基于钻石的传感器提高核磁共振的分辨率
三个独立的物理学研究小组分别开发出了一种新的方法可提高量子磁传感器。该技术已被用于实现核磁共振(NMR)光谱的巨大改进过程中。 量子传感是用来测量在多个领域的物理频率,但对于一个量子传感器用来衡量任何东西时,它必须与环境相互作用。这就会很快降低它的量子特性,这也限制了测量的精度。 然而,现在,三个研究小组已经独立使用经典的时钟同步实现了多个量子测量,使频率测量精度高达1亿倍,这比以前的任何一个量子传感器都要高。另外一个研究小组接着证明了前所未有的精度,即在微米级的核磁共振光谱。 三组研究人员分别来自瑞士联邦理工学院 、德国的乌尔姆大学和美国的哈佛大学,使用钻石中心的带负电荷的氮空位(NV)实现。当碳晶格中的两个相邻的碳原子被氮原子和空位所取代时,就会发生这些特殊的现象。氮空位中心的自旋态可以用光来控制和测量,并且对磁场也非常敏感。 而传统的线圈检测器用于核磁共振光谱和磁共振成像(MRI)需要大量的样品,原子尺度氮空位中心可以放在分子旁边实现“纳米核磁共振”实验,这将会是越来越普遍的。2016年,哈佛大学和乌尔姆大学的研究人员通过在表面植入了氮空位的钻石可用于检测蛋白质分子,甚至可以通过由氮空位中心检测场频率的变化情况推断的一些结构特征。 空间光谱 要确定使用纳米核磁共振的大分子的结构,需要更好的光谱分辨率,从而才能实现核心测量所要求的精确度,同时实现化学环境的检测。“你可以对信号取样范围的时间长度,可以确定其光谱分辨率的长度,”Kristian Cujia解释道,他是瑞士联邦理工学院团队的成员。不幸的是,一个氮空位中心的相干量子态在于环境相互作用后仅仅在几微秒内就会崩溃。 这样短的测量时间显然具有很大的不确定性。更糟糕的是,为了提高钻石的空间分辨率,研究人员往往将氮空位中心植入更密集或更接近表面。这使得氮空位中心接近样品,使它们对于磁场更加敏感,但这种结构也使他们变得不太孤立,导致退相干过程发生地更快,进一步降低光谱分辨率。 |