+j#+8Ze 监控
镜头的设计,
结构形式逃不出经典
物镜的结构形式。
C](f>)Dz
/ !6n_}I-W 对于16mm,1/3‘ccd 大相对孔径的监控镜头,采用高斯结构比较合适。
>i_2OV 根据需求,选择正确结构类型,是进行
光学设计的首要条件,但并不代表就能获得好的设计结果。
+"x,x 6q*9[<8 如下图示,选择如图示的7片高斯物镜,完全能满足要求,后组增加了一个
镜片,用于提高双高斯物镜的相对孔径。
yu;+o3WlK
3e
#p@sB 图1
WgR).Yx t,QyfN 但对于开发镜头的厂家来说,多一片
透镜,就提高了成本。尽量少的透镜片数,将更受青睐。
J
cPtwa;q@ 上图中七片结构 的双高斯物镜 视场角比16mm监控镜头要求的偏大。 因此,此物镜还是有简化的空间的。
"&%I)e^ Jy^u? 对于此物镜的简化,有设计师选择了简化胶和镜片的方法。我对这个很不赞同。胶合镜片对于
像差的校正,作用较大,尽量不要简化胶合面,破坏双高斯的结构。
bmJ5MF]_fG V\t.3vT 下图是简化了前组胶和镜片。仅仅10度左右的视场角,这样的结构就很难矫正边缘
光线的相差了。图中的设计,将边缘光线的渐晕设置到了0.6,才能获得边缘光线矫正较好的结果。但是这种设置,不符合实际的渐晕系数,设计和实际不符,这样在制作产品时,边缘区域在实际应用中将变得十分模糊。
U [*FCD!~
rk&IlAE 图2
rEv@YD
e_#._Pi
M2d$4-< ~{d$!`|a 图3
Z('Z 3XL#0\im?s 图3、图4中的结构,采用简化图1中双高斯结构后组的方法。并对相差进行
优化。渐晕0.2-0.3之间。均获得了符合f16mm监控镜头设计 要求的结果。
V\{clJ\U 图3结构与图4结构相比:图3可以获得较大的视场角,各视场像质像差较小;图4结构,视场角较小,但可获得较大的相对孔径。
0vFD3}~> Uhe=h&e2k@
6 2'j!"xv 图4
9}l33T4T y6LWx: M*!agh 
qo p^;~ |L-]fjBbF 0C1pt5K 2-7IJ\