(* H=b54.J8&
Demo for program"RP Fiber Power": thulium-doped fiber laser, e%.Xya#\
pumped at 790 nm. Across-relaxation process allows for efficient \l)<NZ\
population of theupper laser level. #'m&<g,
*) !(* *)注释语句 p!5=1$
5=]q+&y\H
diagram shown: 1,2,3,4,5 !指定输出图表 lYEMrr!KQw
; 1: "Powersvs. Position" !分号是注释;光纤长度对功率的影响 |L|)r)t
; 2:"Variation of the Pump Power" !泵浦光功率变化对信号输出功率的影响 baJ(Iy$XT
; 3:"Variation of the Fiber Length"!信号输出功率vs 光纤长度的变化,仿真最佳光纤长度 r,F~Vwa}
; 4:"Transverse Profiles" !横向分布,横坐标为半径位置 w;@DcX$]
; 5:"Transition Cross-sections" !不同波长的跃迁横截面,横坐标波长,纵坐标为横截面 p4mlS
wc@X:${
include"Units.inc" !读取“Units.inc”文件中内容 6~g`B<(?
P>q"P1&{
include"Tm-silicate.inc" !读取光谱数据 ?z,^QjQ}
@n<y[WA
; Basic fiberparameters: !定义基本光纤参数 =D88jkQe"
L_f := 4 { fiberlength } !光纤长度 fNjxdG{a
No_z_steps := 50 {no steps along the fiber } !光纤步长,大括号{ }是注释,相当于备注 yO}RkRA
r_co := 6 um { coreradius } !纤芯半径 zzmZ`Ya
N_Tm := 100e24 { Tmdoping concentration } !纤芯Tm离子掺杂浓度 'wh2787
Z|zyO-
; Parameters of thechannels: !定义光信道 oS3}xT "
U
l_p := 790 nm {pump wavelength } !泵浦光波长790nm V^Gz7`^
dir_p := forward {pump direction (forward or backward) } !前向泵浦 `@.
P_pump_in := 5 {input pump power } !输入泵浦功率5W ':al4m"
w_p := 50 um {radius of pump cladding } !包层泵浦相应的半径 50um qbu>YTj
I_p(r) := (r <=w_p) { pump intensity profile } !泵浦光强度分布 Z#H] yG
loss_p := 0 {parasitic losses of pump wave } !泵浦光寄生损耗为0 MLD-uI10{
pbg[\UJyd
l_s := 1940 nm {signal wavelength } !信号光波长1940nm t\YN\`XD
w_s := 7 um !信号光的半径 9nW/pv
I_s(r) := exp(-2 *(r / w_s)^2) !信号光的高斯强度分布 !=%E&e]
loss_s := 0 !信号光寄生损耗为0 UG)J4ZX
#H]b Xr
R_oc := 0.70 {output coupler reflectivity (right side) } !输出耦合反射率 dV+%x"[:
1O" Mo
; Function for defining themodel: !定义模型函数,一定要有calc命令,否则函数只会被定义,但不会被执行 ] Tc!=SV
calc B<)c{kj
begin r0
%WGMk2
global allow all; !声明全局变量 43_;Z| T
set_fiber(L_f, No_z_steps, ''); !光纤参数 QEd>T"@g
add_ring(r_co, N_Tm); k&Z3v.
def_ionsystem(); !光谱数据函数 wk
@-O}W
pump := addinputchannel(P_pump_in, l_p,'I_p', loss_p, dir_p); !泵浦光信道 _3_d;j#G U
signal_fw := addinputchannel(0, l_s, 'I_s',loss_s, forward); !前向信号光信道 BLc&q)
signal_bw := addinputchannel(0, l_s, 'I_s',loss_s, backward); !后向信号光信道 MD ETAd
set_R(signal_fw, 1, R_oc); !设置反射率函数 c*0pF=3
finish_fiber(); SCbN(OBN!
end; 8NY$Iw
;Y:_}kN8_
; Display someoutputs in the Output window (on the right side): !在Output aera区域显示输出 Co e
q<
show "Outputpowers:" !输出字符串Output powers: %3v:c|r
show"pump: ", P_out(pump):d3:"W" !输出字符串pump:和计算值(格式为3个有效数字,单位W) $|0_[~0-n
show"signal: ",P_out(signal_fw):d3:"W" !输出字符串signal:和计算值(格式为3个有效数字,单位W) G01 J1Ll}
Vp3r
OC)~psQK
; ------------- OGmOk>_
diagram 1: !输出图表1 <hG=0Zc r
UdBP2 lGd
"Powers vs.Position" !图表名称 7D5;lM[_
?sF<L/P0
F
x: 0, L_f !命令x: 定义x坐标范围 45cMG~]p
"position infiber (m)", @x !x轴标签;@x 指示这些字符串沿坐标轴放置 hD OEJ
y: 0, 15 !命令y: 定义y坐标范围 k+*DPo@)
y2: 0, 100 !命令y2: 定义第二个y坐标范围 FmU>q)
frame !frame改变坐标系的设置 e_Cns&
legpos 600, 500 !图行在图表窗口中的位置(相对于左上角而言) Dx<">4
hx !平行于x方向网格 VlGg?
hy !平行于y方向网格 x,kZ>^]&b
{+Rf?'JZH
f: P(pump, x), !命令f: 定义函数图;P(pump, x)函数是计算x位置处的泵浦光功率 M>Yge~3
color = red, !图形颜色 :mwNkT2et
width = 3, !width线条宽度 lTNfTO^
"pump" !相应的文本字符串标签 `1I@tz|
f: P(signal_fw, x), !P(signal_fw ,x) 函数是计算x位置处的前向信号光功率 yc|j]?
color = blue, 7"L`|O?8)
width = 3, Z4eu'.r-y~
"fw signal" PFP/Pe Ng;
f: P(signal_bw, x), !P(signal_bw ,x) 函数是计算x位置处的后向信号光功率 Ift @/A
color = blue, Q4YIKNN|7
style = fdashed, g[P.lpi{U
width = 3, WM8
Ce0E
"bw signal" vfW
Vq)6+n8o
f: 100 * n(x, 2), !n(x ,2) 函数是计算x位置处激活粒子数在能级2上的占比 =M]f7lJ
yscale = 2, !第二个y轴的缩放比例 WdXi
color = magenta, xRZ9.Agv_
width = 3, y@&Cn
style = fdashed, A0x"Etbw)
"n2 (%, right scale)" ,TuDG*YA
~b}@*fq
f: 100 * n(x, 3), !n(x ,3) 函数是计算x位置处激活粒子数在能级3上的占比 k0;N D
yscale = 2, eQBR*@x
color = red, {fsU(Jj\
width = 3, MMs#Y1dH
style = fdashed, yGN@Hd:9
"n3 (%, right scale)" j(j o8
2FHWOy
/N@
5<-_"/_
; ------------- +J`EBoIo
diagram 2: !输出图表2 UL0%oJ#
Mx,QgYSu
"Variation ofthe Pump Power" 0>#or$:6E
0Xmp)_vba
x: 0, 10 'n>,+,&
"pump inputpower (W)", @x u(ep$>[F#_
y: 0, 10 _*b1]<
y2: 0, 100 JX_hLy@`
frame P19nF[A
hx p"9a`/
hy 1i;-mYGaMn
legpos 150, 150 <I.anIB:U
V=";vRS8
f: (set_P_in(pump, x);P_out(signal_fw)), !set_P_in(pump,x)改变泵浦信道功率;P_out(signal_fw)输出前向信号光 RhM]OJd'
step = 5, `I$'Lp#5
color = blue, )+]8T6~
N
width = 3, hQ!sl O
"signal output power (W, leftscale)", !相应的文本字符串标签 \RcB,?OK
finish set_P_in(pump, P_pump_in) }wmn v
K/;FP'.
f: (set_P_in(pump,x); 100 * n_av(2)), !改变泵浦信号功率对能级2上激活粒子占比的影响 ,fS}cpV
yscale = 2, iV X 12
step = 5, r3X|*/
color = magenta, FYIzMp.4
width = 3, vJ*IUy
"population of level 2 (%, rightscale)", Z5aU7
finish set_P_in(pump, P_pump_in) -uZ bVd
(P;z*
"q
f: (set_P_in(pump,x); 100 * n_av(3)), !改变泵浦信号功率对能级3上激活粒子占比的影响 G{*m] 0Q
yscale = 2, +hdD*}qauC
step = 5, *hI
color = red, j{,3!
width = 3, sW)C6 #
"population of level 3 (%, rightscale)", ~.qzQ_O/
finish set_P_in(pump, P_pump_in) Lq@pJ)a
DXPiC[g]
uWw4l"RK`
; ------------- ajIgL<x
diagram 3: !输出图表3 VO ^[7Y
j?Ki<MD1
"Variation ofthe Fiber Length" ]PVPt,c
]=v_u9;
x: 0.1, 5 sY__ak!>
"fiber length(m)", @x uLV@D r
y: 0, 10 aVv$k
"opticalpowers (W)", @y \-kX-Tq
frame jRN*W2]V
hx srfFJX7*
hy '| Enc"U
8U!;
f: (set_L(x);P_out(signal_fw)), !改变光纤长度对信号光输出功率的影响 |He,v/r
step = 20, 7
}`c:u~j
color = blue, |B&KT
width = 3, V6l*!R
"signal output" iTgGf
ZbTU1Y/'
;f: (set_L(x);P_out(pump)), !改变光纤长度对泵浦信号输出功率的影响 a~YFJAkg9
step = 20, color = red, width = 3,"residual pump" O/\ L0\T
fII;t-(x
! set_L(L_f) {restore the original fiber length } d=%:rLm$
Y(IT#x?p
m7X&"0X
; ------------- $ wGDk
diagram 4: !输出图表4 Xv3u}nPMq
?Dro)fH1
"TransverseProfiles" ,2mnjq/*Z
$,ev <4I&
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) }B2H)dG^K
PbOLN$hP
x: 0, 1.4 * r_co /um v(^{P
"radialposition (µm)", @x QjETu
y: 0, 1.2 * I_max *cm^2 _[8xq:G
"intensity (W/ cm²)", @y 03?TT,y$
y2: 0, 1.3 * N_Tm Q\G8R^9j p
frame bF %#KSVw
hx }OO(uC2
hy
&T?>Kx
]T\K-;i
f: N_dop(1, x * um,0), !掺杂浓度的径向分布 \a+F/I$hwa
yscale = 2, Saa#Mj`M
color = gray, V^aX^ ;
width = 3, bHcb+TR3
maxconnect = 1, <tK6+isc
"N_dop (right scale)" (gBP`*2
r{qM!(T
f: I(pump, -1, x *um, 0) * cm^2, !泵浦光沿光纤径向的强度分布 E",s]
color = red, 9
O| "Ws>{
maxconnect = 1, !限制图形区域高度,修正为100%的高度 )#[?pYd
width = 3, \FN"0P(G
"pump" m`C(y$8fU
jLC,<V*
f: I(signal_fw, -1,x * um, 0) * cm^2, !信号光沿光纤径向的强度分布 FH}n]T
color = blue, b)@%gS\F
maxconnect = 1, KquHc-fzqr
width = 3, kXS_:f;M
"signal" jEfrxlj
pc&/'zb
aNb=gjLpt
; ------------- Ixm<wKwW#
diagram 5: !输出图表5 LNml["
(8o~ XL
"TransitionCross-sections" CYrVP%xRA
k: PO"<-U
I_max :=maxr(I(pump, -1, 0, 0), I(signal_fw, -1, 0, 0)) !o~% F5|t
Acr\2!))
x: 1450, 2050 9,Zg'4",d
"wavelength(nm)", @x PCnE-$QH
y: 0, 0.6 W"4E0!r
"cross-sections(1e-24 m²)", @y d.tjLeY
frame $7gzu4f
hx pI7\]e
hy )c5M;/s
YIb5jK`
f: s12_Tm(x * nm) /1e-24, !Tm3+吸收截面与波长的关系 UK+;/Mtg
color = red, Y2vzK;
width = 3, &H,5f#
"absorption" /Ik_U?$*
f: s21_Tm(x * nm) /1e-24, !Tm3+发射截面与波长的关系 s<'^
@Y
color = blue, G_zJuE$V
width = 3, kCxmC<34
"emission" L
q8}z-?
4q[C'
J