一、 半导体发光二极管工作原理、特性及应用 Z A [ )
b(/j\NWC
(一)LED发光原理 Mw+v"l&mU
3\1#eK'TK.
发光二极管是由Ⅲ-Ⅳ族化合物,如GaAs(砷化镓)、GaP(磷化镓)、GaAsP(磷砷化镓)等半导体制成的,其核心是PN结。因此它具有一般P-N结的I-N特性,即正向导通,反向截止、击穿特性。此外,在一定条件下,它还具有发光特性。在正向电压下,电子由N区注入P区,空穴由P区注入N区。进入对方区域的少数载流子(少子)一部分与多数载流子(多子)复合而发光,如图1所示。 -ovoRI^6`}
0Yp>+:#
假设发光是在P区中发生的,那么注入的电子与价带空穴直接复合而发光,或者先被发光中心捕获后,再与空穴复合发光。除了这种发光复合外,还有些电子被非发光中心(这个中心介于导带、介带中间附近)捕获,而后再与空穴复合,每次释放的能量不大,不能形成可见光。发光的复合量相对于非发光复合量的比例越大,光量子效率越高。由于复合是在少子扩散区内发光的,所以光仅在靠近PN结面数μm以内产生。 lVP |W:~K
eap8*ONl
理论和实践证明,光的峰值波长λ与发光区域的半导体材料禁带宽 X6'H`E[
度Eg有关,即 55^tfu
w~]T<^fW~
????λ≈1240/Eg(mm) S.1(3j*
6s5yyy=L%~
式中Eg的单位为电子伏特(eV)。若能产生可见光(波长在380nm紫光~780nm红光),半导体材料的Eg应在3.26~1.63eV之间。比红光波长长的光为红外光。现在已有红外、红、黄、绿及蓝光发光二极管,但其中蓝光二极管成本、价格很高,使用不普遍。 wE?CvL
g@Ld"5$^2
(二)LED的特性 #,TELzUVE
Vu%n&uF
1.极限参数的意义 ,[Ag~.T
zz&vfO31J
(1)允许功耗Pm:允许加于LED两端正向直流电压与流过它的电流之积的最大值。超过此值,LED发热、损坏。 C!5I?z&
f9a$$nb3`
(2)最大正向直流电流IFm:允许加的最大的正向直流电流。超过此值可损坏二极管。 0Q`&inwh
Xo\S9,s{
(3)最大反向电压VRm:所允许加的最大反向电压。超过此值,发光二极管可能被击穿损坏。 *Z; r
B
Je 31".
(4)工作环境topm:发光二极管可正常工作的环境温度范围。低于或高于此温度范围,发光二极管将不能正常工作,效率大大降低。 *,0+RAS vq
sCkO0dl8
2.电参数的意义 M1EOnq4-
Y([d;_#P
(1)光谱分布和峰值波长:某一个发光二极管所发之光并非单一波长,其波长大体按图2所示。 i-]U+m*
yyjw?#\8
由图可见,该发光管所发之光中某一波长λ0的光强最大,该波长为峰值波长。