|
4"@GNk~e 使用FRED的图形用户界面和它的内置脚本语言,我们可以轻松地实现热辐射和成像。尽管强力的光线追迹同样是可能的,FRED使用了应用标准光学工程算法的高效运算器来实现热成像和辐射计算。使用源自辐射度量学的技术,用FRED追迹必要数量光线的可能需要的时间,我们可以高效并精确地完成热成像、冷反射、杂散光、热照明均匀性和热自发辐射的计算。 R#n%cXc| !mRx$
%ul 1. 热辐射和热成像是什么? hH->%* R8-^RvG 热成像定义为产生一个场景的可视化二维图像的过程,该图像依赖于从场景到达成像仪器孔径的热辐射或红外辐射的差异。热成像系统通常会减去背景来增强在红外场景中变化的对比度。当背景不均匀时,由于冷反射的存在,可能产生杂散信号。对于国防和安全问题尤为重要,在其中我们可以发现具有不同热温度或辐射率的物体,此时可以从图像场景的剩余部分区分出它们。对于这个问题的主要应用是:探测、分类和追迹隐藏在个人身上、包裹中、车辆上或船运集装箱中的武器、人员、车辆、物品和材料。图1是一个非常好的案例,当在FRED中进行仿真时,一个日常用品:茶壶,通过一个具有热探测仪的摄像头成像。 6 CC &Z> (>=7ng^ 热辐射是从一个光学仪器周围的环境或结构中发出的能量,它会引起杂散光问题。冷反射是一个热辐射问题,由于反射到探测器上的辐射,在一个红外系统中的热辐射表现为在一个显示图像中的黑色圆形区域。 _1*7Z=| Olfn 通常,这些系统通过探测叠加在大的背景上的小信号工作。在室温下,黑体辐射曲线的峰值大致在10μm处。因此世界在这个波长处“发光”,发光的微小变化表明了温度或辐射率的变化。特别的,当一个冷却的探测器图像反映了自身,那么就会产生一个局部背景的缺失。这通常表现为在图像中央的黑点。有人可能称之为“杂散黑”,而不是杂散光。 2 $ !D* < Z?NEO>h7 在测量绝对辐射而不是相对信号的红外辐射仪中,任何背景辐射是不可接受的。在这样一个仪器中,冷却整个仪器到低温度来消除由于自辐射导致的杂散光是必须的。 0@5E|< |