Speckle Phenomena in Optics: Theory and Applications vkc(-n
h&h]z[r R
Joseph W. Goodman p KKn
{Y`0}
Contents s^L\hr
1 Origins and Manifestations of Speckle 1 $`{}4,5M
1.1 General Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 oJ{)0;<~L
1.2 Intuitive Explanation of the Cause of Speckle . . . . . . . . . . . . . . . . . . . . . . . . . 2 68;,hS*|6
1.3 Some Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 _q3SR[k+`
2 Random Phasor Sums 7 >+#TsX{
2.1 First and Second Moments of the Real and Imaginary Parts of the Resultant Phasor . . . . . 8 wUh'1D<(r
2.2 Random Walk with a Large Number of Independent Steps . . . . . . . . . . . . . . . . . . 9 0t/ S_Q
2.3 Random Phasor Sum Plus a Known Phasor . . . . . . . . . . . . . . . . . . . . . . . . . . 12 d Aym)
2.4 Sums of Random Phasor Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 je_77G(F
2.5 Random Phasor Sums with a Finite Number of Equal-Length Components . . . . . . . . . 16 o"7,CQye
2.6 Random Phasor Sums with a Nonuniform Distribution of Phases . . . . . . . . . . . . . . . 17 n." j0kc7=
3 First-Order Statistical Properties of Optical Speckle 23 goRoi\z $
3.1 Definition of Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 {7Dc(gNS
3.2 First-Order Statistics of the Intensity and Phase . . . . . . . . . . . . . . . . . . . . . . . . 24 OWtN=Gk
3.2.1 Large Number of Random Phasors . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 D dt9`j
3.2.2 Constant Phasor plus a Random Phasor Sum . . . . . . . . . . . . . . . . . . . . . 27 d!Y,i!l!
3.2.3 Finite Number of Equal-Length Phasors . . . . . . . . . . . . . . . . . . . . . . . . 31 ~uzu*7U
3.3 Sums of Speckle Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 @^k$`W;
3.3.1 Sums on an Amplitude Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 "%,zB_ng\<
3.3.2 Sum of Two Independent Speckle Intensities . . . . . . . . . . . . . . . . . . . . . 34 \<