(* o(C({]UO/
Demo for program"RP Fiber Power": thulium-doped fiber laser, xgsD<3
pumped at 790 nm. Across-relaxation process allows for efficient B2WPjhzD
population of theupper laser level. uSM4:!8
*) !(* *)注释语句 >UWLT;N/W
peR=J7
diagram shown: 1,2,3,4,5 !指定输出图表 6~;fj+S
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 L'"20=sf
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 o9q%=/@,
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 qJ#?=ITE
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 Q3wD6!'&m
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 +7N6]pK|"
eV1O#FLbi
include"Units.inc" !读取“Units.inc”文件中内容 Qj[4gN?}=
jr"yIC_
include"Tm-silicate.inc" !读取光谱数据 PIB|&I|p
m5{Y
; Basic fiberparameters: !定义基本光纤参数 3=T<c?[
L_f := 4 { fiberlength } !光纤长度 )8st
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 \C/`?"4w
r_co := 6 um { coreradius } !纤芯半径 e%(zjCA
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 A}OV>y M
nU)}!` E
; Parameters of thechannels: !定义光信道 `lN1u'(:
l_p := 790 nm {pump wavelength } !泵浦光波长790nm >`'#4!}G5j
dir_p := forward {pump direction (forward or backward) } !前向泵浦 iDp]lu
P_pump_in := 5 {input pump power } !输入泵浦功率5W X[h=UlF
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um :}UWy?F
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 5(u7b
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 A{y3yH`#h
^dYFFKQ
l_s := 1940 nm {signal wavelength } !信号光波长1940nm F@"Xd9q?
w_s := 7 um !信号光的半径 TjgX' j
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 JNuo+Pq
loss_s := 0 !信号光寄生损耗为0 +g7Iu! cA
{~b]6}O
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 q+WO nTS
FspI[gUN,
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 )amdRc
calc 0pBlmPafY
begin c c
,]
global allow all; !声明全局变量 i3rvDch
set_fiber(L_f, No_z_steps, ''); !光纤参数 0*B_$E06
add_ring(r_co, N_Tm); b0riiF
def_ionsystem(); !光谱数据函数 kxThtjgv
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 qI:}3b;T
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 #9#N+
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 ,;GWn
set_R(signal_fw, 1, R_oc); !设置反射率函数 isQ{Xt~K
finish_fiber(); ^^3
>R`
end; P,xayy
HPVT$EJ
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 `(W
V pP?
show "Outputpowers:" !输出字符串Output powers: ?n? Ep [D
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) 8^c|9ow
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) xyBe*,u
fHlmy[V+M
3M+hjc.
; ------------- 3/}=x<ui
diagram 1: !输出图表1 XHlPjw
9i,QCA
"Powers vs.Position" !图表名称 ]1abz:
r,[vXxMy(;
x: 0, L_f !命令x: 定义x坐标范围 <ynmA
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 JAmv 7GL'6
y: 0, 15 !命令y: 定义y坐标范围 k{y@&QNj
y2: 0, 100 !命令y2: 定义第二个y坐标范围 + 5sTGNG
frame !frame改变坐标系的设置 Z&JW}''n|F
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) Zhz.8W
hx !平行于x方向网格 Zo-s_6uC
hy !平行于y方向网格 YUM%3
r}D`15IHJ
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 ]c[80F-
color = red, !图形颜色 S"5</*
width = 3, !width线条宽度 <y-KWWE
"pump" !相应的文本字符串标签 G80d!*7
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 3$(1LN
color = blue, 'S@h._q
width = 3, M6pGf_qt
"fw signal" WvUe44&^$
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 *1Nz
VV
color = blue, }"Hf/{E$_"
style = fdashed, 1UyI.U]
width = 3, A5y?|q>5
"bw signal" #*}4=
'WxcA)z0cQ
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 {j ${i
yscale = 2, !第二个y轴的缩放比例 wKXKc\r
color = magenta, ran
Q_\
width = 3, <CzH'!FJN
style = fdashed, f{^C+t{r
"n2 (%, right scale)" ?J%$;"q
sW3-JA]
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 MFiX8zwhx+
yscale = 2, ;IXDZ#;
color = red, N/qr}-
3z
width = 3, `[VoW2CLH+
style = fdashed, y5BNHweaRb
"n3 (%, right scale)" D0lgKQ
6$9n_AS
qyp"q{k0
; ------------- UT==x<
diagram 2: !输出图表2 0Evmq3,9
FL/@e$AK
"Variation ofthe Pump Power" zRL[.O9
cqRIi~`
x: 0, 10 2}b1PMpZG
"pump inputpower (W)", @x J0C,KU(
y: 0, 10 D(@#Gd\Z@
y2: 0, 100 'fy1'^VPAV
frame #- f7hg*
hx xzz[!yJjG
hy ]y2(ZTNTs
legpos 150, 150 ;ZFn~!V
RUlM""@b
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 |A8xy#
step = 5, _F;(#D
color = blue, 2|qE|3&{'
width = 3, Y3mATw 3Wh
"signal output power (W, leftscale)", !相应的文本字符串标签 z,X
^;
finish set_P_in(pump, P_pump_in) 5ok3q@1_]{
5d*k[fZ
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 a4 O
yscale = 2, vz#rbBY*;
step = 5, h<$V ry}
color = magenta, UpN:F
width = 3, ^7.864
"population of level 2 (%, rightscale)", %a{cJ6P
finish set_P_in(pump, P_pump_in) : \:jIP
t(\d;ybyx
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 4u"V52
yscale = 2, c03A_2%
step = 5, [8^jwnAYS
color = red, Y"K7$+5#\
width = 3, iRPt0?$
"population of level 3 (%, rightscale)", L/"u,~[
finish set_P_in(pump, P_pump_in) n^UrHHOL
D""d-oI[
n-#?6`>a
; ------------- ;B:'8$j$
diagram 3: !输出图表3 BBnj}XP*4
ZgcA[P
"Variation ofthe Fiber Length" Yih^ZTf]O?
V+nqQ~pJ&
x: 0.1, 5 R1!{,*Gy
"fiber length(m)", @x yCf*ts1
y: 0, 10 Om\?<aul
"opticalpowers (W)", @y <ij;^ygYD
frame i
jg'X#E
hx #]_S{sO
hy P2_ JS]>
V/.Y]dN5
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 fM]zD/ g
step = 20, %+:%%r=Q
color = blue, WID4 {>G2
width = 3, Gm}ecW
"signal output" smoz5~
I%h9V([
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 |p4F^!9
step = 20, color = red, width = 3,"residual pump" ((SN We
+w?RW^:Q=
! set_L(L_f) {restore the original fiber length } &y;('w
R Q X
^*C8BzcH
; ------------- xx)egy_
diagram 4: !输出图表4 w-Y-;*S
?i>.<IPOq
"TransverseProfiles" 63#Sf$p{v
i5T&1W i
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) 9*h?g+\
z:u e]7(.
x: 0, 1.4 * r_co /um DBWe>Ef(
"radialposition (µm)", @x frWw-<HoI
y: 0, 1.2 * I_max *cm^2 <T>C}DGw
"intensity (W/ cm²)", @y )(oRJu)y
y2: 0, 1.3 * N_Tm s(w6Ldi
frame ytf.$P
hx f]tc$`vb
hy <S:SIaf0
QeuIAs* _
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 ArDkJ`DE
yscale = 2, @/@#,+
color = gray, y
Rr,+>W
width = 3, 4nmc(CHQ:
maxconnect = 1, [8EzyB>fH
"N_dop (right scale)" t7pe)i,)
Ms;:+JI
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 `PXSQf
color = red, @" UoQ_h%
maxconnect = 1, !限制图形区域高度,修正为100%的高度 )@Fuw*
width = 3, AifnC4
"pump" y*0bHzJ
^31X-}tv
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 (, Il>cR4
color = blue, ma)Y@Uw M
maxconnect = 1, ]mYT!(}
width = 3, ujGvrYj
"signal" L=nyloz,0
MDGD*Qn~
&k*sxW'
; ------------- DF|(CQs9
diagram 5: !输出图表5 8@^=k.5IK
Oz<{B]pEul
"TransitionCross-sections" P!q!+g
FGo{6'K(:
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) 'gHa3:US
4loG$l+a1
x: 1450, 2050
3=@94i
"wavelength(nm)", @x _]E H~;
y: 0, 0.6 ^"WrE(3
"cross-sections(1e-24 m²)", @y G[z!;Zuf
frame Sz|;wsF{
hx [LDsn]{
hy ~UA:_7#\M
sDA&U9;
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 MO|aN,
color = red, lArYlR}
width = 3, T{-<G13
"absorption" Goa0OC,
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 tfW*(oU
color = blue, OPHf9T3H
width = 3, q^NI
"emission" {,61V;Bpm
'au7rX(