Speckle Phenomena in Optics: Theory and Applications Ui{%q@
PnlI {d
Joseph W. Goodman okNo-\Dh!
?$ r`T]>`2
Contents d0cL9&~qW
1 Origins and Manifestations of Speckle 1 .n-#A
1.1 General Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 $vO&C6m$
1.2 Intuitive Explanation of the Cause of Speckle . . . . . . . . . . . . . . . . . . . . . . . . . 2 x0*{oP
1.3 Some Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
QrZ#<{,J5
2 Random Phasor Sums 7 x&}]8S)
2.1 First and Second Moments of the Real and Imaginary Parts of the Resultant Phasor . . . . . 8 3a/n/_D
2.2 Random Walk with a Large Number of Independent Steps . . . . . . . . . . . . . . . . . . 9 ~/
%Xm<
2.3 Random Phasor Sum Plus a Known Phasor . . . . . . . . . . . . . . . . . . . . . . . . . . 12 ~%TWF+
2.4 Sums of Random Phasor Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2G8pDvBr
2.5 Random Phasor Sums with a Finite Number of Equal-Length Components . . . . . . . . . 16 4zug9kFK
2.6 Random Phasor Sums with a Nonuniform Distribution of Phases . . . . . . . . . . . . . . . 17 C@rGa7
3 First-Order Statistical Properties of Optical Speckle 23 Yo-}uTkw
3.1 Definition of Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 U,
6iT
3.2 First-Order Statistics of the Intensity and Phase . . . . . . . . . . . . . . . . . . . . . . . . 24 k4TWfl^}9
3.2.1 Large Number of Random Phasors . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 p{FI_6db
3.2.2 Constant Phasor plus a Random Phasor Sum . . . . . . . . . . . . . . . . . . . . . 27 KWTV!Wxb=K
3.2.3 Finite Number of Equal-Length Phasors . . . . . . . . . . . . . . . . . . . . . . . . 31 ]BQYVx/
3.3 Sums of Speckle Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3r\8v`^>
3.3.1 Sums on an Amplitude Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 K|& f5w
3.3.2 Sum of Two Independent Speckle Intensities . . . . . . . . . . . . . . . . . . . . . 34 S}m_XR]
3.3.3 Sum of N Independent Speckle Intensities . . . . . . . . . . . . . . . . . . . . . . 37 Ia&R/I
3.3.4 Sums of Correlated Speckle Intensities . . . . . . . . . . . . . . . . . . . . . . . . 40 8~sP{V%
3.4 Partially Polarized Speckle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 0}{xH
3.5 Partially Developed Speckle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 azcPeAe
3.6 Speckled Speckle, or Compound Speckle Statistics . . . . . . . . . . . . . . . . . . . . . . 47 5~Y`ikwxL
3.6.1 Speckle Driven by a Negative Exponential Intensity Distribution . . . . . . . . . . . 48 f0<zK!
3.6.2 Speckle Driven by a Gamma Intensity Distribution . . . . . . . . . . . . . . . . . . 50 /@os*c|je
3.6.3 Sums of Independent Speckle Patterns Driven by a Gamma Intensity Distribution . . 51 }Q7y tE
4 Higher-Order Statistical Properties of Optical Speckle 55 boh?Xt-$
4.1 Multivariate Gaussian Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 c/{FDN
4.2 Application to Speckle Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 9g9 2eKS
4.3 Multidimensional Statistics of Speckle Amplitude, Phase and Intensity . . . . . . . . . . . . 58 W&z jb>0b0
4.3.1 Joint Density Function of the Amplitudes . . . . . . . . . . . . . . . . . . . . . . . 59 xQy,1f3s+
4.3.2 Joint Density Function of the Phases . . . . . . . . . . . . . . . . . . . . . . . . . . 60 GkIE;7#2kX
4.3.3 Joint Density Function of the Intensities . . . . . . . . . . . . . . . . . . . . . . . . 64 yNTd_XPL
4.4 Autocorrelation Function and Power Spectrum of Speckle . . . . . . . . . . . . . . . . . . . 66 %+7]/_JO&