切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1882阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    873
    光币
    1926
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* nFGX2|d  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, ,%xat`d3,3  
    pumped at 790 nm. Across-relaxation process allows for efficient is^R8a  
    population of theupper laser level. l$c/!V[3  
    *)            !(*  *)注释语句 hslT49m>  
    t5K#nRd Z:  
    diagram shown: 1,2,3,4,5  !指定输出图表 \eQPv kx2  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 %P<fz1  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 dQ-g\]d|  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 US9aW)8  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 mr#.uhd.z  
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 f B]2"(  
    !- QB>`7$  
    include"Units.inc"         !读取“Units.inc”文件中内容 ip{ b*@K  
    |r;>2b/ x  
    include"Tm-silicate.inc"    !读取光谱数据 L1Yj9i  
    !J<0.nO/:  
    ; Basic fiberparameters:    !定义基本光纤参数 "10\y{`v^  
    L_f := 4 { fiberlength }      !光纤长度 s!D2s2b9e  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 )t-P o'RW  
    r_co := 6 um { coreradius }                !纤芯半径 >Sk%78={R  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 4,X CbcC  
    1)ij*L8k  
    ; Parameters of thechannels:                !定义光信道 \vV]fX   
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm =+DhLH}8  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 3y2L! &'z  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W 0~W XA=XG  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um +/mCYI  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 >>C S8  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 09Eg ti.  
    P()W\+",n  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm y,n.(?!*  
    w_s := 7 um                          !信号光的半径 y ,`0f|  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布 E U RKzJk  
    loss_s := 0                            !信号光寄生损耗为0 $;=?[Cn  
    xmC5uT6L3M  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 |)%H_TXTy  
    Oz]$zRu/0  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 a#CjGj)  
    calc FS @55mQ  
      begin HEa7!h[a'  
        global allow all;                   !声明全局变量 u =~`5vA  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 ' \>k7?@  
        add_ring(r_co, N_Tm); G O G[^T  
        def_ionsystem();              !光谱数据函数 OR+py.vK  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 LXrk5>9  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 8$iHd  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 p*@t$0i  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 FoZI0p?L)9  
        finish_fiber();                                   j!k$SDA-  
      end; Q/j#Pst  
    F,pKt.x  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 KE5>O1  
    show "Outputpowers:"                                   !输出字符串Output powers: M80O;0N%A  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) c3PA<q[  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) ).e}.Z6[i`  
    ^AOJ^@H^>  
    4sH?85=j  
    ; ------------- e8(Qx3T?b  
    diagram 1:                   !输出图表1 D88IU9V&n  
    w6Mv%ZO_  
    "Powers vs.Position"          !图表名称 -w)v38iX!  
    " L,9.b  
    x: 0, L_f                      !命令x: 定义x坐标范围 l)jP!k   
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 .i|nn[H &  
    y: 0, 15                      !命令y: 定义y坐标范围 {:n1|_r4Z  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 4N7|LxNNl_  
    frame          !frame改变坐标系的设置 Vl<7>  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) {KEmGHC4R  
    hx             !平行于x方向网格 =kK%,Mr  
    hy              !平行于y方向网格 .We{W{  
    ]8Xip/uE  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 /?TR_>  
      color = red,  !图形颜色 $ZB`4!JxG  
      width = 3,   !width线条宽度 aZtM _  
      "pump"       !相应的文本字符串标签 `Nz`5}8.?  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 NB.'>Sar  
      color = blue,     \&Bdi6xAy  
      width = 3, -2 8bJ,  
      "fw signal" , \RR@~u'  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 ;/+U.I%z  
      color = blue, QX=x^(M$m  
      style = fdashed, @*UV|$~(Q  
      width = 3, # M!1W5#  
      "bw signal" ,]n~j-X  
    pNmWBp|ER  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 V 7ZGT  
      yscale = 2,            !第二个y轴的缩放比例 Y)(yw \&v  
      color = magenta, e VQ-?DK  
      width = 3, :Y9/} b{  
      style = fdashed, 6'<[QoW];  
      "n2 (%, right scale)" I6@"y0I  
    )_4()#3  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 )24M?R@r  
      yscale = 2, 8`]yp7ueS  
      color = red, vr2PCG[~  
      width = 3, ?*7Mn`  
      style = fdashed, N qz6_!  
      "n3 (%, right scale)" \ptjnwC^O  
    DrxQ(yo}  
    M1*bT@ 6  
    ; ------------- E'SDT*EI  
    diagram 2:                    !输出图表2 WNQ<XB qAw  
    l5KO_"hy  
    "Variation ofthe Pump Power" G\V*j$}!  
    'ShK7j$  
    x: 0, 10 * >8EMq\^  
    "pump inputpower (W)", @x 3 5L0 CM  
    y: 0, 10 %*Uc,V  
    y2: 0, 100 +PKsiUJ|  
    frame m&'!^{av  
    hx 1Ax;|.KQH  
    hy GCfVH?Vx  
    legpos 150, 150 /m 7~-~$V  
    be5N{lPT@;  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 @' ;.$  
      step = 5, ~#}T|  
      color = blue, !7MRHI/0C  
      width = 3, (hQi {  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 ;ny9q  
      finish set_P_in(pump, P_pump_in) ={N1j<%fh  
    g]`YI5  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 # h4FLF_w  
      yscale = 2, P~iZae  
      step = 5, n&?)gKL0g  
      color = magenta, eR6vO5to  
      width = 3, K{"hf:k  
      "population of level 2 (%, rightscale)", )4c?BCgy  
      finish set_P_in(pump, P_pump_in) fBv: TC%  
    CA5`uh  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 lmD [Cn  
      yscale = 2, ^w<aS w  
      step = 5, :XG~AR /  
      color = red, R<{Vgy  
      width = 3, cF8X  
      "population of level 3 (%, rightscale)", ,u)jZ7  
      finish set_P_in(pump, P_pump_in) aW{5m@p{"  
    ACZK]~Y'N*  
    >!a- "  
    ; ------------- `ZI-1&Y3  
    diagram 3:                         !输出图表3 '\xE56v)F  
    RwOOe7mv  
    "Variation ofthe Fiber Length" \x]\W#C  
    5s`r&2 w  
    x: 0.1, 5 =+ >>l0=_v  
    "fiber length(m)", @x xSSEDfq  
    y: 0, 10 ;e/F( J  
    "opticalpowers (W)", @y 150-'Q  
    frame 6o(IL-0]c  
    hx 6ST(=X_C  
    hy >8=lX`9f{  
    g=@d!]Z~[  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 4nh=Dq[  
      step = 20,             /sT?p=[.  
      color = blue, voN~f>  
      width = 3,  ms&1P  
      "signal output" 5\#I4\  
    : MjDcI~  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 #RaqNu  
       step = 20, color = red, width = 3,"residual pump" K%x]:|,>M  
    Ro"'f7(v.  
    ! set_L(L_f) {restore the original fiber length } m|c [C\)By  
    6l;2kztGp  
    i$PO#}  
    ; ------------- ^7YNM<_%@  
    diagram 4:                                  !输出图表4 /WE\0bf  
    mTxqcQc:7  
    "TransverseProfiles" [YHtBM:y  
    O#=%t  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) rqqd} kA  
    VwPoQ9pIS  
    x: 0, 1.4 * r_co /um {5<fvMO!6  
    "radialposition (µm)", @x :-JryiI  
    y: 0, 1.2 * I_max *cm^2 AD?XJ3  
    "intensity (W/ cm&sup2;)", @y p^RX<L/\=_  
    y2: 0, 1.3 * N_Tm h@G~' \8t  
    frame ,1N|lyV   
    hx 'hs4k|B  
    hy gK({InOP  
    w]{c*4o  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 PgT8 1u  
      yscale = 2, 111A e *U  
      color = gray, -mG`* 0  
      width = 3, Zp~yemERr  
      maxconnect = 1, 2tpuv(H;  
      "N_dop (right scale)" M>p<1`t-&  
    ob;|%_  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 D_czUM  
      color = red, SM4`Hys;p  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 w3);ZQ|  
      width = 3, 4dPTrBQ?  
      "pump" `Y4Kw  
    kexV~Q  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 xwof[BnEZ  
      color = blue, E(|A"=\  
      maxconnect = 1, dVEs^ZtI  
      width = 3, $">j~!'  
      "signal" A`f"<W-m  
    Fw\Z[nh  
    cVL|kYVWT  
    ; ------------- QDQ"Sc06  
    diagram 5:                                  !输出图表5 {eaR,d~X  
    f/#Id]B  
    "TransitionCross-sections" \\KjiT'  
    NOXP}M  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) ZxwrlaA  
    s~A-qG>  
    x: 1450, 2050 D~ Y6%9  
    "wavelength(nm)", @x 8e*skL  
    y: 0, 0.6 +?o!"SJ  
    "cross-sections(1e-24 m&sup2;)", @y 4F#H$`:[  
    frame ?0qD(cfx<  
    hx [-_{3qq<e  
    hy EOrui:.B)  
    'QT~o-U  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 }]o8}$&(  
      color = red, ]wU/yc)e  
      width = 3, nZ(]WPIN"  
      "absorption" P>X[}  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 l1DJ<I2  
      color = blue, 2MRd  
      width = 3, ,X^3.ILz  
      "emission" OlRXgJ  
    `5?0yXK  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚