利用菲涅尔公式计算光波在两种介质表面折反射率及折反射能流密度 6'*Uo:]
68GGS`&
1、光疏射向光密 ~S_IU">E
`rdfROKv
clear 898wZ{ 9
=ObtD"
close all JTB~nd>
4Hpu EV8Q
n1=1,n2=1.45; >h( rd1
:E&T}RN
theta=0:0.1:90; yz$1qEII`q
U9[A(
a=theta*pi/180; yGG\[I;7
iEgM~
rp=(n2*cos(a)-n1*sqrt(1-(n1/n2*sin(a)).^2))./(n2*cos(a)+n1*sqrt(1-(n1/n2*sin(a)).^2)); R}6la.mQ
xPJJ
!mY
rs=(n1*cos(a)-n2*sqrt(1-(n1/n2*sin(a)).^2))./(n1*cos(a)+n2*sqrt(1-(n1/n2*sin(a)).^2)); $H@)hY8wA
H_=[~mJ
tp=2*n1*cos(a)./(n2*cos(a)+n1*sqrt(1-(n1/n2*sin(a)).^2)); <07W&`Dw
=yhfL2`aw
ts=2*n1*cos(a)./(n1*cos(a)+n2*sqrt(1-(n1/n2*sin(a)).^2)); V>uW|6
NE%yv,B
figure(1) &trh\\I"
WCl;#=
subplot(1,2,1); ts\>_/
5{/Pn%5
plot(theta,rp,'-',theta,rs,'--',theta,abs(rp),':',theta,abs(rs),'-.','LineWidth',2) PZg]zz=V4
PyxN _agf
legend('r_p','r_s','|r_p|','|r_s|') d#:J\2V"R
p}|wO&4h
xlabel('\theta_i') dB/I2uGl>
@%G"i:HZ&
ylabel('Amplitude') sH,)e'0
lbU+a$
title(['n_1=',num2str(n1),',n_2=',num2str(n2)]) )bU")
m9w
;a
axis([0 90 -1 1]) SA n=9MG
|A/_Qe|s2
grid on ZjW| qb
!,!tNs1 K
subplot(1,2,2); WM
)g(i~(
;U3Vows
plot(theta,tp,'-',theta,ts,'--',theta,abs(tp),':',theta,abs(ts),'-.','LineWidth',2) \0T*msYQ
'p+QFT>Ca
legend('t_p','t_s','|t_p|','|t_s|') Pc4cSw#5
)mVYqlU"
xlabel('\theta_i') -?` l<y(
U9sub6w 6
ylabel('Amplitude') s:F+bG}|
Q09~vFBg
title(['n_1=',num2str(n1),',n_2=',num2str(n2)]) [\n.[4gq"
|F{E4mg(o
axis([0 90 0 1]) cD@lorj
g}r5ohqC#
grid on .V:<