Speckle Phenomena in Optics: Theory and Applications (x2I*<7P
vZ\~+qV,A
Joseph W. Goodman Q7gBxp
6=3}gd5
Contents U~azI(1"W
1 Origins and Manifestations of Speckle 1 LNmsv U
1.1 General Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 B5hk]=Ud
1.2 Intuitive Explanation of the Cause of Speckle . . . . . . . . . . . . . . . . . . . . . . . . . 2 1C6H\;
1.3 Some Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 CTv-$7#
2 Random Phasor Sums 7 d}GO(
2.1 First and Second Moments of the Real and Imaginary Parts of the Resultant Phasor . . . . . 8 @@9#odO
2.2 Random Walk with a Large Number of Independent Steps . . . . . . . . . . . . . . . . . . 9 2VyLt=mdh
2.3 Random Phasor Sum Plus a Known Phasor . . . . . . . . . . . . . . . . . . . . . . . . . . 12 s(q\!\FS
2.4 Sums of Random Phasor Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 ]7}2"?J4v
2.5 Random Phasor Sums with a Finite Number of Equal-Length Components . . . . . . . . . 16 1tHTjEG4^3
2.6 Random Phasor Sums with a Nonuniform Distribution of Phases . . . . . . . . . . . . . . . 17 D:sQHJ.y
3 First-Order Statistical Properties of Optical Speckle 23 gmB?L0UV
3.1 Definition of Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
S=!3t`
3.2 First-Order Statistics of the Intensity and Phase . . . . . . . . . . . . . . . . . . . . . . . . 24 <\|f;7/
3.2.1 Large Number of Random Phasors . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 e*;-vS9H
3.2.2 Constant Phasor plus a Random Phasor Sum . . . . . . . . . . . . . . . . . . . . . 27 r4D*$H-rR
3.2.3 Finite Number of Equal-Length Phasors . . . . . . . . . . . . . . . . . . . . . . . . 31 s
de|t
3.3 Sums of Speckle Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 @[D-2s
3.3.1 Sums on an Amplitude Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ~rN~Ql%S
3.3.2 Sum of Two Independent Speckle Intensities . . . . . . . . . . . . . . . . . . . . . 34 LGGC=;{}
3.3.3 Sum of N Independent Speckle Intensities . . . . . . . . . . . . . . . . . . . . . . 37 `{s:lf
3.3.4 Sums of Correlated Speckle Intensities . . . . . . . . . . . . . . . . . . . . . . . . 40 ;>{BK,
3.4 Partially Polarized Speckle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 nyD(G=Q5
3.5 Partially Developed Speckle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ?ntyF-n&
3.6 Speckled Speckle, or Compound Speckle Statistics . . . . . . . . . . . . . . . . . . . . . . 47 ' :lADUt
3.6.1 Speckle Driven by a Negative Exponential Intensity Distribution . . . . . . . . . . . 48 $rD&rsx6
3.6.2 Speckle Driven by a Gamma Intensity Distribution . . . . . . . . . . . . . . . . . . 50 YQxVeS(
3.6.3 Sums of Independent Speckle Patterns Driven by a Gamma Intensity Distribution . . 51 J)D/w[w
4 Higher-Order Statistical Properties of Optical Speckle 55 PXz,[<ET?#
4.1 Multivariate Gaussian Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 `ySLic`
4.2 Application to Speckle Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 pi[:"}m]/P
4.3 Multidimensional Statistics of Speckle Amplitude, Phase and Intensity . . . . . . . . . . . . 58 R_eKKi@VH
4.3.1 Joint Density Function of the Amplitudes . . . . . . . . . . . . . . . . . . . . . . . 59 >y#<WB$i
4.3.2 Joint Density Function of the Phases . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4<CHwIRHY
4.3.3 Joint Density Function of the Intensities . . . . . . . . . . . . . . . . . . . . . . . . 64 ~]a:9Ev*
4.4 Autocorrelation Function and Power Spectrum of Speckle . . . . . . . . . . . . . . . . . . . 66 h lD0^8S
4.4.1 Free-Space Propagation Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 DfgqB3U[
4.4.2 Imaging Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 N1`/~Gi
4.4.3 Speckle Size in Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 {SVd='!V
4.5 Dependence of Speckle on Scatterer Microstructure . . . . . . . . . . . . . . . . . . . . . . 77 v>CAA"LH
4.5.1 Surface vs. Volume Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 @JVax -N
4.5.2 Effect of a Finite Correlation Area of the ScatteredWave . . . . . . . . . . . . . . . 78 %b<cJ]F
4.5.3 A Regime where Speckle Size Is Independent of Scattering Spot Size . . . . . . . . 81 T|`nw_0
4.5.4 Relation between the Correlation Areas of the ScatteredWave and the Surface Height [GJ_]w^}j
Fluctuations— Surface Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . 83 i9+(gX(t
4.5.5 Dependence of Speckle Contrast on Surface Roughness— Surface Scattering . . . . 88 ~ \z7$9Q
4.5.6 Properties of Speckle Resulting from Volume Scattering . . . . . . . . . . . . . . . 92 %GQPiWu
4.6 Statistics of Integrated and Blurred Speckle . . . . . . . . . . . . . . . . . . . . . . . . . . 94 m~mw1r
4.6.1 Mean and Variance of Integrated Speckle . . . . . . . . . . . . . . . . . . . . . . . 95 JJ[.K*dO
4.6.2 Approximate Result for the Probability Density Function of E8j>Toz
Integrated Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6a51bj!f
4.6.3 “Exact” Result for the Probability Density Function of Integrated Intensity . . . . . 101 cl:h'aG
4.6.4 Integration of Partially Polarized Speckle Patterns . . . . . . . . . . . . . . . . . . . 106 }w^Hm3Y^&
4.7 Statistics of Derivatives of Speckle Intensity and Phase . . . . . . . . . . . . . . . . . . . . 108 p3>p1tC
4.7.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 `2Rd=M]?
4.7.2 Parameters for Various Scattering Spot Shapes . . . . . . . . . . . . . . . . . . . . 110 =S7Xj`/
4.7.3 Derivatives of Speckle Phase: Ray Directions in a Speckle Pattern . . . . . . . . . . 111 9;KQ3.Fa}q
4.7.4 Derivatives of Speckle Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 h BD .IB
4.7.5 Level Crossings of Speckle Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 116 -}Vnr\f
4.8 Zeros of Speckle Patterns: Optical Vortices . . . . . . . . . . . . . . . . . . . . . . . . . . 118 kBg,U 8|S
4.8.1 Conditions Required for a Zero of Intensity to Occur . . . . . . . . . . . . . . . . . 119 w}nc^6qH
4.8.2 Properties of Speckle Phase in the Vicinity of a Zero of Intensity . . . . . . . . . . . 119 HfEU[p7)
4.8.3 The Density of Vortices in Fully Developed Speckle . . . . . . . . . . . . . . . . . 119 77?/e^K\S
4.8.4 The Density of Vortices for Fully Developed Speckle Plus a Coherent Background . 123 &g%9$*gmT
5 OpticalMethods for Suppressing Speckle 125 P Llad\
5.1 Polarization Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 },zP,y:cH
5.2 Temporal Averaging with a Moving Diffuser . . . . . . . . . . . . . . . . . . . . . . . . . 127 |X@ZM
5.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 2>3#/I9Y
5.2.2 Smooth Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 NN\>(
=
5.2.3 Rough Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 _dCdyf
5.3 Wavelength and Angle Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 1'ts>6b
5.3.1 Free-Space Propagation, Reflection Geometry . . . . . . . . . . . . . . . . . . . . 136 3BHPD;U
5.3.2 Free-Space Propagation, Transmission Geometry . . . . . . . . . . . . . . . . . . . 144 I~ Q2jg2
5.3.3 Imaging Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 y}Ji( q~
5.4 Temporal and Spatial Coherence Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 150 ~~,] b
5.4.1 Coherence Concepts in Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 [xW;5j<87
5.4.2 Moving Diffusers and Coherence Reduction . . . . . . . . . . . . . . . . . . . . . . 152 foO/Yc
5.4.3 Speckle Suppression by Reduction of Temporal Coherence . . . . . . . . . . . . . . 154 VrDSN
5.4.4 Speckle Suppression by Reduction of Spatial Coherence . . . . . . . . . . . . . . . 157 Q{FK_Mv<
5.5 Use of Temporal Coherence to Destroy Spatial Coherence . . . . . . . . . . . . . . . . . . 163 ;>YLL}]j
5.6 Compounding Speckle Suppression Techniques . . . . . . . . . . . . . . . . . . . . . . . . 163 `F-<P%k
6 Speckle in Certain Imaging Modalities 165 {}>s0B
6.1 Speckle in the Eye . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 W>$2BsO
6.2 Speckle in Holography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 g{0a]'ph
6.2.1 Principles of Holography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 4h% G %>j
6.2.2 Speckle Suppression in Holographic Images . . . . . . . . . . . . . . . . . . . . . . 170 5eS0
B{,c
6.3 Speckle in Optical Coherence Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . 171 {yFCGCs
6.3.1 Overview of the OCT Imaging Technique . . . . . . . . . . . . . . . . . . . . . . . 172 IkW8$>
6.3.2 Analysis of OCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 =
cQK^$6(
6.3.3 Speckle and Speckle Suppression in OCT . . . . . . . . . . . . . . . . . . . . . . . 176 o3C7JG
6.4 Speckle in Optical Projection Displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 |qe[`x;
%
6.4.1 Anatomies of Projection Displays . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 39Nz>Nu:
6.4.2 Speckle Suppression in Projection Displays . . . . . . . . . . . . . . . . . . . . . . 182 i" 0]L5=P
6.4.3 Polarization Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 &!Sq6<!v2
6.4.4 A Moving Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 k2]fUP
6.4.5 Wavelength Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 o_=t9\:
6.4.6 Angle Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 Wgp}v93
6.4.7 Over-Design of the Projection Optics . . . . . . . . . . . . . . . . . . . . . . . . . 186 -;T!d
6.4.8 Changing Diffuser Projected onto the Screen . . . . . . . . . . . . . . . . . . . . . 188 ITpo:"X g
6.4.9 Specially Designed Screens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 LdAWCBLS
6.5 Speckle in Projection Microlithography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 I$yFCd Xr
6.5.1 Coherence Properties of Excimer Lasers . . . . . . . . . . . . . . . . . . . . . . . 200 :'hc&wk`
6.5.2 Temporal Speckle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 ~1xfE C/
6.5.3 From Exposure Fluctuations to Line Position Fluctuations . . . . . . . . . . . . . . 202 gl.uDO%.
7 Speckle in Certain Non-imagingModalities 205 *GUQz
7.1 Speckle in Multimode Fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 )67pBj
7.1.1 Modal Noise in Fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 barY13)$U
7.1.2 Statistics of Constrained Speckle . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 LsW7JIQd
7.1.3 Frequency Dependence of Modal Noise . . . . . . . . . . . . . . . . . . . . . . . . 211 >aw`kr
7.2 Effects of Speckle on Optical Radar Performance . . . . . . . . . . . . . . . . . . . . . . . 216 u?Pec:3%
7.2.1 Spatial Correlation of the Speckle Returned from Distant Targets . . . . . . . . . . . 217 \B\G=Y
7.2.2 Speckle at Low Light Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 *yX5g,52-|
7.2.3 Detection Statistics—Direct Detection . . . . . . . . . . . . . . . . . . . . . . . . 222 }.ZT?p\
7.2.4 Detection Statistics— Heterodyne Detection . . . . . . . . . . . . . . . . . . . . . 227 R_JB`HFy=
7.2.5 Comparison of Direct Detection and Heterodyne Detection . . . . . . . . . . . . . . 234 $G UCVxs
7.2.6 Reduction of the Effects of Speckle in Optical Radar Detection . . . . . . . . . . . . 235 2lb HUK
7.3 Speckle and Metrology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 Vv|%;5(
8 Speckle in Imaging Through the Atmosphere 239 nr*nX
8.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 v,}Mn7:
8.1.1 Refractive Index Fluctuations in the Atmosphere . . . . . . . . . . . . . . . . . . . 239 8D]&wBR:
8.2 Short-Exposure and Long-Exposure Point-Spread Functions . . . . . . . . . . . . . . . . . 240 )s-[d_g
8.3 Long-Exposure and Short-Exposure Average Optical Transfer Functions . . . . . . . . . . . 242
,>C`|
8.4 Statistical Properties of the Short-Exposure OTF and MTF . . . . . . . . . . . . . . . . . . 243 d+m}Z>iQ1O
8.5 Astronomical Speckle Interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 3P,
ul*e
8.5.1 Object Information that Is Retrievable . . . . . . . . . . . . . . . . . . . . . . . . . 248 :ebu8H9f%
8.5.2 Results of a More Complete Analysis of the Form of the Speckle Transfer Function . 250 -e2f8PV?3
8.6 The Cross-Spectrum or Knox–Thompson Technique . . . . . . . . . . . . . . . . . . . . . 252 z*oeho
8.6.1 The Cross-Spectrum Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . 253 b7uxCH]Z
8.6.2 Recovering Full Object Information from the Cross-Spectrum . . . . . . . . . . . . 254 *(+*tjcWa
8.7 The Bispectrum Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 )G+D6s23
8.7.1 The Bispectrum Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 J]AkWEiCJ
8.7.2 Recovering Full Object Information from the Bispectrum . . . . . . . . . . . . . . . 258 Y|
dw>qO
8.8 Speckle Correlography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 `T#Jiq E
A Linear Transformations 263 z<I@SI^>
B Contrast of Partially Developed Speckle 267 w%2|Po5
C Statistics of Derivatives of Speckle 271 )/:j$aq
C.1 The Correlation Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 L>3- z>u,
C.2 Joint Density Function of the Derivatives of Phase . . . . . . . . . . . . . . . . . . . . . . . 274 1#w'<}h#U
C.3 Joint Density Function of the Derivatives of Intensity . . . . . . . . . . . . . . . . . . . . . 274 ow<z @^ 3'
D Wavelength and Angle Dependence 277 m=K46i+NE
D.1 Free-Space Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 O)FkpZc@9c
D.2 Imaging Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280 >2^|r8l5
E Speckle Contrast when a Dynamic Diffuser is Projected onto a Random Screen 285
8MZ:=
E.1 Random Phase Diffusers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 }+/F?_I=
%
E.2 Diffuser that Just Fills the Projection Optics . . . . . . . . . . . . . . . . . . . . . . . . . . 287 -J&
b~t@
E.3 Diffuser Overfills the Projection Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 S%6 V(L|
F Statistics of Constrained Speckle 289 )x<oRHx]
Bibliography 291 eWk
W,a
Index 299