切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1864阅读
    • 1回复

    [原创]RP Fiber Power仿真设计掺铥光纤激光器代码详解 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    863
    光币
    1891
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-28
    (* Ru Q\H0pr  
    Demo for program"RP Fiber Power": thulium-doped fiber laser, ,9q=2V[GP  
    pumped at 790 nm. Across-relaxation process allows for efficient f- pt8  
    population of theupper laser level. X6 ~y+ R  
    *)            !(*  *)注释语句 +(5H$O{h  
    V; 1r  
    diagram shown: 1,2,3,4,5  !指定输出图表 Wxg,y{(`  
    ; 1: "Powersvs. Position"     !分号是注释;光纤长度对功率的影响 2#LcL  
    ; 2:"Variation of the Pump Power"  !泵浦光功率变化对信号输出功率的影响 >\K<q>*  
    ; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 Qw^nN(K!>  
    ; 4:"Transverse Profiles"             !横向分布,横坐标为半径位置 |EaGKC(   
    ; 5:"Transition Cross-sections"    !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 -vI?b#  
    -gh',)R   
    include"Units.inc"         !读取“Units.inc”文件中内容 -[s*R%w  
    j-ugsV`2=*  
    include"Tm-silicate.inc"    !读取光谱数据 g# :|Mjgh  
    -Q;5A;sr2  
    ; Basic fiberparameters:    !定义基本光纤参数 ?L#C'Lz2+  
    L_f := 4 { fiberlength }      !光纤长度 6)P~3 C'  
    No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 TH/!z,( >  
    r_co := 6 um { coreradius }                !纤芯半径 MQ2gzKw>  
    N_Tm := 100e24 { Tmdoping concentration }  !纤芯Tm离子掺杂浓度 gh}FZs5 P  
    R! ?8F4G  
    ; Parameters of thechannels:                !定义光信道 ]Ole#Lz}Q  
    l_p := 790 nm {pump wavelength }                !泵浦光波长790nm :7IL|bA<  
    dir_p := forward {pump direction (forward or backward) }   !前向泵浦 C/e`O|G  
    P_pump_in := 5 {input pump power }                    !输入泵浦功率5W a=gTGG"9  
    w_p := 50 um {radius of pump cladding }               !包层泵浦相应的半径 50um BnqAv xX  
    I_p(r) := (r <=w_p) { pump intensity profile }          !泵浦光强度分布 C^Tc9  
    loss_p := 0 {parasitic losses of pump wave }           !泵浦光寄生损耗为0 *#Hi W)  
    iwCnW7:  
    l_s := 1940 nm {signal wavelength }                   !信号光波长1940nm H|T:_*5  
    w_s := 7 um                          !信号光的半径 skdSK7 n  
    I_s(r) := exp(-2 *(r / w_s)^2)            !信号光的高斯强度分布  2 Ua_7  
    loss_s := 0                            !信号光寄生损耗为0 *(L4rK\2  
    h|dVVCsN  
    R_oc := 0.70 {output coupler reflectivity (right side) }      !输出耦合反射率 g8mVjM\B;  
    jt tlzCDn  
    ; Function for defining themodel:   !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 {gl-tRC3  
    calc 8 +xLi4Pw  
      begin Jd&Qi)1  
        global allow all;                   !声明全局变量 }f^r@3Cb3  
        set_fiber(L_f, No_z_steps, '');        !光纤参数 OCo=h|qBp  
        add_ring(r_co, N_Tm); ~.AUy%$_g+  
        def_ionsystem();              !光谱数据函数 b`E0tZcJ  
        pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p);  !泵浦光信道 R+gh 2 6e  
        signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward);      !前向信号光信道 {LJwW*?  
        signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward);    !后向信号光信道 ):&A\nb  
        set_R(signal_fw, 1, R_oc);                                 !设置反射率函数 wsP3hE' ]  
        finish_fiber();                                   #@Zz Bf  
      end; uwQ{y>SG  
    gnNMuqt  
    ; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 6,uW{l8L  
    show "Outputpowers:"                                   !输出字符串Output powers: .Q?cNSWU  
    show"pump:     ", P_out(pump):d3:"W"  !输出字符串pump:和计算值(格式为3个有效数字,单位W) Mc~(S$FU$  
    show"signal:   ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) 9fvy)kX;s  
    (p68Qe%OuG  
    ,\[&%ph  
    ; ------------- 0Apdhwk~  
    diagram 1:                   !输出图表1 +f+x3OMX3  
    ~({aj|Y  
    "Powers vs.Position"          !图表名称 B!! xu  
    9Z6] ];8E  
    x: 0, L_f                      !命令x: 定义x坐标范围 Ne@Iv)g?  
    "position infiber (m)", @x      !x轴标签;@x 指示这些字符串沿坐标轴放置 +kH*BhSj  
    y: 0, 15                      !命令y: 定义y坐标范围 s41<e"  
    y2: 0, 100                    !命令y2: 定义第二个y坐标范围 DuZ51[3_L  
    frame          !frame改变坐标系的设置 ~!,'z  
    legpos 600, 500  !图行在图表窗口中的位置(相对于左上角而言) n O$(\ z)  
    hx             !平行于x方向网格 rgB`< [:b  
    hy              !平行于y方向网格 5IBe;o  
    +G? 4Wc1  
    f: P(pump, x),    !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 8G1Tpn  
      color = red,  !图形颜色 5ts8o&|   
      width = 3,   !width线条宽度 {]] nQ  
      "pump"       !相应的文本字符串标签 engql;  
    f: P(signal_fw, x),  !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 z++*,2F  
      color = blue,     %@G<B  
      width = 3, =:1f 0QF  
      "fw signal" Io5-[d  
    f: P(signal_bw, x),   !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 G|'DAj%  
      color = blue, y{s?]hLk  
      style = fdashed, !?Z}b.%W  
      width = 3, ^;<s"TJ(m)  
      "bw signal" NV9D;g$Y  
    5X|=qZ  
    f: 100 * n(x, 2),    !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 ^EjZ.#2l;  
      yscale = 2,            !第二个y轴的缩放比例 E%3WJ%A  
      color = magenta, HpSgGhL'J&  
      width = 3, ub{<m^|)  
      style = fdashed, c|:H/Y2n|  
      "n2 (%, right scale)" 7sC$hm]  
    [O&2!x  
    f: 100 * n(x, 3),          !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 zr\I1v]?1#  
      yscale = 2, 6*S|$lo9B  
      color = red, }v;@1[.B  
      width = 3, :upi2S_e  
      style = fdashed, v~?d7p {  
      "n3 (%, right scale)" vE>J@g2#  
    8QE0J$d5  
    d\3L.5]X  
    ; ------------- Aw;~b&.U{_  
    diagram 2:                    !输出图表2  ;B^G<  
    x!{5.#  
    "Variation ofthe Pump Power" -F/"W  
    37v!:xF!  
    x: 0, 10 d@b"tb}R  
    "pump inputpower (W)", @x FdKp@&O+1  
    y: 0, 10 & *B@qQ  
    y2: 0, 100 WT;=K0W6&  
    frame @7" xDgA  
    hx 7F>5<Gv:-  
    hy  KY!  
    legpos 150, 150 H(lq=M0~  
    q<@f3[A  
    f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 14]!LgH  
      step = 5, 9FP6Z[4  
      color = blue, ?#<Fxme  
      width = 3, e/r41  
      "signal output power (W, leftscale)",     !相应的文本字符串标签 KX"?3#U#Fm  
      finish set_P_in(pump, P_pump_in) @rRBo:0%  
    >O&(G0!N+}  
    f: (set_P_in(pump,x); 100 * n_av(2)),   !改变泵浦信号功率对能级2上激活粒子占比的影响 R."<he ;  
      yscale = 2, ivb&J4?y  
      step = 5, >e/;  
      color = magenta,  w+=>b  
      width = 3, !<h*\%;  
      "population of level 2 (%, rightscale)", WQ\'z?P  
      finish set_P_in(pump, P_pump_in) zQ(li9  
    d0Py[37V  
    f: (set_P_in(pump,x); 100 * n_av(3)),   !改变泵浦信号功率对能级3上激活粒子占比的影响 ?uc=(J+6  
      yscale = 2, /j0<x^m/  
      step = 5, MQ$[jOAqP  
      color = red, eZ[CqUJ&  
      width = 3, czi$&(N0w$  
      "population of level 3 (%, rightscale)", g:dw%h  
      finish set_P_in(pump, P_pump_in) 6^H64jM  
    Pg{Dy>&2`I  
    lf4-Ci*X  
    ; ------------- UAFl+d!  
    diagram 3:                         !输出图表3 4rO07)~l  
    SuB;Nb7r`  
    "Variation ofthe Fiber Length" V()s! w  
    S:v]3G  
    x: 0.1, 5 Lp 5LRw  
    "fiber length(m)", @x Pz,kSxe=  
    y: 0, 10 S)iv k x  
    "opticalpowers (W)", @y :UoZ`O~  
    frame 94=Wy-  
    hx <ap%+(!I  
    hy :@y!5[88!  
    awB1ryrOF  
    f: (set_L(x);P_out(signal_fw)),     !改变光纤长度对信号光输出功率的影响 [c +[t3dz  
      step = 20,             Y/2@PzA|  
      color = blue, :7K cD\fCj  
      width = 3, X~*1  
      "signal output" XpJT/&4  
    O]DZb+O"  
    ;f: (set_L(x);P_out(pump)),                     !改变光纤长度对泵浦信号输出功率的影响 ZN~:^,PO/  
       step = 20, color = red, width = 3,"residual pump" %{!*)V\  
    x~j>Lvw L  
    ! set_L(L_f) {restore the original fiber length } %E}f7GT 4  
    8)s}>:}  
    0UB)FK ,9  
    ; ------------- 0j %s H  
    diagram 4:                                  !输出图表4 ;+'x_'a  
    gtHWd;1&f  
    "TransverseProfiles" wS-D"\4/  
    ]R32dI8N  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) z|^:1ov,  
     qa)X\0  
    x: 0, 1.4 * r_co /um a6wPkf7-H  
    "radialposition (µm)", @x (2RZc].M~  
    y: 0, 1.2 * I_max *cm^2 +)k%jIi!  
    "intensity (W/ cm&sup2;)", @y [G>8N5@*  
    y2: 0, 1.3 * N_Tm W&#Ps6)8  
    frame FloCR=^H  
    hx 3jZPv;9OC  
    hy -`sK?*[{J  
    Eyv%"+>  
    f: N_dop(1, x * um,0),      !掺杂浓度的径向分布 @W[`^jfQ  
      yscale = 2, :*u .=^  
      color = gray, M>nplHq   
      width = 3, rJH u~/_Dq  
      maxconnect = 1, L'B= =#  
      "N_dop (right scale)" BF{v0Z0/}k  
    HR]*75}e  
    f: I(pump, -1, x *um, 0) * cm^2,    !泵浦光沿光纤径向的强度分布 ~,3+]ts='\  
      color = red, |re)]%A?Fu  
      maxconnect = 1,           !限制图形区域高度,修正为100%的高度 7TD%vhbiwi  
      width = 3, Y> ElE-  
      "pump" '=C)Hj[D  
    8;K'77h  
    f: I(signal_fw, -1,x * um, 0) * cm^2,  !信号光沿光纤径向的强度分布 bHZXMUewC  
      color = blue, O W`yv  
      maxconnect = 1, *WdnP.'Y  
      width = 3, {_T?0L  
      "signal" @px2/x  
    +AkAMZ"Mg  
    @'>h P  
    ; ------------- k|Mj|pqA  
    diagram 5:                                  !输出图表5 l&#&}3M  
    *gF8"0s  
    "TransitionCross-sections" 3pg_`  
    'qel3Fs"  
    I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) '*gY45yT`  
    uflRW+-2  
    x: 1450, 2050 ;%wQnhg  
    "wavelength(nm)", @x +PT/pybA  
    y: 0, 0.6 4+46z|  
    "cross-sections(1e-24 m&sup2;)", @y d h5%  
    frame K;j}qJvsb  
    hx ukNB#2 "  
    hy 1@" L  
    T6_LiB @  
    f: s12_Tm(x * nm) /1e-24,      !Tm3+吸收截面与波长的关系 r0jhIE#  
      color = red, Tk1U  
      width = 3, y/{&mo1\  
      "absorption" K6 D3  
    f: s21_Tm(x * nm) /1e-24,  !Tm3+发射截面与波长的关系 fP 4  
      color = blue, $;~  
      width = 3, 4FLL*LCNX  
      "emission" 'KL!)}B$h  
    C.su<B?  
     
    分享到
    离线lileisgsz
    发帖
    14
    光币
    69
    光券
    0
    只看该作者 1楼 发表于: 2021-09-28
    感谢,视频上有点看不清楚