(* x]:mc%4-Z
Demo for program"RP Fiber Power": thulium-doped fiber laser, UkUdpZ.[il
pumped at 790 nm. Across-relaxation process allows for efficient PHoW|K_e
population of theupper laser level. 8LL);"$
*) !(* *)注释语句 cX2b:
b4Z#]o
diagram shown: 1,2,3,4,5 !指定输出图表 f%af.cR*
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 "^\ 4xI
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 SE\`JGA[
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 C5m*pGImG
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 `is6\RH
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 q7;)&_'
)wC>Hq[mhW
include"Units.inc" !读取“Units.inc”文件中内容 sXFD]cF
5VI'hxU4Qg
include"Tm-silicate.inc" !读取光谱数据 p|Ln;aYc
#f[yp=uI:
; Basic fiberparameters: !定义基本光纤参数 y ^YrGz.
L_f := 4 { fiberlength } !光纤长度 Z?~7#F~Z`
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 g+f{I'j
r_co := 6 um { coreradius } !纤芯半径 sx9N8T3n
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 UuN(+&oD-
MRs8l
; Parameters of thechannels: !定义光信道 (GZm+?
l_p := 790 nm {pump wavelength } !泵浦光波长790nm Yy&0b(m U
dir_p := forward {pump direction (forward or backward) } !前向泵浦 7BC9cS(0w9
P_pump_in := 5 {input pump power } !输入泵浦功率5W <1"6`24
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um P~~RK&+i
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 Ys\l[$_`*
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 !nu#r$K(
Dv$xP)./
l_s := 1940 nm {signal wavelength } !信号光波长1940nm `/"z. ~8
w_s := 7 um !信号光的半径 9J<KR#M
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 X%;,r
2g
loss_s := 0 !信号光寄生损耗为0 L-fAT'!'
xH92=t-w
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 A/'G.H
-wY6da*.W
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 ct/I85c@P
calc __zsrIUJ
begin R (6Jvub"I
global allow all; !声明全局变量 *?c~7ru
set_fiber(L_f, No_z_steps, ''); !光纤参数 xa K:@/
add_ring(r_co, N_Tm); /6>2,S8Ar
def_ionsystem(); !光谱数据函数 l9n8v\8,o
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道
62.{8Uj
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 *G=n${'
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 'Y[\[]3[8
set_R(signal_fw, 1, R_oc); !设置反射率函数 nuvz!<5\{
finish_fiber(); uu(.,11`
end; py)V7*CgH
Am-JB
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 L-Z1Xs
show "Outputpowers:" !输出字符串Output powers: M5D,YC3<
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) >b/Yg:t
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) J)*y1
w^dB1Y7c(W
U,)+wZJ
; ------------- MYLq2g\
diagram 1: !输出图表1 .Yo#vV
-OoXb( I4
"Powers vs.Position" !图表名称 anv_I=
(xq25;|Y
x: 0, L_f !命令x: 定义x坐标范围 pS51fF9
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 bw+~5pqM
y: 0, 15 !命令y: 定义y坐标范围 t:W`=^
y2: 0, 100 !命令y2: 定义第二个y坐标范围 1&wLNZXH
frame !frame改变坐标系的设置 ?"J5~_U.
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) Jzh_`jW0l
hx !平行于x方向网格 }Vg&9HY
hy !平行于y方向网格 aY6]NpT
bD=_44I
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 aMT&}3
color = red, !图形颜色 KrG$W/<tg
width = 3, !width线条宽度 'j>Q7M7q{
"pump" !相应的文本字符串标签 GT`:3L
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 4uD!-1LT@
color = blue, XYf;72*
width = 3, Ktg6 *L/
"fw signal" !Il<'+ ^
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 )4 "G1R`3
color = blue, r*y4Vx7
style = fdashed, ~u7a50
width = 3, s!uewS.
"bw signal" 1NA>W
-SZ^;t
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 L7C!rS
yscale = 2, !第二个y轴的缩放比例 8q}`4wCD$
color = magenta, E2 #XXc
width = 3, 0t'WM=W<!8
style = fdashed, {- tCLkE
3
"n2 (%, right scale)" NmVc2V]I
Lw1~$rZg
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 bv-s}UP0
yscale = 2, OV^)
N
color = red, O~Pbu[C
width = 3, xLX:>64'o>
style = fdashed, L:j;;9Sp{
"n3 (%, right scale)" ,accw}G
$D<LND=o=
%Gh!h4Pv
; ------------- (khjP,
diagram 2: !输出图表2 U2\zl
>@`D@_v
"Variation ofthe Pump Power" ?3k;Yg/
>Y!5c 2~`;
x: 0, 10 !ku5P+y$
"pump inputpower (W)", @x VYMs`d[
y: 0, 10 ~;9B\fE`
y2: 0, 100 H<Ed"-n$I<
frame u#ag|b/C:
hx R 6ca;
hy cEhwv0f!qS
legpos 150, 150 ix [aS
[2WJ>2r}6
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 OxZw;yD
step = 5, $i7iv
color = blue, &>XIK8*
width = 3, !:'%'@uc
"signal output power (W, leftscale)", !相应的文本字符串标签 !/[/w39D0o
finish set_P_in(pump, P_pump_in) =I-SQI8
6p=AzojoB
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 KD11<&4_x
yscale = 2, 4en[!*
step = 5, 6av]LY K
color = magenta, 0sD"Hu
width = 3, 0hp*(, L
"population of level 2 (%, rightscale)", H<92tP4M
finish set_P_in(pump, P_pump_in) {R5Q{]dK3
mQ*:?\@
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 ]k-<[Z;I,
yscale = 2, _VFl.U,
step = 5, dj3}Tjt
color = red, Y&6vTU
width = 3, tF}Vs}
"population of level 3 (%, rightscale)", s,!+wHv_8
finish set_P_in(pump, P_pump_in) -|"W|K?nq
f5.rzrU
X"0n*UTF,
; ------------- IxNY%&* `
diagram 3: !输出图表3 YII1Z'q
5xtIez]x?
"Variation ofthe Fiber Length" _ +q.R
#
xx{}g]%
x: 0.1, 5 @8a1a3_F
"fiber length(m)", @x Dl_y[9
y: 0, 10 ckY,6e"6
"opticalpowers (W)", @y !$ItBn/_
frame J$JXY@mBSC
hx %eW[`uyV
hy 8FYcUvxfT
\3a(8Em
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 MBXja#(k
step = 20, n#8N{ya5x1
color = blue, Vj(}'h-c\
width = 3, mF7T=pl
"signal output" G9"2h
\
a"ZBSg(
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响
Q}.zE+
step = 20, color = red, width = 3,"residual pump" l?F-w;wHN
oNH&VHjU
! set_L(L_f) {restore the original fiber length } hYOUuC
s4h3mypw
i]oSVXx4WC
; ------------- WtlPgT;wE
diagram 4: !输出图表4 t F^|,9_<
7v\K,P8
"TransverseProfiles" |a/1mUxQ&
Sg;c |u
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) S^ij %
`hJSo?G>
x: 0, 1.4 * r_co /um ^wDZg`
"radialposition (µm)", @x ?+EN.P[;3
y: 0, 1.2 * I_max *cm^2 'oNY4.[
"intensity (W/ cm²)", @y jF4h/((|EU
y2: 0, 1.3 * N_Tm $$QbcnOf$
frame E{_$C!.
hx 0=]RG
hy 5R6@A?vr
@w:6m&KL9
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 g_{hB5N](7
yscale = 2, R?bF
b|5t
color = gray, ^@V$'Bk
width = 3, ^}nz^+R
maxconnect = 1, k\,01Y^
"N_dop (right scale)" V$e\84<
'Y`.0T[&
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 5@_c<
color = red, >(>Fx\z}
maxconnect = 1, !限制图形区域高度,修正为100%的高度 gHCk;dmq81
width = 3, TK"!z(p
"pump" .CXe*Vbd
Zr!he$8(2
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 GMLDmTV
color = blue, F^Q[P4>m\
maxconnect = 1, X2ShxD|
width = 3, }*0OLUFFJ
"signal" 49Sq)jd<
eO<:X|9T
;-Bi~XD
; ------------- -4:L[.2
diagram 5: !输出图表5 WR;"^<i9
c o}o$}
"TransitionCross-sections" VeT\I.K[
\gd.Bl
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) n|,kL!++.
3PS(1
x: 1450, 2050 ~c8Z9[QW
"wavelength(nm)", @x W/Rb7q4v
y: 0, 0.6 []e*Io&[
"cross-sections(1e-24 m²)", @y ep]tio_
frame q!l[^t|;
hx O/;$0`~hY
hy gwFHp.mE
d9/YW#tm
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 ;dq AmBG{8
color = red, x @EEMO1_"
width = 3, (C;oot,
"absorption" /mST<{(_G\
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 'IrwlS
color = blue, 4qw&G