fdashed, (lck6v?h
"n2 (%, right scale)" #&8pp8wd,}
]A<u eM
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 _.8]7f`*Gc
yscale = 2, PH4bM
color = red, ]3#
@t:>
width = 3, =/'*(\C2
style = fdashed, Y&Vbf>Hi+
"n3 (%, right scale)" .Fz6+m;Z
vc1GmB
4Jy,IKPp
; ------------- Jz8#88cY
diagram 2: !输出图表2 Glc4g
9d(v^T
"Variation ofthe Pump Power" eS%6hUb
(>lqp%G~
x: 0, 10 CpdY)SMSL
"pump inputpower (W)", @x #K*q(ei,7h
y: 0, 10 m<LzB_G\
y2: 0, 100 QMpA~x_m
frame #"YWz)8
hx GIl{wd
hy qvE[_1QCc
legpos 150, 150 1`JN
MP&4}De
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 {"AYOc>2|
step = 5, n8D;6#P^
color = blue, JM9Q]#'t
width = 3, 8$tpPOhzb
"signal output power (W, leftscale)", !相应的文本字符串标签 Z"nuO\zH~
finish set_P_in(pump, P_pump_in) 1ucUnNkcV
`l40awGCz
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 /FZ )ej\
yscale = 2, BqA wo
step = 5, R,Uy3N
color = magenta, w|*G`~l09
width = 3, APm[)vw#f
"population of level 2 (%, rightscale)", cDol
o1*
finish set_P_in(pump, P_pump_in) J-?(sjIX
D4S?bZFHo
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 3nGK674;z
yscale = 2, J, U~.c
step = 5, 9
f/tNQ7W
color = red, 4nXS9RiF2
width = 3, WoR**J?}w
"population of level 3 (%, rightscale)", Q#bo!]H{t
finish set_P_in(pump, P_pump_in) D)$k{v#~
G2k71{jK
ttt&sW`
; ------------- E1[%~Cpw*
diagram 3: !输出图表3 dL"i\5#%A
K`2DhJC
"Variation ofthe Fiber Length" }i~ j"m
y`Y}P1y*
x: 0.1, 5 45JLx?rN_
"fiber length(m)", @x 4tKf
y: 0, 10 E&v-(0
"opticalpowers (W)", @y #Jb$AA!z
frame -<.NEV
hx f}d@G/L
hy (Gsg+c
,urkd~
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 ee\zU~
step = 20, ;:1mv
color = blue, cne[-E
width = 3, YR#1[fe*_
"signal output" ~qxc!k!w4
GoXHVUyp
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 0+h?Bk
step = 20, color = red, width = 3,"residual pump" EFO Q;q
J(L$pIM
! set_L(L_f) {restore the original fiber length } }k~0R-m
pp _ddk
%%u4('=
; ------------- >?xVr
diagram 4: !输出图表4 L2tmo-]nw
IC42O_^
"TransverseProfiles" !qq@F%tv
SS-
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) 81g0oVv
/iy/2x28>
x: 0, 1.4 * r_co /um Fv
B2y8&W
"radialposition (µm)", @x IHfqW?
y: 0, 1.2 * I_max *cm^2 N/p_6GYMa
"intensity (W/ cm²)", @y s=+G%B'
y2: 0, 1.3 * N_Tm T[J_/DE@
frame XoOe=V?I )
hx %vzpp\t
hy B5S1F4
!b_IH0]U
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 C<ljBz`,t
yscale = 2, )/w2]d/9
color = gray, `WL*Jb
width = 3, ,kI1"@Tu
maxconnect = 1, &kt#p;/p?
"N_dop (right scale)" ==9Ez
a!.8^:B&
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 !Ai;S
color = red, \zU R9h
maxconnect = 1, !限制图形区域高度,修正为100%的高度 FUqiP(A
width = 3, vF1$$7k
"pump" fk_i~K
\/%mabLK
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 0rj* SC_
color = blue, 2
r)c?
maxconnect = 1, P7!Sc
width = 3, ~Hf,MLMdTf
"signal" :yeTzIz]
`Hqu2
'`
c@P,
; ------------- Kk#@8h>
diagram 5: !输出图表5 X5=7DE]
BN67o]*]<
"TransitionCross-sections" bE{`g]C5
Gy5W;,$q
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) 'lF|F+8
1Ppzch7
x: 1450, 2050 JP]K\nQx'
"wavelength(nm)", @x )/Vr 5b@
y: 0, 0.6 *Bj G3Jc5
"cross-sections(1e-24 m²)", @y R:E:Y|&#
frame ~kga+H
hx _e
W*
hy ? "gy`oCv
r_",E=e
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 U7N<!6
color = red, 8MdKH7
width = 3, ,o`qB81
"absorption" !WmpnPr1
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 aNz%vbh\
color = blue, &N#)(rQ1
width = 3, @NF8?>!
"emission" FWj~bn
+q(D]:@,[