这篇文章将会说明如何在非序列模式(Non-Sequential mode)中利用「反射式
偏光增亮表面(Dual Brightness Enhancement Film Surface)」的功能,在OpticStudio模拟「反射式偏光
增亮膜(Dual Brightness Enhancement Film, DBEF)」。为了确认这种结构的效能,我们在范例档案中建立了一个经简化的LCD模型,结构包括
光源、反光罩(reflective enclosure)、散射表面(diffusive surface)和偏振片(polarizer)。利用这个模型,我们可以比较DBEF的存在与否,会对
系统的发光效能造成什么影响。
o8!uvl}:9 LY1dEZ-)A 附件
下载 \>lDM vq-#%o 联系工作人员获取附件
MGfIA?u z!>ml3 简介
v|@1W Uc,g #-9@*FFL, 这篇文章将讲述如何在OpticStudio中建立DBEF。注意,我们不会在档案中建立实际DBEF表面的每一层结构,而是根据需要的输出结果(例如一道已知偏振态(polarization)、且穿过DBEF的光的强度比例)建立模型。透过DBEF在系统中的成效,我们可以确定这种架构是否是可行的。
0.lOSAq
%mr6p}E| 液晶显示器
{/}p"(^ m'YYkq(5%Z 在近年来的显示器发展中,液晶显示器(Liquid crystal display, LCD)占有举足轻重的地位。LCD结合了液晶分子和偏振片的
光学特性,有效的控制了影像的显现。这种类型的显示器主要由背光板(backlight)、显示增益
薄膜(display enhancement film)、液晶面板(LCD cell)以及前后两层的偏振片(polarizer)等组件构成。下图是一个典型的笔记本电脑显示器的架构图。
/& wA$h *G(ZRj@33 {~{</ g/ 「反射式偏光增亮膜(Dual Brightness Enhancement Film)」是一个时常用于建构LCD的结构。在显示器中,DBEF被用来当作反射式偏振片。在下方的示意图中,我们可以看到作为后偏振片的DBEF大幅的提升了显示的亮度,使原本会被吸收的
光线可以有效的被利用。
rLx'.: 2{I+H'w8: O#3PUuE%d DBEF 表面属性
Y2>0Y3yM >NjgLJh DBEF是一个长方形的表面,能将入射光线依据偏振态分为穿透光及反射光。
模拟的设定上,我们可以输入穿透和反射光在x及y方向上的分量来定义这个表面。在这个范例中,我们建立了一个理想的DBEF,y方向偏振光可以100%穿透,而x方向偏振光则是100%反射。
Ot([5/K *Vr;rk 测试DBEF
$Fik]TbQp 为了分析DBEF的表现,我们建立了一个简化的模型包括了光源、散射表面(diffusive surface)、偏振片(polarizer)、一个防止漏光的反射罩(reflective enclosure)以及侦测器(detector),并量测这个模型的输出光功率。示例文件可由私信方式获取。
7?a!x$-U( st-I7K\v 在模拟
软件中,我们分别利用两种物体'长方体光源(Source Rectangle)'及'长方体对象(Rectangular Volume) '代表背光板(backlight)及散射体(diffuser)。其中长方体对象(Rectangular Volume)是由面镜(MIRROR)所构成,包围所有组件使系统不会漏光。接着在对象特性(object properties)中,将这个物件的前表面(Front Surface)的散射分布(scatter distribution)类型设定为'Lambertian',赋予它散射表面(diffusive surface)的特性。这时,DBEF就可以成功的让被反射的能量变成具有随机偏振态(random polarization)的光线,并能再次被系统所利用。注意,这个范例中的
光学系统并一个不是完整的显示器结构,但已足够让我们透过分析得到明确的结果。我们可以通过这个简化的系统,比较DBEF的有无对输出能量造成的影响。
%IHra6 :!<