作者:兰州工业高等专科学校 穆玺清
f KFnCng k&WUv0 摘要:分析了用硬质合金车刀进行冷挤压光整加工的工作原理及挤压表面强化机理,并给出了合理的挤压工艺参数。
5P-K *C& pTc$+Z73 1 引言
DxE(9j F(J\ctha 油缸、气缸、活塞、活塞杆等需要紧密配合的大型轴套类零件对尺寸精度及表面粗糙度的要求较高,并要求工作表面具有残余压应力。此类零件的精加工通常采用磨削+喷丸处理工艺,但加工效率低,加工成本高,且对直径及长度尺寸较大的内圆表面的磨削加工相当困难。为解决这一加工难题,本文提出一种使用改型硬质合金车刀对工件表面进行冷挤压光整加工的方法。
u
wH)$Pl c$@`P 2 硬质合金挤压刀
_TtX`b_Z V+Y|4Y& 挤压刀用90 硬质合金车刀磨制而成,其外形尺寸如图1所示。要求刀具具有较高尺寸精度,且挤压工作部分表面粗糙度Ra<0.4µm。
g7.7E6%H
<sm#D"GpP 图1 硬质合金挤压刀
X7t5b7 np<f, 3 冷挤压工作原理
5T~3$kuO d1UVvyH 冷挤压工作原理如图2所示。将挤压刀装夹在普通车床的刀架或刀杆上,工件装夹在三爪卡盘上。通过纵向进给对工件表面施加一定挤压力,可使表层金属产生相应的塑性变形;再通过横向走刀和工件的旋转,迫使工件车削后残留的刀痕波峰在自变形的同时将凸起材料挤向前方的波谷内,从而降低刀痕波峰与波谷的高度差,达到降低表面粗糙度的目的。在挤压过程中,工件表层将产生残余压应力,可提高其疲劳强度和抗腐蚀能力。
y2oB]^z&n
Su$18a"Bc 图2 挤压过程示意图
KDux$V4 eKL]E! 用挤压刀进行冷挤压加工是一种无屑加工,它可替代磨削和喷丸处理两道工序,显著提高加工效率。采用传统工艺加工需耗时1小时的工件,用冷挤压加工仅需10分钟。
b\kN_ eV"d v*R 4 挤压表面强化机理
=6.8bZT\ b{Z^)u2X 挤压刀挤压工件表面时,内孔壁和外圆壁处金属材料的晶粒及分布在晶粒边缘上的杂质被拉长呈纤维状,使外围弹性区产生拉应力,而外围弹性区的弹性恢复作用又使孔壁附近材料(纤维组织)产生残余压应力。这一残余压应力对疲劳裂纹的产生具有一定抑制作用,并可使已存在的微观裂纹处于闭合状态,从而使裂纹张开时的应力强度因子最大值Kmax减小,裂纹扩展驱动力降低。同时,这一负残余应力与外加应力叠加后,可使金属表层一定区域内的实际拉应力水平降低,从而显著提高其疲劳强度(图3为挤压强化提高疲劳强度极限示意图)。此外,晶粒的碎化可增加一定体积晶体内的晶粒数目,即在相同变形条件下变形量被分散到更多晶粒内,使各晶粒的变形更为均匀而不至于产生过分形变集中微区。由于形变集中微区的塑性应变量远大于平均应变量,所以形变集中微区的存在为材料的屈服创造了有利条件,而反复产生的正反向交变塑性变形是形成疲劳裂纹的必要条件,其结果是其中少数形变集中微区内将萌生疲劳初裂纹核。
xR\D(FLVS
kA?X^nj@ 图3 挤压强化提高疲劳强度示意图
"9c.C I sjkWz2]S 综上所述,挤压壁附近材料的晶粒被拉长而产生残余压应力以及晶粒碎化使变形更为均匀是用挤压刀进行挤压强化可提高工件材料疲劳寿命的内在机理。
@WhZx*1 l[tY,Y:4qO 5 挤压工艺参数的选取
59&T