利用菲涅尔公式计算光波在两种介质表面折反射率及折反射能流密度 .ECHx Dp
zWIeHIt
1、光疏射向光密 Z+idLbIs
#Lka+l;L7
clear .>]N+:O
xl]
;*&
close all <NB41/
Oif,|:
n1=1,n2=1.45; I/p]DT
zvf3b!}
theta=0:0.1:90; N z~"vi(t
&" h]y?Q
a=theta*pi/180; U9ZbVjqv@
@ {}rG8
rp=(n2*cos(a)-n1*sqrt(1-(n1/n2*sin(a)).^2))./(n2*cos(a)+n1*sqrt(1-(n1/n2*sin(a)).^2)); P5URvEnz:
kRot7-7I|
rs=(n1*cos(a)-n2*sqrt(1-(n1/n2*sin(a)).^2))./(n1*cos(a)+n2*sqrt(1-(n1/n2*sin(a)).^2)); R^8B3-aA`
7BFN|S_l
tp=2*n1*cos(a)./(n2*cos(a)+n1*sqrt(1-(n1/n2*sin(a)).^2)); WE.Tuo5L
I@./${o
ts=2*n1*cos(a)./(n1*cos(a)+n2*sqrt(1-(n1/n2*sin(a)).^2)); R&So4},B
DO^y;y>
figure(1) Q4K+*Fi}
|:2c$zq
subplot(1,2,1); jA`a/vWu
Hed$ytMaGz
plot(theta,rp,'-',theta,rs,'--',theta,abs(rp),':',theta,abs(rs),'-.','LineWidth',2) ?`P2'i<b
uO'/|[`8
legend('r_p','r_s','|r_p|','|r_s|') \P?A7vuhLs
A1_ J sS
xlabel('\theta_i') Y@} FL;3
-p8e
ylabel('Amplitude') 0IzZKRw
l$XA5#k
title(['n_1=',num2str(n1),',n_2=',num2str(n2)]) -g~~] K%
\4s;!R!
axis([0 90 -1 1]) u!1/B4!'O
/`+7_=-
grid on pFIecca w
M#M?1(O/NE
subplot(1,2,2); \A(5;ZnuD
pP\h6b+B
plot(theta,tp,'-',theta,ts,'--',theta,abs(tp),':',theta,abs(ts),'-.','LineWidth',2) M+ aEma
v2J0u:#,
legend('t_p','t_s','|t_p|','|t_s|') RvW.@#EH0
4v qNule
xlabel('\theta_i') {L9yhYw
4}-#mBV]/
ylabel('Amplitude') AMTslo
sv=H~wce
title(['n_1=',num2str(n1),',n_2=',num2str(n2)]) o#e7,O
r~oSP^e'
axis([0 90 0 1]) cyMs(21
;BI)n]L
grid on xNgt[fLpS
e&3#2_
Rp=abs(rp).^2; :]c=pH
x/ I;nMY
Rs=abs(rs).^2; Yu3_=:
<C
`d*b]2
Rn=(Rp+Rs)/2; e2Jp'93o'
0QoLS|voA/
Tp=1-Rp; h7?.2Q&S
QymD-A"P
Ts=1-Rs; 'v`_Ii|-
J@`
8(\(
Tn=(Tp+Ts)/2; ^<;w+%[MT
[TCRB`nTQF
figure(2) EUZq$@uWL
-N z}DW>
subplot(1,2,1); H[BYE
0N VI+Z$
plot(theta,Rp,'-',theta,Rs,'--',theta,Rn,':','LineWidth',2) U**)H_S/~
KjYDFrR4
legend('R_p','R_s','R_n') uF<S
(C\r&N